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Abstract: Exosomes belong to the group of extracellular vesicles (EVs) that derive from various
cell populations and mediate intercellular communication in health and disease. Like hormones
or cytokines, exosomes released by cells can play a potent role in the communication between
the cell of origin and distant cells in the body to maintain homeostatic or pathological processes,
including tumorigenesis. The nucleic acids, and lipid and protein cargo present in the exosomes
are involved in a myriad of carcinogenic processes, including cell proliferation, tumor angiogenesis,
immunomodulation, and metastasis formation. The ability of exosomal proteins to mediate direct
functions by interaction with other cells qualifies them as tumor-specific biomarkers and targeted
therapeutic approaches. However, the heterogeneity of plasma-derived exosomes consistent of
(a) exosomes derived from all kinds of body cells, including cancer cells and (b) contamination of
exosome preparation with other extracellular vesicles, such as apoptotic bodies, makes it challenging
to obtain solid proteomics data for downstream clinical application. In this manuscript, we review
these challenges beginning with the choice of different isolation methods, through the evaluation of
obtained exosomes and limitations in the process of proteome analysis of cancer-derived exosomes to
identify novel protein targets with functional impact in the context of translational oncology.

Keywords: proteomics of exosomes; heterogeneity of exosomes; extracellular vesicles; cancer;
tumor progression

1. Introduction

Emerging evidence shows that exosomes are powerful key players regulating multiple processes
during carcinogenesis and tumor spread [1,2]. Protein cargo of exosomes play an important role in all
of these processes [3]. Surface proteins of exosomes target specific adjacent and distant sites, such as
metastasis. Intraexosomal protein cargo is considered to facilitate the crosstalk between tumor and
environment, e.g., cells present in the premetastatic niche [4]. Uptake of exosomes by the cells lead to
the release of exosomal cargo inside the cells and in turn to the activation of the downstream signaling
pathways relevant in tumorigenesis and metastasis [1,5]. Therefore, a detailed characterization of
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protein cargo on the homogeneous pure population of exosomes is essential in order to understand
correctly the mechanisms behind communication between cancer and immune cells. Herein, we will
discuss the limitations and challenges in performing proteomics of exosomes, which starts with the
choice of sample for exosome isolation and isolation method, and further depends on the protein
characterization and enrichment criteria. The quality of the proteomics data can then be useful for basic
and clinical research in order to characterize and classify exosomes based on the proteomic profiles.
This will allow for further evaluation of exosomes in diagnostics as biomarkers or therapeutics.

2. Exosomes and Their Function

Exosomes are small non-plasma membrane-derived vesicles (30–120 nm) of endocytic origin [6].
Production of exosomes is a very tightly regulated process governed by multiple signaling molecules
and occurs at the side of early endosome, resulting in the formation of a multivesicular body (MVB).
After the fusion of MVBs with the plasma membrane, intraluminal vesicles (ILVs) from MVBs are
released [7]. Two major pathways are suggested in the production of exosomes at the endosomal
membrane: the endosomal sorting complex required for transport (ESCRT)-dependent pathway and
the ESCRT-independent pathway [8]. Exosomes were discovered first in 1983 by two independent
groups reporting that maturing blood reticulocytes release transferring receptors associated vesicles
(exosomes) in extracellular space [9,10]. Since these findings, the field of exosome research has exploded
and in the last three decades, thousands of publications related to understanding exosome biology
in health and disease have appeared. With the recent advancement in the isolation techniques and
characterization tools, it appears that a major set of publications deal with a heterogeneous mixture of
vesicles containing non-exosome membrane vesicles and exosomes.

Exosomes carry different classes of molecules, including proteins, metabolites, and nucleic
acids [4,11]. There are discussions about whether the composition of exosomal cargo only reflect the
phenotype of parental cells or are actively regulated to fulfill different regulatory and communication
functions [12]. Nevertheless, the cargo of exosomes reflects, to some extent, that of the parental
cells, which allows one to determine their origin. For this reason, tumor-derived exosomes (TEX) are
an important non-invasive surrogate marker for tumors enabling them to serve as a sort of liquid
biopsy [4]. Most interestingly, exosomes are involved in many aspects of intercellular communication
as they may transmit a complex network of signals driving cell death, survival, and differentiation
between a secreting cell and multiple types of neighboring or distant recipient cells. It is noteworthy
that exosomes are known to be involved in the regulation of the immune response by affecting multiple
immune cells, such as dendritic cells, T cells, B cells, NK cells, and macrophages [2].

Due to the recent improvement in EV isolation and analysis techniques, several key papers
have come up with findings that would change the fields view on exosomes as a simple mixture of
EVs. Zhang, H. et al. reported that exosome isolation using classical ultracentrifugation method,
when subjected to the asymmetric flow field flow fractionation, could be divided into three different
subpopulations—two exosome populations: large (Exo-L, 40–120 nm) and small (Exo-S, 60–80 nm), and
“exomeres” that are non-membrane nanoparticles (~35nm) [13]. In another report, detailed analysis
of various EVs and non-membranous particles isolated to homogeneity revealed a requirement for
the reassessment of exosomal protein, RNA, and DNA composition that was previously associated
with exosomes [14]. Both of these studies, besides transcriptomics and genomics, clearly highlight
the importance of proteomic approaches to define different populations of vesicles and nanoparticles,
which are released in the extracellular space.

3. Source and Methods of Isolation for Proteomic Analysis

For every exosome-based study, several parameters, such as source, methods of isolation and
downstream analysis, have to be considered carefully. The choice of one parameter or another can lead
to an entirely different outcome in the planned experiment. Exosomes can derive from either cell/tissue
culture supernatants or primary body fluids, like blood or urine. The use of well-characterized cell



Proteomes 2019, 7, 22 3 of 12

lines is a routine procedure in most laboratories working in cancer research areas as an easy and safe
method to start experiments, and to acquire reproducible initial data. Analyses of tumor-derived
exosomes that require large quantities of plasma exosomes of patients could also be initially based
on cell lines. In the field of exosome-based target identification, proteins cannot be amplified such as
other molecular counterparts, e.g., DNA and RNA in PCR. Therefore, the evaluation of the proteomic
content of exosomes proves to be a challenging task.

Nevertheless, the major disadvantage of cell lines is that they do not reflect the complexity of
“in vivo” systems, consisting of artificially created homogenous immortal cells and frequently lacking
important molecules that could be identified as biomarkers. Therefore, functional analyses based
entirely on the cell line-derived exosomes can be misleading and require re-evaluation in patient
material. This shows a strong need to standardize protocols used for exosome isolation and analysis
from biologically relevant bodily fluids, such as blood [15], urine [16], breast milk [17], cerebrospinal
fluid (CSF) [18], saliva [19], human semen [20], and synovial fluid [21]. All these different sources
of exosomes require meticulous analysis, which will result in the decision of the best criteria for the
exosome isolation method as well as further exosome analysis.

Conditioned media obtained from cell culture often contains fetal bovine serum (FBS), which is
enriched in bovine serum exosomes. These exosomes can lead to misleading target detection by high
sensitive mass spectrometers. Nevertheless, most of the established cell lines, irrespective of their
origin, require FBS. This problem is hard to solve, as growing under serum starvation would be one
option to avoid bovine-derived exosomes in proteomic analysis, however, it is known to activate a
plethora of signaling pathways related to stress response. This intracellular stress generated due to
lack of serum can completely alter the metabolic behavior of the cell and in turn influence exosome
secretion pathways, leading to misrepresentative experimental outcomes. Therefore, culturing under
serum-deprived conditions can only work for some cell lines that are specifically generated for such
growth conditions. An alternative would be to deplete bovine exosomes from FBS, which is currently
done by the ultracentrifugation of FBS at high speed (100,000× to 120,000× g for 2 to 18 h), depending
on the experimental requirement. Shelke et al. have shown that for transcriptome analysis of exosomal
RNA, ultracentrifugation at 120,000× g for 18 h led to almost 95% decrease in the signal background
from FBS EV [22].

Blood plasma and serum constitute the most promising source of exosomes, as they include
circulating exosomes originating from blood cancers as well as solid tumors [23]. Blood can be easily
obtained from patients, except in children when a high blood volume is required. However, if no
proper EV isolation technique is applied, plasma and serum-derived EVs contain various types of
chylomicrons, lipoprotein particles, and plasma proteins that can dramatically reduce the sensitivity of
mass spectrophotometry [24,25]. Moreover, as blood contains proteases, nucleases, and lipases, the
method to draw blood and subsequently to handle the sample should be optimized for proteomics.

Urine is considered as another promising body fluid that could be used in the future as an
alternative source of exosomes. Obtaining a urine sample from patients is a simple and non-invasive
process. Urine is clean and is generally free of proteases, nucleases, and lipases, which makes the storage
and processing of proteins much easier than blood. However, the presence of protein uromodulin in the
exosome preparations from urine poses a major problem in downstream proteomics analysis, as a high
uromodulin level enriches the mass spec signal and thereby limits the effectiveness of identification of
exosome-associated protein targets [17,26]. Recently, thermochemical and centrifugal based methods
have been applied to deplete uromodulin protein from urine, but these methods are labor- and
time-consuming and lead to compromises in exosome quality [26,27]. Another approach, which can be
applied to eliminate contaminating proteins from body fluid is m/z exclusion limit [28]. Hiemstra et al.
have recently applied this approach to set up m/z exclusion list (ExL) of uromodulin-related peptide
ions, which effectively improved the specificity of the mass spectrometry to detect exosome-associated
proteins in urine without the requirement of physical elimination of the uromodulin contamination [28].
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Cerebrospinal fluid (CSF) [18] can be another useful source of exosomes, especially in neurological
cancers and disorders [29,30]. Because exosomes from primary central nervous system (CNS) cancers
can directly infiltrate the CSF, a large amount of attention was paid recently to CSF-derived exosomes
as a diagnostic and prognostic biomarker in CNS cancer. Due to the invasive and painful procedure
of drawing CSF samples from patients and the requirement for multiple subsequent draws to obtain
sufficient material, it is challenging, especially in pediatric patients. Similar to blood and urine,
the presence of high immunoglobulin concentrations can greatly interfere with mass spectrometry
analysis of the CSF-derived exosomes [30]. Ultracentrifugation and later incubation of CSF-derived
exosomes from protein G agarose beads were shown to remove the majority of immunoglobulins from
exosome samples, and thereby to increase the signal of exosome-specific peptides in mass spectrometry
analysis [30].

Realizing that ultracentrifugation, which used to be the gold standard for exosome isolation,
provides a mixture of heterogeneous membrane-bound exosome-like EVs with contaminants in the
preparation, a large number of protocols for exosomes purification have been proposed in the last
decades. Each method of exosome isolation is based on the criteria of improving yield and scalability of
the exosome preparation. Isolation methods that evolved after the classical ultracentrifugation (UC) [31]
are: density-gradient centrifugation (DGC) [32], sucrose cushion centrifugation [31], size exclusion
chromatography (SEC) [33,34], affinity chromatography (AC) [35,36], membrane filtration [37] and
recently established AF4 technique [13,38]. From all of these methods, it is suggested that SEC is one of
the most efficient methods to retain high concentrations of biologically-active exosomes from plasma
specimens [39]. For a comprehensive summary of exosome purification protocols based on exosome
yield, purity, and scalability, please refer to a review by Xu et al. [38]. Although the choice of exosome
isolation protocol exclusively depends on the downstream requirement and the source of the exosomes,
the initial decision to choose a given method is decisive for the outcome of the whole experiment.
AC that uses beads conjugated to the exosome-specific markers could have an advantage over other
methods, which are in principle based on non-specific physical properties of exosomes [35,36]. Hence,
once the cancer-specific surface marker on the exosome is established, one could include specific
antibodies on the beads, in addition to the exosome’s specific markers, in order to obtain cancer-released
exosomes. Although AC has an advantage over other methods, in this case, specific surface markers
have to be defined for each cancer model exosome, to distinguish cancer specific exosomes from other
EVs (microvesicles or apoptotic bodies), or exosomes from healthy cells. At present, there is no existing
method, which can yield pure cancer-specific exosome material for downstream proteomic analysis.
To overcome this issue, several groups have come up with an alternative approach to combine two or
more methods to achieve high exosome purity [40–42]. Of note, proteomic profiling of EVs purified
by a combination of ultrafiltration and size exclusion chromatography revealed high EV purity in
comparison to EVs purified by classical ultracentrifugation method [40].

After isolation of exosomes from the biological sample of choice, the quantity and purity of the
exosomes should be evaluated. Exosomes can be quantified by measuring protein concentrations in
isolated exosome fractions using a BCA protein assay kit, nano tracking analysis (NTA), dynamic
light scattering (DLS), flow cytometry or transmission electron microscopy [43]. Nevertheless, none
of the biochemical and microscopy-based approaches to quantify exosomes can provide information
on the amount of pure exosomes in the mixture of EVs. Only in combination with exosome specific
fluorophore antibodies in light microscopy or immunogold staining in electron microscopy can one
obtain precise information about the quantity of exosomes in the EV mixture and thereby the purity
of the exosome preparation [44]. In addition, recent research highlights the importance of imaging
flow cytometry for the analysis of homogenous EVs in the samples containing heterogeneous EVs and
non-EV particles [45,46].
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4. Proteomics of Exosomes

In the past decades, proteomic analysis is emerging as a powerful tool to explore and analyze
protein targets playing a functional role in triggering signaling pathways regulating health and
disease status of a cell [47]. For example, mass spectrometry-based proteomic analyses of cancer
tissue have led to the establishment of several cancer-specific biomarkers that can be used for
detection or therapy of cancer at early or late stages of disease [48–50]. The invasive approach to
obtain cancer tissue for proteomic analysis is painful for patients; therefore, liquid biopsy from body
fluids (a rather non-invasive approach) could serve as an important alternative to identify cancer
biomarkers. In agreement with this, it was shown that the amount and content of exosomes isolated
from plasma/serum [51], urine [52], or ascites fluids [53] of cancer patients positively correlate with the
tumor progression. According to the available studies, exosomes contain numerous proteins that are
involved in intracellular membrane fusion and transport, such as flotillins, annexins, GTPases, Rab,
and SNAREs; heat shock proteins (Hsp60, Hsp70, and Hsp90) and proteins involved in multivesicular
body (MVB) biogenesis, such as ALIX or Tsg101 [54]. Moreover, membrane-microdomain associated
proteins, particularly tetraspanins (CD9, CD63, CD81, and CD82) are present [54]. Importantly, a
systematized database of exosome proteins, RNAs and lipids proteins from different sources was
created—ExoCarta [http://www.exocarta.org].

Analysis of exosomes from a wide variety of cells and body fluids have allowed the identification
of several classes of proteins: (1) membrane adhesion (e.g., integrins); (2) membrane trafficking
(e.g., annexins, Rab protein family); (3) cytoskeletal components (e.g., actins, ERM proteins);
(4) lysosomal markers (e.g., CD63, LAMP-1/2); (5) antigen presentation factors (e.g., HLA class I
and II/peptide complexes); (6) tumor antigens (e.g., MelanA/Mart-1, gp100, CEA, HER2); (7) death
receptors (e.g., FasL, TRAIL); cytokines and cognate receptors (e.g., TNFα, TNFR1, TGF-β); iron
transport factors (e.g., TfR); (8) enzymes (e.g., pyruvate kinase, enolase); (9) heat shock proteins;
(10) drug transporters (e.g., ATP7A, ATP7B, MRP2) [55–57]. However, the database contains more than
40,000 species; many of them could probably be artifacts or contaminations. As many of these proteins
were characterized in single studies only, their exosome localization should still be carefully confirmed.

Proteins that are commonly found in exosomes were designated as “vesicle-specific” markers.
One of these protein families are tetraspanins, which are involved in the production of exosomes. This
family includes CD9, CD63, and CD81 membrane proteins [58]. Tetraspanins have been suggested as
biomarker candidates for various cancer and infectious diseases [59]. CD63+ exosomes were shown to
be significantly increased in patients with melanoma [60] and other cancers [61], therefore CD63 has
been suggested to be a “cancer biomarker”. Another member of the tetraspanin family, CD81, which
plays an important role in cell entry of hepatitis C virus [62], has been demonstrated to be significantly
upregulated on exosomes from serum of chronic hepatitis C patients [62]. It indicates that CD81 may
be a marker for the diagnosis of HCV infection. Nevertheless, so far no universal exosome markers
exist, as these groups of proteins are not always present in all exosomes and their quantity may vary
dependent on the variable environmental conditions. Tetraspanins represent proteins frequently found
in exosomes rather than universal (vesicle-specific) markers of exosomes. A search for a specific protein
component of exosomes is still ongoing.

The full set of proteins present in exosomes is variable and reflects the phenotypic state of the
cell from which they originate. For example, exosomes derived from T lymphocytes contain on their
surface CD3 [63]. Content of exosomes can be modified in response to environmental changes. As an
example, exosomes released from cells undergoing heat shock, show increased levels of heat shock
proteins, such as HSP60, HSP70, or HSP90 [64].

5. Transition from In Vitro Preliminary Data into Clinical Research

A challenge in exosome research is connected with translating results from studies conducted in
in vitro systems into in vivo studies. Most of the initial exosome studies utilized exosomes produced
by cell lines and obtained from supernatants of these cells. Translating results from an in vitro
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experimental system, in which exosomes derive from a homogeneous cell population to an in vivo
system with a heterogeneous exosome population released from healthy cells, immune cells, and
tumor cells (TEX) is complicated due to difficulties in interpreting the results. Therefore, many study
conditions need to be adapted.

Tumor-derived exosomes can interfere with the regulation of immune responses in the
microenvironment of a tumor. They can affect the maturation of dendritic cells, impair the functioning
of NK cells, induce suppressor cells originating from myeloma, and transform a macrophage phenotype
into a pro-cancer one [1]. One of the basic functions assigned to exosomes released from tumor cells is
the suppression of immune responses [65]. Exosomes contain immunoactive molecules (e.g., FasL,
MICA/B, MHC, immunosuppressive cytokines, adhesion molecules, and enzymes, such as CD39
and CD73), which can modulate functions of immune cells [66]. It is also important that TEX carry
tumor-associated antigens (TAA) and have the ability of their cross-presentation. Profiles of cancer
cells and their TEX have similar expression patterns and comparable levels of TAA [67]. Once released
to body fluids, exosomes produced by cancer cells containing tumor-associated antigens indicate the
presence of a tumor. Utilization of this feature of exosomes enabled characterization of proteomes
of pancreatic cancer cells and detection of enrichment in both pancreatic cancer cells and exosomes
released by them in GPC1 proteoglycan (glypican 1). GPC1+ exosomes (crExos) were monitored in
patient serum with the use of fluorescence-activated cell sorting (FACS) technique. It was demonstrated
that the utilization of GPC1+ exosomes led to the successful detection of early stages of pancreatic
cancer [68] and to the differentiation between patients with different stages of progression of this cancer.

Studies analyzing patient serum are still extremely rare. One reason could be the fact that there
are still no markers allowing the safe identification of cancer-derived exosomes (TEX), except from
melanoma [69,70]. Nevertheless, exosomes from serum or other biological fluids have an important
potential as cancer biomarkers. In addition, they can possibly be used in cancer therapy as potent
cancer vaccines or drug delivery systems. Targeting TEX in patients or inhibiting their release could
provide an important therapeutic approach.

The analysis of exosomes that are present in the plasma of head and neck cancer (HNC) patients
revealed that the profiles of immunomodulatory proteins and the ability to regulate functions of
lymphocytes depend on the disease activity of the HNC patients [66]. One of the major, increasing
risk factors in the pathogenesis of HNC is, besides alcohol and tobacco consumption, the human
papillomavirus (HPV) infection [71,72]. The complete proteome of tumor-derived exosomes from
HPV-positive and HPV-negative HNC cell lines was analyzed. Membrane components with putative
immune-regulatory functions were evaluated and several proteins discriminating HPV-positive and
HPV-negative cells were found. The observed specificity of proteins in exosomes with different
immunomodulatory features could contribute to the different overall response of HPV-positive and
HPV-negative cancers to the treatment [73].

Recent studies on novel immune checkpoint inhibitors, i.e., against CTLA-4 and PD-1 for different
types of cancers, such as melanoma, lung cancer, and HNC led to new therapeutic perspectives
for recurrent and metastatic tumor patients. The blockade of these receptors by anti-PD1 and
anti-CTLA-4 inhibit the suppression of T cell activation and therefore restores T cell activity [74,75].
However, initial clinical studies revealed response rates in HNC of about 10–15% [76–78]. Hence,
there is a need to identify determinants that are responsible for the resistance of these tumors to
immunotargeted therapies. Lately, Poggio et al. proposed that PD-L1 exosomes promote tumor growth
and their suppression restores anti-tumor immunity, which could be one major cause for resistance to
immunotherapy [79].

6. Future Perspectives of Exosome Proteomics in Cancer Research

Proteomics of exosomes has undeniably made considerable progress in recent years.
The improvement of exosome isolation methods was an essential factor that was responsible for
this phenomenon, but also the development of the advanced instrumentation used for proteomic
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analysis and its elevated sensitivity allowed a significant improvement of the analysis. Nevertheless,
there are still many missing points in exosome research. As an example, there are still no universal
exosome markers, allowing clear identification of these vesicles and distinguishing them from other
EVs. Moreover, standard methods of exosome characterization that are similarly working in vitro and
in vivo are still not available.

There are several lines of evidence that, in cancer situations, exosomes may be key players involved
in intercellular communication between tumor and non-tumor cells [1,2]. Exosomes potently contribute
to many processes of tumorigenesis, such as trafficking of immune cells, generating the metastatic niche
and modulation of tumor immune responses [80–82]. In metastatic melanoma, exosomes released
by cancer cells influence the mobilization and recruitment of bone marrow cells to pre-metastatic
niches, thus promoting metastasis [70]. For different cancers, distinct exosome-mediated mechanisms
have been identified for dysregulated anti-tumor immune responses in patients [83,84]. One major
cause of this could be the fact that, owing to their cargo, exosomes present in cancer patient plasma
induce phenotypic alterations of immune cells present in the tumor microenvironment. Tumor-derived
exosomes are considered to be responsible for delivering suppressive signals to immune cells, to induce
apoptosis of cytotoxic T-cells, and to inhibit proliferation of natural killer (NK) cells [85]. Altogether,
exosomes interfere with anti-tumor immunity and thus have an impact on patient response to the
therapy. Since many exosomal proteins are associated with cell signaling, their role in the regulation
of immune responses could be higher than initially anticipated. Therefore, the exploration of the
immunomodulatory role of exosomes during cancer progression and the role of their protein cargo in
this process (immunoproteomics) would be an important research direction in the future.

In summary, in the past decades, we have learned a great deal regarding a myriad of cargo
molecules contained within exosomes and the complex roles exosomes play in the communication
between tumor cells and their microenvironment. The accelerated research in the field of exosome
research in the past five years has no doubt made great strides in understanding the complexities
underlying the role of exosomes in cancer. However, due to the huge technical discrepancy in existing
methods used to isolate, analyze, and characterize exosomes, the field of exosome research is still in its
infancy. In order to use exosomes for diagnostic or prognostic monitoring of cancer patients, as well as
to design novel exosome-based cancer therapies, these technical challenges have to be overcome.
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