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Abstract. Middle East Respiratory Syndrome Coronavirus (MERS-CoV) is a disease first reported in Saudi Arabia in 2012 and it can 
be transmitted from human to human. This disease has spread to several other countries, most confirmed cases have displayed 
symptoms of severe acute respiratory illness and many of these patients have died. This research is aimed to construct a mathematical 
model for the transmission of MERS-CoV in two areas by separating the human population into two groups; susceptible and 
infectious groups. The dynamics of the disease is studied by a compartmental model involving ordinary differrential equations. The 
basic reproductive number of this disease is discussed to control the outbreak of this disease. Sensitivity analysis of this model is 
performed to determine the relative importance of the model parameters to the MERS-CoV transmission.  

Keywords: MERS-CoV, transmission model, basic reproductive number, sensitivity analysis 
PACS: 87.10.Ed, 87.23.Cc     
 

INTRODUCTION 
In recent years, mathematical models are increasingly used by researchers to understand the transmission of infectious 
diseases (H. W. Hethcote, 2000). Many models for the spread of infectious diseases in populations have been analyzed 
mathematically and applied to specific diseases (Z. Ma and J. Li, 2009). Mathematical modelling plays a keyrole in 
policy making, including risk assessment and control programme evaluation in reducing morbidity and mortality (N. 
Chitnis, et al., 2008).  
Middle East respiratory syndrome coronavirus (MERS-CoV), previously known as novel coronavirus was first 
identified in humans in 2012. It can cause severe acute respiratory disease, particularly in people with underlying 
conditions. The MERS-CoV is a potential pandemic disease, cases of this disease has been reported in some countries. 
As of 11 September 2015, World Health Organization (WHO) global case count was 1,569 laboratory-confirmed cases 
of MERS-COV, including at least 554 deaths (case fatality rate 35.31%) since the first cases were reported in 
September 2012 (WHO, 2015). All cases have had a history of residence in or travel to the Middle East (>90% Saudi 
Arabia), or contact with travellers returning from these areas (L. M. Gardner and C. R. MacIntyre, 2014). Until now, 
there is no vaccine for this disease.  
Mathematical modeling for disease transmission has been done by many different authors to understand the dynamical 
spread of disease in humans, for example in S. Syafruddin and M. S. M. Noorani (2011), B. Yong (2007), and Z. Feng, 
et al. (2000). Models for infectious disease are helpful for prevention and control of emerging infectious disease like 
MERS-CoV. Here a SISI (S for susceptible and I for infectious) epidemiological model for human to human in two 
areas describing MERS-CoV disease transmission is presented, as well as the associated basic reproductive number. 
Firstly, we formulate a SISI model to describe the transmission of MERS-CoV in two areas. Next, we evaluate the basic 
reproductive number using the next generation matrix method. Basic reproductive number is discussed in order to 
identify influential model parameters, so with controlling parameters in it, the outbreak of the disease can be eliminated. 
Finally, we analyze sensitivity of the model in order to determine the influence of the input parameters on the model 
outputs. Based on this analysis, we can find which parameters are most sensitive to the MERS-CoV transmission 
model.  
 

MATHEMATICAL MODEL 
The model describes the dynamic of MERS-CoV transmission. We divide the population (ܰ) into two areas, namely 
area ݔ and ݕ. In each area, we have two sub-populations, according to their disease status; population who are 
susceptible to infection (ܵ௫ and ܵ௬) and population who have the disease (ܫ௫ and ܫ௬). Initially, there are susceptible and 
infectious humans in each area. Individuals are born into the susceptible class and individuals susceptible to infection. 
There is a natural death rate of human population from each compartment and its value is same in both areas of 
population. Someone who gets infected and then recovers will return to the susceptible class. The susceptible 
population in area ݔ (ܵ௫) is increased by recruitment of individuals ܽଵ, susceptible individuals from area ݕ leave to area ݔ with rate ߙଶ, and infected individuals in area ݔ recover with rate ݀. This population is reduced through infection 
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within area ݔ with transmission rate ߚ (moving to class ܫ௫), susceptible individuals from area ݔ leave to area ݕ with rate ߙଵ (moving to class ܵ௬), individuals from area ݕ leave to area ݔ and they infected with transmission rate ߱ߙଶ, and by 
natural death with rate ܾ. The population of infectious individuals is increased by infection of susceptible within area ݔ 
with transmission rate ߚ, infected individuals from area ݕ leave to area ݔ with rate ߙଶ, and individuals from area ݕ leave 
to area ݔ and they infected with transmission rate ߱ߙଶ. It is diminished by death due to disease with rate ܿ, by recovery 
from the disease with rate ݀ (moving to class ܵ௫), and infected individuals from area ݔ leave to area ݕ with rate ߙଵ 
(moving to class ܫ௬).  

Meanwhile, the susceptible population in area ݕ (ܵ௬) is increased by recruitment of individuals ܽଶ, susceptible 
individuals from area ݔ leave to area ݕ with rate ߙଵ, and infected individuals in area ݕ recover with rate ݀. This 
population is reduced through infection within area ݕ with transmission rate ߚ (moving to class ܫ௬), susceptible 
individuals from area ݕ leave to area ݔ with rate ߙଶ (moving to class ܵ௫), individuals from area ݔ leave to area ݕ and 
they infected with transmission rate ߱ߙଵ, and by natural death with rate ܾ. The population of infectious individuals is 
increased by infection of susceptible within area ݕ with transmission rate ߚ, infected individuals from area ݔ leave to 
area ݕ with rate ߙଵ, and individuals from area ݔ leave to area ݕ and they infected with transmission rate ߱ߙଵ. It is 
diminished by death due to disease with rate ܿ, by recovery from the disease with rate ݀ (moving to class ܵ௬), and 
infected individuals from area ݕ leave to area ݔ with rate ߙଶ (moving to class ܫ௫).  

 
The detailed transition between these four compartments is depicted in Fig. 1.  
 

 
FIGURE 1. A transmission diagram of the SISI MERS-CoV model in two areas  

 
With the assumptions given and the illustrations in Fig. 1, we obtain the following four-dimensional system of nonlinear 
differential equation for the MERS-CoV transmission:    ݀ܫ௫(ݐ)݀ݐ = ௫ܫ+௫ܵ௫ܫ௫ܵ ߚ − (ܿ + ݀ + ௫ܫ (ଵߙ + ௬ܫ ଶߙ + ௬ܫ+௬ܵ௬ܫ ଶ ܵ௬ߙ ߱ ݐ݀(ݐ)௬ܫ݀  = ௬ܫ+௬ܵ௬ܫ௬ܵ ߚ − (ܿ + ݀ + ௬ܫ (ଶߙ + ௫ܫ ଵߙ + ௫ܫ+௫ܵ௫ܫ ଵܵ௫ߙ ߱  ݀ܵ௫(ݐ)݀ݐ = ܽଵ − ௫ܫ+௫ܵ௫ܫ௫ܵ ߚ − (ܾ + ଵ) ܵ௫ߙ + ଶ ܵ௬ߙ + ௫ܫ ݀ − ௬ܫ+௬ܵ௬ܫ ଶ ܵ௬ߙ ߱  

⎭⎪⎪⎪
⎬⎪
⎪⎪⎫ (1) 

݀ܵ௬(ݐ)݀ݐ = ܽଶ − ௬ܫ+௬ܵ௬ܫ ௬ܵ ߚ − (ܾ + ଶ) ܵ௬ߙ + ଵ ܵ௫ߙ + ௬ܫ ݀ − ௫ܫ+௫ܵ௫ܫ ଵܵ௫ߙ ߱  
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The variable domain of the model is  

Ω = {൫ܫ௫ , ௬ܫ ,ܵ௫ , ܵ௬൯ ∈ ℝସ: ௫ܫ , ௬ܫ ,ܵ௫ ,ܵ௬ ≥ 0} 
and all parameters used in the model; ܽଵ,ܽଶ, ܾ,  ଶ, and ߱ are positive. It can be verified that Ω is a positivelyߙ,ଵߙ,ߚ,݀,ܿ
invariant set with respect to model. 
     

  TABLE 1.  Parameters used in Fig. 1 and their description 

Description Parameter 
Number of newly recruited to the susceptible ࢞ population ܽଵ 
Number of newly recruited to the susceptible ࢟ population ܽଶ 
Natural death rate for susceptible individuals ܾ 
MERS-CoV death rate of human population ܿ 
Recovery rate from MERS-CoV ݀ 
Transmission rate within an area ߚ 
Movement rate of human population from area ࢞ leave to area ߙ ࢟ଵ 
Movement rate of human population from area ࢟ leave to area ߙ ࢞ଶ 
Transmission rate in different area ߱ 

 
The model (1) has two equilibrium points which are given by  ܧ଴ = ൫ܫ௫∗, ,∗௬∗,ܵ௫ܫ ܵ௬∗൯ = ቀ0,0,௔భఈమା௔మఈమା௔భ௕௕ (ఈభାఈమା௕) , ௔భఈభା௔మఈభା௔మ௕௕ (ఈభାఈమା௕) ቁ and ܧଵ = ,∗∗௫ܫ) ,∗∗௬∗∗,ܵ௫ܫ ܵ௬∗∗). Equilibrium point ܧ଴ 
represents the situation where only ܵ௫∗ and ܵ௬∗ exist and it is called disease free equilibrium (DFE) point whereas 
equilibrium point ܧଵ depicts the situation where all population exist and it is called endemic equilibrium (EE) point.  

 
BASIC REPRODUCTIVE NUMBER 

Basic reproductive number is an important threshold in mathematical epidemiology. This threshold conditions 
determine whether an infectious disease will spread in a susceptible population when the disease is introduced into the 
population (O. Diekmann and J. A. P. Heesterbeek, 2000). The threshold is calculated by using the spectral radius of a 
next generation (infection) matrix of a model (P. van den Driessche and J. Watmough, 2002). It is given mathematically 
as  ܴ଴ =  (ଵିܸܨ)ߩ
where ߩ is defined as the spectral radius of the next generation matrix ିܸܨଵ, ܨ is the rate of appearance of new 
infections in compartment ݅, and ܸ is the transfer of individuals out of compartment ݅ by all other means.  
Given the DFE ܧ଴. Basic reproductive number ܴ଴ is calculated as the largest eigenvalue (spectral radius) of the matrix 
of partial derivatives (Z. Ma and J. Li, 2009): ܨ = ቈ߲ℱ௜(ܧ଴)߲ݔ௝ ቉ = ൤ ߚ ଵߙଶ߱ߙ߱ ߚ ൨ 
and ܸ = ቈ߲ ௜ࣰ(ܧ଴)߲ݔ௝ ቉ = ൤ܿ + ݀ + ଵߙ ଵߙ−ଶߙ− ܿ + ݀ +  ଶ൨ߙ

where  

ℱ௜(ݔ) =
⎣⎢⎢
⎢⎢⎢
⎡ ௫ܵ௫ܫ௫ܵߚ + ௫ܫ ௬ܵ௬ܫଶܵ௬ߙ߱+ + ௬ܵ௬ܫ௬ܵߚ௬ܫ + ௬ܫ ௫ܵ௫ܫଵܵ௫ߙ߱+ + ௬ܫ ௫݀ܫ ௫݀ܫ ⎦⎥⎥

⎥⎥⎥
⎤ , ௜ࣰ(ݔ) =

⎣⎢⎢
⎢⎢⎢
⎡ (ܿ + ݀ + ௫ܫ(ଵߙ − ܿ)௬ܫଶߙ + ݀ + ௬ܫ(ଶߙ − ௫−ܽଵܫଵߙ + ௫ܵ௫ܫ௫ܵߚ + ௫ܫ + ܾܵ௫ + ଵܵ௫ߙ − ଶܵ௬ߙ ௬ܵ௬ܫଶܵ௬ߙ߱+ + ௬−ܽଶܫ + ௬ܵ௬ܫ௬ܵߚ + ௬ܫ + ܾܵ௬ + ଶܵ௬ߙ − ଵܵ௫ߙ ௫ܵ௫ܫଵܵ௫ߙ߱+ + ௫ܫ ⎦⎥⎥

⎥⎥⎥
⎤
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Therefore, the next generation matrix is given as follows  

ଵିܸܨ = ⎣⎢⎢⎢
⎡ ଵ߱ߙ)ଶߙ + (ߚ + ܿ)ߚ + ݀)(ܿ + ݀)(ܿ + ݀ + ଵߙ + (ଶߙ ߚ)ଶߙ + ߱(ܿ + ݀ + ܿ)((ଵߙ + ݀)(ܿ + ݀ + ଵߙ + ߚ)ଵߙ(ଶߙ +߱(ܿ + ݀ + ܿ)((ଶߙ + ݀)(ܿ + ݀ + ଵߙ + (ଶߙ ଶ߱ߙ)ଵߙ + (ߚ + ܿ)ߚ + ݀)(ܿ + ݀)(ܿ + ݀ + ଵߙ + ⎥⎥⎥⎦(ଶߙ

⎤
 

The spectral radius of the next generation matrix is ܴ଴ = ଵߙ)ߚ  + ଶߙ + 2ܿ + 2݀) + ଶ߱ߙଵߙ2 +ඥߙ)2ߩଶ + ܿ)(ଵߙ + ݀) + (ܿ + ݀)ଶ  
         
(2) 

with  ߩ = ଵߙ)ଶߚ + ଶ)ଶߙ + ଶ߱ߙଵߙ4 ቆ(ܿ + ݀ + ܿ)(ଶߙ + ݀ + ߱(ଵߙ + ߚ2 ൬12ߙଵ + ଶߙ12 + ܿ + ݀൰ቇ 
          

As shown in (2), the basic reproductive number of system (1) depends on parameters ߙ,ߚଵ,ߙଶ, ܿ, ݀, and ߱. Equilibrium 
point ܧ଴ will be locally asymptotic stable iff ܴ଴ < 1. It is easily verified that all eigenvalues are negative at this point. 
Meanwhile, equilibrium point ܧଵ exist iff ܴ଴ > 1.  
In this paper, we use parameter values ܽଵ = 4,326,ܽଶ = 13,461,ܾ = 0.01, ܿ = 0.05,݀ = ߚ,0.1 = 0.1, and ߱ =0.08. As described in Fig. 2 and Fig. 3, the bigger the movement rate of human population (ߙଵ and ߙଶ), the larger the 
rate of ܴ଴.  

 
FIGURE 2. Plot of ࡾ૙ for variation ࢻ૚ and ࢻ૛ 

 
FIGURE 3. Level set of  ࢻ૚ and ࢻ૛ with respect to ࡾ૙ 

 
In the next section, the sensitivity indices of ܴ଴ related to the parameters in the model are calculated. Sensitivity indices 
allow us to measure the relative change in a variable when a parameter changes.  
  

SENSITIVITY ANALYSIS  
Since learning about the influence of the parameters on the behavior of the model is of much interest, it is critical to 
carry out a sensitivity analysis. The main goal of this section is to perform sensitivity analysis of MERS-CoV 
transmission model to the parameters describing it, i.e. to determine the amount that the entire model changes when 
each parameter is altered. Sensitivity analysis is often used to study how the variation in the output of a model can be 
apportioned, qualitatively or quantitavely, to different sources of variation, and of how the given model depends on the 
information fed into it (A. Saltelli, et al., 2000). Sensitivity analysis allows us to assess the impact that changes in a 
certain parameter will have on the model and it can help someone to determine which parameters are the key drivers of 
a model’s results.  
The sensitivity index of the basic reproductive number with respect to the parameter ݌ is given as follows   

ோబܫܵ = ߲ܴ଴ܴ଴߲݌݌ = ߲ܴ଴߲݌ ×  ଴ܴ݌

Here we give two cases for sensitivity indices of ܴ଴; ܴ଴ < 1 and ܴ଴ > 1. As shown in Table 2, parameter ߚ gives the 
biggest positive effect on the change of ܴ଴ than other parameters.      
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TABLE 2.  Sensitivity indices of ࡾ૙ 
Parameter ࡾࡵࡿ૙ழଵ(ࢻ૚ = ૙.૟,ࢻ૛ = ૙.૛) ࡾࡵࡿ૙வଵ(ࢻ૚ = ૙.ૡ,ࢻ૛ = ૙.૟) ࢻ 0.6454323343+ 0.8030733632+ ࢼ 0.6665054780− 0.6653196494− ࢊ 0.3332527390− 0.3326598246− ࢉ૚ +0.0520516272 +0.1536403789 ࢻ૛ +0.1428544841 +0.2006855042 ࣓ +0.1969266369 +0.3545676659 

 
In Fig. 4, we show effects on the number of infected humans through parameters variation for condition ܴ଴ < 1.       

FIGURE 4. Effect on ࢟ࡵ along the time ࢚ (in weeks) of the variation of  ࢻ૚ (a), ࢻ૛ (b), ࢼ (c), ࣓ (d), ࢉ (e), and ࢊ (f) with ࢻ૚ = ૙.૟,ࢻ૛ = ૙.૛ (ܴ଴ < 1) 
 
In Fig. 5, we show effects on the number of infected humans through parameters variation for condition ܴ଴ > 1.       
  

 
(a) 

 

 
(b) 

 

 
(c) 

 
 original ߙଵ 
 increased ߙଵ by 10% 
 increased ߙଵ by 50% 
 increased ߙଵ by 100% 

 

 original ߙଶ 
 increased ߙଶ by 10% 
 increased ߙଶ by 50% 
 increased ߙଶ by 100% 

 

 original ߚ 
 increased ߚ by 10% 
 increased ߚ by 50% 
 increased ߚ by 100% 

 

 

 
(d) 

 

 

 
(e) 

 

 

 
(f) 

 
 original ߱ 
 increased ߱ by 10% 
 increased ߱ by 50% 
 increased ߱ by 100% 

 

 original ܿ 
 increased ܿ by 10% 
 increased ܿ by 50% 
 increased ܿ by 100% 

 

 original ݀ 
 increased ݀ by 10% 
 increased ݀ by 50% 
 increased ݀ by 100% 
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FIGURE 5. Effect on ࢟ࡵ along the time ࢚ (in weeks) of the variation of  ࢻ૚ (a), ࢻ૛ (b), ࢼ (c), ࣓ (d), ࢉ (e), and ࢊ (f) with ࢻ૚ = ૙.ૡ,ࢻ૛ = ૙.૟ (ܴ଴ > 1) 

 
In both figures (Fig. 4 and Fig. 5), it can be seen that parameters ܿ and ݀ have a negative sign in the sensitivity indices 
of ܴ଴, while parameters ߙ,ߚଵ,ߙଶ, and ߱ have a positive sign in the sensitivity indices of ܴ଴.    
 

CONCLUSION 
This paper discusses about dynamical transmission model of MERS-CoV in two areas. The model has two equilibrium 
points, disease free equilibrium point ܧ଴ and endemic equilibrium point ܧଵ. The disease dies out if the basic 
reproductive number is less than unity and the disease is established in the population if the basic reproductive number 
is greater than unity. It can be seen from basic reproductive number that MERS-CoV transmission model in two areas 
depends on parameters ߙ,ߚଵ,ߙଶ, ܿ,݀, and ߱. From the sensitivity indices, the number of infected humans can be 
reduced by increasing ܿ and ݀ and/or decreasing ߙ,ߚଵ,ߙଶ, and ߱. We can see that ߚ is the most positive sensitive 
parameter in the model. With controlling this parameter continuously, the number of infected humans can be decreased 
significantly. 
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(b) 

 

 
(c) 

 
 original ߙଵ 
 increased ߙଵ by 10% 
 increased ߙଵ by 50% 
 increased ߙଵ by 100% 

 

 original ߙଶ 
 increased ߙଶ by 10% 
 increased ߙଶ by 50% 
 increased ߙଶ by 100% 

 

 original ߚ 
 increased ߚ by 10% 
 increased ߚ by 50% 
 increased ߚ by 100% 

 

 

 
(d) 

 

 

 
(e) 

 

 

 
(f) 

 
 original ߱ 
 increased ߱ by 10% 
 increased ߱ by 50% 
 increased ߱ by 100% 

 

 original ܿ 
 increased ܿ by 10% 
 increased ܿ by 50% 
 increased ܿ by 100% 

 

 original ݀ 
 increased ݀ by 10% 
 increased ݀ by 50% 
 increased ݀ by 100% 
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