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Abstract Cyclic GMP (cGMP) is a ubiquitous intracellular
second messenger that mediates a wide spectrum of physio-
logic processes in multiple cell types within the cardiovascular
and nervous systems. Synthesis of cGMP occurs either by
NO-sensitive guanylyl cyclases in response to nitric oxide or
by membrane-bound guanylyl cyclases in response to natri-
uretic peptides and has been shown to regulate blood pressure
homeostasis by influencing vascular tone, sympathetic ner-
vous system, and sodium and water handling in the kidney.
Several cGMPs degrading phosphodiesterases (PDEs), in-
cluding PDEI and PDES, play an important role in the regu-
lation of cGMP signaling. Recent findings revealed that in-
creased activity of cGMP-hydrolyzing PDEs contribute to the
development of hypertension. In this review, we will summa-
rize recent research findings regarding the cGMP/PDE signal-
ing in the vasculature, the central nervous system, and the
kidney which are associated with the development and main-
tenance of hypertension.
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Introduction

Hypertension affects more than 1.5 billion people and is the
leading risk factor for cardiovascular morbidity and mortality
worldwide [1]. Despite better treatment options and increasing
awareness of the fatal consequences of untreated hyperten-
sion, control rates for hypertension remain unsatisfactory.
Typically, less than 50 % of patients under treatment consis-
tently achieve their blood pressure targets [2]. The reasons for
these poor outcomes are complex, but include a relatively
limited repertoire of antihypertensive agents and the complex
pathophysiology of hypertension involving several physiolog-
ical key pathways, like the renin-angiotensin-aldosterone sys-
tem (RAAS), the sympathetic nervous system, the immune
system, and the nitric oxide (NO)/cyclic GMP (cGMP) sig-
naling cascade.

While the blockade of the RAAS and the sympathetic ner-
vous system have shown to lower blood pressure in the ma-
jority patients, we do not have established any effective treat-
ment option targeting the NO/cGMP signaling cascade for the
treatment of hypertension and end organ damage. Here, we
will highlight the physiological role of the cGMP generated
mainly by NO on blood pressure homeostasis. Moreover, we
will focus on the role of the phosphodiesterases which are
controlling cGMP availability, and their importance in the
development of hypertension.

Cyclic GMP Signaling

The cGMP signaling cascade is a key regulator in the cardio-
vascular system controlling vascular tone, water, and salt han-
dling as well as platelet aggregation [3]. Cyclic GMP mediates
its effect via different cellular targets: cGMP-dependent pro-
tein kinases (cGKs), cGMP-gated cation channels, and phos-
phodiesterases (PDEs) [4]. For a better understanding how
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cGMP exerts its effects on blood pressure homeostasis and
hypertension, we will first describe the single component of
the cGMP signaling cascade in the following section in detail.

NO-Sensitive Guanylyl Cyclases

Biological signaling by NO is primarily mediated by cGMP.
NO generated from L-arginine by different NO synthases
binds and activate the heme-containing guanylyl cyclases
which in turn converts GTP to the second messenger cGMP.
Two isoforms of the NO-sensitive GC exist. The enzymes are
heterodimers consisting of a common 3 subunit and different
o subunits («;, &) and will be here referred to as NO-GCl1
(the o¢; 31 heterodimer) and NO-GC2 (the «,[3; heterodimer).
Both, NO-GC1 and NO-GC2 have similar sensitivity to NO
and to drugs that modulate NO-GC activity [5]. The physio-
logical and pathophysiological roles of the two guanylyl cy-
clase isoforms are still not fully understood. Analysis of tissue
distribution based on measurements of NO-stimulated cGMP
formation in NO-GC1 and NO-GC2 knockout mice revealed
high levels of NO-GC1 in the lung, kidney, and vascular tis-
sues, whereas comparatively high levels of NO-GC2 occurred
in the brain, especially in the hippocampus and medulla
oblongata [6-8]. The ability of the C-terminal region of the
o, subunit to associate with the PDZ-containing postsynaptic
density protein-95 (PSD-95) indicates a synaptosomal locali-
zation of the NO-GC2 isoform at least in the neuronal tissues
and suggests a possible compartmentalization of the NO/
cGMP signaling based on the localization of the cGMP-
forming isoform [9]. In platelets, NO-GC1 was the sole NO-
GC responsible for the NO-mediated inhibition of platelets
aggregation [10].

Membrane-Bound Receptor Guanylyl Cyclases

In addition to NO, the natriuretic peptides can also increase
intracellular cGMP levels by activation of membrane-bound
guanylyl cyclase receptors. Of the seven membrane-bound
GCs, the guanylyl cyclase A (GC-A) is mainly involved in
blood pressure regulation and hypertension [11, 12]. The GC-
A is activated by the atrial natriuretic peptide (ANP) and the
brain natriuretic peptide (BNP), two primarily cardiac hor-
mones which are secreted from the atrium and ventricle during
pressure or volume overload. Increases of cGMP levels in-
duced by ANP or BNP mediates physiological effects such
as vascular relaxation, modulation of endothelial permeability,
inhibition of renin, and aldosterone secretion, as well as salt
and water handling in the kidney. Thus, recent studies have
shown that inhibition of ANP and BNP degradation by a
neprilysin inhibitor combined with an angiotensin II receptor
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blocker improves heart failure and resistant hypertension in
human and mice [13-15].

The Phosphodiesterases: Key Regulator of cGMP
Bioavailability

Beside the GCs, the cyclic nucleotide PDEs are controlling
cGMP signaling as these enzymes regulate the breakdown of
c¢GMP into its inactive form, GMP. PDEs comprise a diverse
family of enzymes: 11 different families, each consisting of
one to four isoforms and multiple splice variants [16]. Of the
11 member group PDES, PDE6, and PDE9 are highly selec-
tive for cGMP, PDE1, PDE2, and PDEI11 have dual-
specificity (¢CAMP and ¢cGMP), and PDE3 and PDE10 are
cGMP-sensitive but cAMP-selective. Interestingly, any partic-
ular cell type might express three or four different PDEs. For
example, in vascular smooth muscle cells, three different
PDEs are responsible for cGMP degradation: PDE1, PDE3,
and PDES [17]. The expression of different PDEs in the same
cell seem to be of major regulatory significance as they are
responsible for compartmentalization of the cGMP signaling
which translate specific extracellular cues in selective activa-
tion of downstream targets. Therefore, it is not surprising that
the different PDEs are activated under different conditions. In
this regard, the PDE1 is only fully active after binding of Ca2+
and calmodulin. Thus, it has been shown that increase of
intracellular Ca2+ levels induced by various potent vaso-
constrictors, such as norepinephrine, angiotensin II, and
endothelin-1 induce PDEI activation which in turn serves
to lower cGMP levels and augment vasoconstriction even
further [17].

On the other hand, the PDES activity is increased under
conditions of increased cGMP generation. In detail, PDES is
activated by allosteric binding of cGMP to the tandem regu-
latory GAF domains, so named from the first three classes of
proteins found to contain the cGMP-binding sequence (mam-
malian cGMP-binding PDEs, Anabaena adenylate cyclase,
and Escherichia coli Fh1A) (Abbildung 1). Binding of
cGMP to the PDES GAF domain increases catalytic affinity
and catalytic rate of the enzyme. Parallel to activation of
cGMP production, PDE5 can be phosphorylated by the
cGMP-dependent protein kinase (cGK I) in its N-terminal
region. Phosphorylation prolongs PDES activation most likely
by increasing the affinity toward cGMP but, even without
phosphorylation, PDES activation is much sustained [18,
19]. This negative feedback mechanism has been proposed
to regulate the sensitivity of the NO/cGMP signaling and
has been shown to be responsible for the transient shape of
the cGMP response (rapid cGMP increase and breakdown) in
platelets [18]. Further this mechanism is also sufficient to ex-
plain the NO-induced desensitization, i.e., the reduced cGMP
accumulation following a second stimulation with NO [20,
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21]. The close interaction of PDES with the NO/cGMP sig-
naling is also well documented by the fact that the effective-
ness of PDES5 inhibitors depends on the cGMP forming ca-
pacity. Pharmacologic inhibition of NOS, which abrogates
NO synthesis and subsequent cGMP formation, suppresses
the vasodilator effects of PDES inhibition. Thus PDES inhib-
itors are expected to be less effective in disorders associated
with reduced NOS activity, such as endothelial dysfunction.
Conversely, PDES inhibitors (e.g., sildenafil) are able to great-
ly potentiate the effects of NO generating compounds.
Accordingly, although sildenafil had only a modest effect on
reduction of systemic blood pressure, this could turn into se-
vere hypotension for patients taking a combination of silden-
afil and nitroglycerin or other organic nitrates [22].

PDES and ¢cGMP Signaling in The Vasculature

Since the discovery of NO, the role of the NO/cGMP signal-
ing cascade regulating vascular tone has been demonstrated in
many studies [23]. An impairment of this pathway results in
vascular dysfunction and hypertension [20, 24]. Beside a de-
creased NO bioavailability, increased activity of cGMP-
degrading PDEs in vascular smooth muscle cells is the main
cause for vascular dysfunction characterized by exaggerated
vasoconstrictor response and impaired NO-dependent vasodi-
lation. Vascular dysfunction alters vascular tone and contrib-
utes to development of hypertension. Until now, the circum-
stances leading to an activation of either PDE1 or PDES are
still not known. In vascular smooth muscle cells (VSMC),
augmentation of intracellular Ca®" levels induced by angio-
tensin II have been shown to increase PDE1 expression [25].
In line with this, PDE1-dependent reduction of cGMP avail-
ability has been shown to contribute to the increased vasocon-
strictor response observed in chronic angiotensin II infusion
[26]. Interestingly, PDE1 more than PDES seem to play also
an important role in age-dependent vascular dysfunction. In
mice with defective nucleotide excision repair gene (Erccld/
—), amouse model which develops severe age-related vascular
dysfunction, inhibition of both PDE1 and PDES restored vas-
cular dysfunction. In addition, senescent human VSMC have
elevated PDE1A, PDE1C and PDE5 mRNA levels.
Moreover, a single nucleotide polymorphism in PDE1A was
associated with elevated diastolic blood pressure and vascular
hypertrophy suggesting a role of the PDE1A isoform in hu-
man vascular function [27¢]. On the other side, recent studies
have shown a higher contribution of PDES5 to vascular dys-
function observed in experimental hypertension [7, 28-30]. In
renovascular hypertension, an initially increased NO/cGMP
signaling leads to cGMP-dependent PDES activation (Fig. 1)
which in turn enhances cGMP degradation and promotes vas-
cular dysfunction [7]. In support of this concept, inhibition of
the PDES by sildenafil increased renal cGMP content, re-
stored renal and mesenteric vascular function, and reduced

blood pressure in renovascular hypertension [7, 28, 29].
Beside the direct effects of PDES inhibition on vascular
function, sildenafil also seems to exert its effect on blood
pressure by reducing angiotensin II levels and restoring
the baroreflex in renovascular hypertension [28, 29].

PDES and NO/cGMP Signaling in The Central Nervous
System

Increasing evidence from device-based therapeutic inter-
ventions to decrease renal and systemic nerve activity in
patients with resistant hypertension points to an essential
role of the sympathetic nervous system in the etiology of
hypertension [21].

The activity of the sympathetic nerves that regulate cardio-
vascular function due to their effects to increase cardiac rate
and contractility, cause vasoconstriction, release of adrenal
catecholamines, and activate the RAAS is determined by a
network of neurons located in the medulla oblongata. Here,
a controversial role of NO in the synaptic transmission that
regulates sympathetic output has been proposed. For example,
local application of NO donors in the nucleus tractus solitarii
(NTS) has been shown to elicit inhibitory or excitatory effects
on sympathetic nerve activity [31-33]. Likewise, administra-
tion of NO into the rostral ventrolateral medulla (RVLM) also
demonstrates inhibitory or excitatory effects on sympathetic
nerve activity in rats [34-36].

In the medulla, both NO-GCs that serve as receptor for NO
are expressed [8]. Localization of the NO-GCs on different
points of the neural network in the medulla may help us to
explain the discrepant findings of the NO signaling in control-
ling sympathetic nerve activity. Initial evidence suggesting
separate roles and cellular distribution of the two NO-GC
isoforms in the synaptic transmission came from studies in
the hippocampus using KO mice deficient of NO-GC1 or
NO-GC2. These studies demonstrated that the NO-GCl1 is
located presynaptically at both glutamatergic and
GABAergic synapses and involved in the regulation of neu-
rotransmitter release [37, 38]. In contrast therefore, the NO-
GC2 is located postsynaptically at glutamatergic synapses and
responsible for enhancing postsynaptic responsiveness [39¢].
Promising results suggesting a more directed role for NO-
GCl in the regulation of sympathetic activity and blood pres-
sure were shown in a recent study [40]. NO-GC1 KO mice on
a C57BI/6 background are not hypertensive, despite reduced
vascular relaxation and increased vascular tone. This was
found to be most likely related to a decreased sympathetic
nerve activity in NO-GC1 KO mice, as plasma norepinephrine
levels and heart rates were lower compared to WT mice. In
line with this finding, blood pressure response to chronic nor-
epinephrine but not to chronic angiotensin II infusion was
exaggerated in NO-GC1 KO than in WT mice [40].
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Vascular
smooth muscle

Fig. 1 Schematic overview of cGMP signaling in vascular smooth
muscle cells, the central nervous system (CNS), and the renal nephron.
In the vascular smooth muscle cells, cGMP can be formed by the NO-
sensitive guanylyl cyclases (GC1 and GC2) or the membrane-bound
guanylyl cyclase A (GC-A) in response to NO or ANP, respectively.
Increased cGMP levels lead to activation of cGMP-dependent protein
kinase I (cGK I) and relaxation. Parallel cGMP causes allosteric
activation of PDES which is accompanied by ¢cGK I-mediated
phosphorylation. Cyclic GMP-dependent PDES activation acts as
negative feedback that limits the cGMP response. Beside PDES, also
PDEI participates to the hydrolysis of cGMP. Additional to vascular
signaling, cGMP plays a role in the central nervous system (CNS). In

Whether PDES also regulates NO/cGMP signaling in neu-
rons as in vascular smooth muscles cells is not widely studied.
Compared to a ubiquitous expression of PDES in vascular
smooth muscle cells of different vascular beds, PDE5 expres-
sion in the brain is more regional restricted. Human PDES
mRNA was found to be the highest in the cerebellum, medul-
la, and spinal cord [41]. Yet, there are no specific data which
provide evidence of PDES expression in brain areas control-
ling cardiovascular effects, but several physiologic studies
suggest a direct central effect of PDES inhibition by sildenafil.
For example, there are reports that sildenafil induces an in-
crease in muscle sympathetic nerve activity in healthy volun-
teers as well as an increase in plasma catecholamine levels
[42, 43]. Sildenafil injected into the central nervous system
(lateral cerebral ventricles) of rats increased lumbar sympa-
thetic nerve activity and caused tachycardia without changes
in arterial pressure [44]. Recently, Dopp et al. reported that
sildenafil increases sympathetically mediated vascular tone
and plasma norepinephrine concentrations in middle-aged
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the medulla oblongata, a sympatho-stimulatory action of cGMP formed
by the GC1 has been proposed. Increased sympathetic output is also
reported using the PDES inhibitor sildenafil. GC2 is also expressed in
the medulla oblongata, but its role remains elusive. In the renal nephron
c¢GMP signaling initiated either by NO or ANP has a modulatory role on
the renin secretion. Moreover cGMP increases natriuresis (1) by reducing
surface expression of the type 3 Na+/H+ exchanger (NHE3) and the Na+/
K +—ATPase in the proximal tubular cells, (2) by inhibiting trafficking of
Na-K-2Cl co-transporter (NKCC2) in the thick ascending limb (TAL),
and (3) by inhibiting the epithelial Na+ channel (eNaC) in the collecting
duct

men [45]. These observations suggest that sildenafil in con-
trast to its direct vaso-protective and blood pressure lowering
effects in the vasculature enhances sympathetic mediated va-
soconstriction. This sympathetic activation may limit the
blood pressure effect of sildenafil and may explain why
PDES inhibitors co-administered with alpha-blockers induce
a pronounced systemic vasodilation and severe hypotension
[46]. Although it could be questioned whether sildenafil is
only targeting PDES or also PDE1, which is more highly
expressed in the brain, the overall data presented above sup-
port the view that cGMP signaling beside to its vascular effect
also exerts a direct central sympathetic effect [47].

On the other hand, different clinical studies reported that
sildenafil reduces blood pressure, which was characterized by
a slight or no effect on heart rate suggesting that sildenafil
does not increase sympathetic activity in humans [48, 49]. In
this context, a new study suggests that PDES inhibition by
sildenafil reduces blood pressure in the setting of renovascular
hypertension by restoring baroreflex sensitivity [28]. In sum,
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further studies are needed to determine the overall effect of
NO/cGMP-PDES signaling in central nervous system on
blood pressure regulation and hypertension.

Cyclic GMP Signaling in The Kidney

Beside the sympathetic nervous system and the peripheral
vasculature, the kidneys exert an outstanding role in blood
pressure homeostasis and hypertension by regulating salt
and water handling as well as vascular tone. One of the key
mechanisms leading to the hypertension is an activated renin-
angiotensin system and defective pressure natriuresis. The
c¢GMP signaling pathway is able to modulate renin secretion,
pressure natriuresis, and renal vascular resistance.

Renin Release

Depending on yet still unknown mechanisms, cGMP generat-
ed either by NO or ANP is able to stimulate or inhibit renin
release in vitro and vivo. Under most circumstances, cGMP
generated by NO stimulates the renin release through a PDE3-
dependent inhibition of cAMP degradation [50]. In addition,
recruitment of renin expressing cells along the preglomerular
vessels is strongly dependent on the NO/cGMP signaling cas-
cade [51]. On the other side, Kurtz and colleagues have also
demonstrated that cGMP by activating the cGMP-dependent
kinase II can also inhibit renin release [52].

Cyclic GMP Signaling Influences Natriuresis
and Hypertension

In the past few years, various studies highlighted the effect of
c¢GMP on fluid and salt transport within the nephron. Under
hypertensive blood pressure conditions, cGMP signaling
plays an important role in regulating pressure natriuresis by
affecting the solute transport of several sodium channels in the
proximal tubule, the thick ascending limb, and the collecting
duct like the Na'/K'-ATPase, the type 3 Na'/H" exchanger
(NHE3), the Na"/K'/2CI" cotransport (NKCC), and the epi-
thelial sodium channel (eNaC), respectively [53, 54, 55¢¢, 56,
57]. In the proximal tubule, cGMP has been shown to increase
phosphorylation of Src-kinase and initiate thereby signaling
events that are capable of reducing the surface expression of
apical NHE3 and basolateral Na'/K"-ATPase leading to in-
creased pressure natriuresis [58, 59¢]. The relevance of
c¢GMP signaling in regulating pressure natriuresis was con-
firmed in a recent study showing that a polymorphism in the
c¢GMP-dependent protein kinase I was associated with salt-
sensitive hypertension and impaired pressure natriuresis after
salt load in humans. These cGMP-related polymorphisms re-
sulted in a loss of pressure natriuresis control in a Src-Na /K-

ATPase dependent manner [60]. In line with these human
data, Kemp and colleagues have shown that selective activa-
tion of the angiotensin II type 2 (AT2) receptor induced the
internalization/inactivation of Na'/K"-ATPase and NHE3 in
proximal tubule leading to pressure natriuresis and attenuated
blood pressure response in experimental hypertension. Again,
these effects seemed to be mediated by a NO/cGMP-
dependent mechanism which involved the signaling kinases
ERK1/2 and Src [61¢]. However, it should be noted that a
recent finding indicate that the effect of the NO/cGMP signal-
ing cascade on proximal tubule transport seemed to be species
dependent and dependent on the circumstances how cGMP is
generated. Thus, in contrast to the results seen in mice, Shirai
et al. could demonstrate that angiotensin II activates NHE3,
and the basolateral Na+—HCO; co-transporter through a
NO/cGMP-dependent mechanism in human proximal tubular
cells [62°].

Until now, the responsible phosphodiesterase which is con-
trolling cGMP availability and thereby proximal tubular trans-
port is not known. However, recent data have shown that
chronic PDES inhibition increased expression of cGMP-
dependent protein kinase I in proximal tubule cells and there-
by attenuated the development of renal fibrosis in a mouse
model of unilateral urethral obstruction [63].

Similar to the proximal tubule, cGMP signaling regulates
blood pressure by influencing sodium and water transport in
the distal tubule [64]. In the thick ascending limb, cGMP
exerts its natriuretic effect by inhibiting cAMP-mediated traf-
ficking of Na-K-2Cl co-transporter (NKCC2) through the ac-
tivation of the cGMP-stimulated PDE2 which lowers cAMP
levels [65]. Beside PDE2, recent data examining the effect of
NO on NKCC2 function suggest that PDES5 activation reduces
c¢GMP availability and thereby increases sodium reabsorption
via the NKCC2 in angiotensin II-dependent hypertension
(Fig. 1). In addition, inhibition of PDES increases cGMP
levels and restores the inhibitory effect of NO on NKCC2 in
the thick ascending limb [55¢¢]. The source of NO mediating
this effect can be of quite different origins. Thus, it has been
shown that luminal flow-induced shear stress stimulates NO
generation and thereby inhibits NKCC2 [66]. In addition, a
recent study revealed a very interesting finding on macro-
phages modulating the extent of hypertension. In interleukinl
receptor (IL-1R)-deficient mice, angiotenin II induced hyper-
tension was attenuated compared to wild type mice. This ef-
fect was explained by kidney infiltrating macrophages of IL-
1R-deficient mice that produce increased NO and thereby in-
hibit NKCC2 which results in increased natriuresis [67¢¢].

In the collecting duct, the final segment of the distal tubule
where the composition of the urine can be regulated, cGMP
generated in response to either ANP or NO mediates its natri-
uretic effects by inhibiting the epithelial Na+ channel (eNaC)
[56, 57]. Recently, Hyndman and colleagues have shown that
deletion of the neuronal NO synthase (NOS1) within the
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collecting duct result in salt-sensitive hypertension and re-
duced urine output [68]. Studies in pregnant rat revealed that
the natriuretic effect caused by ¢cGMP signaling in the
collecting duct is attenuated by increased PDES activity.
Inhibition of the PDES by sildenafil restored natriuresis in
these rats [69].

Conclusion

The pathogenesis of hypertension is a multifactorial pro-
cess. Decrease of cGMP signaling in the blood vessels,
in the central nervous system, or in the kidney contrib-
utes to the development and maintenance of hyperten-
sion. Among the causes that decreased cGMP availabil-
ity, enhanced degradation by PDES plays a central role.
Thus, PDES inhibition leads to blood pressure reduction
via vasodilation and increased pressure natriuresis by
affecting several sodium transporters within the kidney.
Moreover, first clinical trials suggest that PDES inhibi-
tion not only reduces blood pressure but also protects
from chronic kidney disease [70]. However, the poten-
tial of PDES inhibition as a promising therapeutic op-
tion in the treatment of hypertension has to be tested in
large clinical trials.
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