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Abstract

Objective

The purpose of this study is to explore the possibility of developing a biomarker that can dis-

criminate early-stage Parkinson’s disease from healthy brain function using electroencepha-

lography (EEG) event-related potentials (ERPs) in combination with Brain Network

Analytics (BNA) technology and machine learning (ML) algorithms.

Background

Currently, diagnosis of PD depends mainly on motor signs and symptoms. However, there

is need for biomarkers that detect PD at an earlier stage to allow intervention and monitoring

of potential disease-modifying therapies. Cognitive impairment may appear before motor

symptoms, and it tends to worsen with disease progression. While ERPs obtained during

cognitive tasks performance represent processing stages of cognitive brain functions, they

have not yet been established as sensitive or specific markers for early-stage PD.

Methods

Nineteen PD patients (disease duration of�2 years) and 30 healthy controls (HC) under-

went EEG recording while performing visual Go/No-Go and auditory Oddball cognitive

tasks. ERPs were analyzed by the BNA technology, and a ML algorithm identified a
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combination of features that distinguish early PD from HC. We used a logistic regression

classifier with a 10-fold cross-validation.

Results

The ML algorithm identified a neuromarker comprising 15 BNA features that discriminated

early PD patients from HC. The area-under-the-curve of the receiver-operating characteris-

tic curve was 0.79. Sensitivity and specificity were 0.74 and 0.73, respectively. The five

most important features could be classified into three cognitive functions: early sensory pro-

cessing (P50 amplitude, N100 latency), filtering of information (P200 amplitude and topo-

graphic similarity), and response-locked activity (P-200 topographic similarity preceding the

motor response in the visual Go/No-Go task).

Conclusions

This pilot study found that BNA can identify patients with early PD using an advanced analy-

sis of ERPs. These results need to be validated in a larger PD patient sample and assessed

for people with premotor phase of PD.

Introduction

Neurodegenerative diseases are major causes of physical and cognitive dysfunction leading to

declining function and quality of life in older people. Disease-modifying therapy (DMT) is not

yet available for these disorders, but when developed, it should be administered early in the

neurodegenerative process to minimize irreversible accumulative brain damage, preferably

during the prodromal or preclinical phases to maximize their effect [1–4]. A major barrier to

DMT development is the lack of effective tools for early diagnosis and for objective monitoring

of disease activity during clinical trials. In Parkinson’s disease (PD), CSF- or blood-based bio-

markers have not yet been proven specific enough for clinical utility for diagnosis or longitudi-

nal monitoring [5]. Despite recent advances, imaging methods used in PD are based mainly

on detecting degeneration of motor pathways [6]. However, the neuropathological process in

PD is known to begin many years before the onset of motor symptoms, beginning in extra-

nigral locations, including the lower brainstem, olfactory bulb, and the peripheral autonomic

nervous system [5].

Among the non-motor symptoms of PD, cognitive impairment is highly prevalent and

while it can occur in a subtle form as mild cognitive impairment (MCI) in the early stages

in up to 25% of newly diagnosed patients [7,8], it tends to worsen and become very dis-

abling [9]. The decline in cognitive function affects several domains including attention,

working memory and executive functions, language, visuospatial skills, and episodic

memory. Researchers have suggested to divide the impairments into two distinct syn-

dromes based on their underlying brain structures and neurotransmitter involved, known

as the ‘dual syndrome hypothesis’ [10]. The first syndrome arises at early stages, is related

to dopamine depletion in the basal ganglia (BG) and causes disruption of the cortico-basal

ganglia-thalamo-cortical (CBGTC) loops [11,12]. These are parallel and segregated chan-

nels [13] of sensorimotor, associative, and limbic information projecting from the cortex

to the BG, and back to the cortex through the thalamus [12–14]. Within these, the motor

loop includes a direct pathway, where dopamine is thought to excite neurons and result in
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activation of motor cortex, and an indirect pathway where dopamine inhibits neuronal

activity resulting in no motor output [11,15,16]. In this respect, the BG plays a modulatory

role in cognition and action by modulating cognitive processes in the cortex such as rein-

forcement learning and action selection via the direct pathway [11], and inhibitory control

via the indirect pathway [17]. Aberrant neural activity in the associative or limbic streams

may lead to further cognitive and behavioral symptoms in PD patients [12]. Deficits in

executive functions such as attention, working memory, planning and response inhibition

were demonstrated to involve the BG structures in studies using electrophysiological

recordings from implanted electrodes in PD patients [16–19], some of which used simul-

taneous recording from the BG and cortex, including surface electroencephalography

(EEG) recording [16,17,19]. Further evidence to the role of BG in cognitive function

comes from functional magnetic resonance imaging (fMRI) studies [20,21]. The second

PD cognitive syndrome occurs in later stages of the disease, is related to the posterior cor-

tex and temporal lobe degeneration and is associated with cholinergic deficiency; it mani-

fests mainly with visuospatial memory deficits and eventually leads to dementia [9,10].

Functional imaging methods, including resting-state fMRI and metabolic brain imaging

such as Fluorine 18-labelled-fluorodeoxyglucose-positron emission tomography have identi-

fied disease-specific network signatures in PD patients, which have been proposed as potential

markers in early-stage PD (ESPD) [22,23]. However, it may be technically as well as economi-

cally more practical to use high-resolution EEG to identify neurophysiological fingerprints of

ESPD. Furthermore, EEG is non-invasive and does not require the use of radionuclides.

Indeed, prior studies have shown abnormal brain activity in ESPD patients based on resting-

state EEG [24–29].

In recent years, machine learning (ML) and deep learning algorithms have been used to

identify EEG-based neuromarkers in PD, including early-stage markers [30–35]. These

efforts relied mainly on resting-state EEG. However, event-related potentials (ERPs),

occurring in response to a specific stimulus during a cognitive task, reflect perceptual and

cognitive functions, and the integrity of their underlying neuronal networks. Abnormal

ERPs can be observed in individuals with neurological conditions in which brain circuitry

is impaired, and consequently show cognitive dysfunction. In line with this, ERP measures

have yielded various electrophysiological markers representing cognitive impairment in

PD (reviewed in [36,37]).

The Go/No-Go and Oddball tasks involve cognitive functions related to the earlier, execu-

tive function syndrome of PD, which rely on the frontal cortex. The Go/No-Go task mainly

assesses response inhibition (reviewed in [38]). The Oddball task is commonly used for assess-

ing attention and cognitive function including working memory [39]. Both tasks have been

tested in PD patients [36,37,40,41].

In the current study, we obtained high-resolution EEG recordings during performance of

the visual Go/No-Go (VGNG) and auditory Oddball (AOB) cognitive tasks from individuals

with early-stage and later-stage PD, and from healthy controls (HC). ERPs were processed

using a novel technology known as Brain Network Analytics (BNA) [42–44] to generate repre-

sentations of brain activity. The BNA representations were then analyzed by a ML algorithm

with the goal of identifying candidate neuromarkers of ESPD. We hypothesized that ESPD

patients would manifest cognitive deficits elicited in the chosen tasks, arising from dysfunction

of the CBGTC circuit, which would be captured by surface EEG. Furthermore, we hypothe-

sized that combining these single features in a data-driven approach by ML tools would pro-

vide a more accurate ESPD neuromarker.
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Methods

Study participants

Eligible PD patients and HC were right-handed individuals between ages 40 and 80 years. Par-

ticipants in the PD group were diagnosed as idiopathic PD according to the UK Brain Bank

Criteria [45]. PD participants at regular follow-up at the Movement Disorders Institute at the

Chaim Sheba Medical Center, Ramat Gan, Israel were included. Some were taking part in a

repetitive transcranial magnetic stimulation (rTMS) study with brain monitoring; however,

the current analysis used only data obtained before rTMS treatment. HC were recruited

through advertisement in Sheba Medical Center. Exclusion criteria were: 1) an unstable medi-

cal condition, or 2) a history of epilepsy, dementia, cerebrovascular disease, previous head

injury, brain tumor, or any craniosurgical intervention; 3) active depressive or psychotic

symptoms, current drug abuse or alcoholism, antipsychotic treatment. Eligible participants

had to score below 14 on the Beck Depression Inventory (BDI) [46] and above 25 on the mini-

mental state exam (MMSE) [47] or above 23 on the Montreal Cognitive Assessment (MoCA)

[48]. The study was approved by the institutional Helsinki committee and all participants gave

their written informed consent.

PD participants on stable anti-Parkinsonian therapy for at least one month before enroll-

ment were subdivided into 2 groups. The first, ESPD, that formed the neuromarker identifica-

tion group, consisting of patients who had been diagnosed for 2 years or less, were on Hoehn

and Yahr stage 1 or 2 [49] and could be on medical treatment for PD except for Levodopa. A

second group, established PD, included patients who had been diagnosed for over 2 years and

could be treated also with Levodopa. Data from this group were used for further exploration of

the neuromarker.

Study procedures

All study procedures were performed at the Movement Disorders Institute. For the current

study, each participant visited the site on 2 or 3 occasions within a period of 2 weeks: once for

clinical evaluations and twice for EEG recording (in case of 2 visits, clinical evaluation was per-

formed on the first visit). In the current analysis, only data from the first EEG recording visit

were used.

Clinical assessments

All PD patients were evaluated according to the Hoehn and Yahr staging scale and the motor

examination (part III) of the Unified Parkinson’s Disease Rating Scale (UPDRS) [50] in the

off-medication condition. Additional clinical evaluations included the MMSE or the MoCA,

and the BDI. For cognitive screening, PD patients were administered the MMSE or the

MoCA, while HC completed only the MMSE. For analysis, we used a conversion from MoCA

to MMSE following Roalf and colleagues [51,52].

Stimuli and experimental paradigm

EEG recording was conducted in the off-medication condition, while participants performed

the AOB and VGNG cognitive tasks (participants in the rTMS study completed 3 additional

tasks not reported here). The AOB task included a series of 400 tones, 80% frequent (2000 Hz),

10% target (1000 Hz) and 10% novel complex sounds, which varied across trials (S1A Fig).

Sounds were presented at a rate of 1 every 1.5 sec at 70 dB SPL. Each task contained two blocks

of 200 trials separated by a 1 minute break and took approximately 15 minutes to complete.

Subjects were required to respond to the target tone by pressing a key. During the VGNG task,
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letters were presented for 150 ms, either target or non-target (white on black background,

height of 1.64 degrees, flanked by white vertical lines which remained constant on the screen

throughout the block). The next letter was presented after a blank period of 850–2450 ms.

There were 400 trials in total. Participants were instructed to press the button with their right

index finger as quickly and accurately as possible in response to the frequent target letters (B,

C, D, E, F, G) presented in the center of the screen (the Go condition; 80% of all trials) and not

to respond to the rare non-target letter ‘X’ (the No-Go condition; 20% of all trials) (S1B Fig).

For both tasks, there was a short practice period before EEG recording started. Only epochs

with correct responses were analyzed.

EEG recordings

Participants were seated in a quiet room, at a distance of 70 cm from a 19-inch LCD monitor.

They were instructed to avoid eye and body movements as much as possible and maintain

their gaze at the center of the screen during task performance. Clinical evaluation and EEG

recording took approximately 3 hours to complete. High-density EEG was recorded using the

64 Ag-AgCl electrodes BrainCap TMS with Multitrodes system (BrainProducts, Gilching, Ger-

many). The reference electrode was FCz, and data were sampled at 250 Hz.

EEG processing

The EEG signals were recorded and cleaned as previously described [42]. Briefly, the EEG was

referenced to average mastoid electrodes, and signals were band-pass filtered into overlapping

physiological frequency bands of delta (0.5–4 Hz), theta (3–8 Hz), alpha (7–13 Hz) and beta

(12–30 Hz). Then the recordings were cut into epochs based on stimulus onset and response,

and averaged across trials of the same condition, producing ERPs. For the VGNG data, epoch

segments (200 ms pre-stimulus to 800 ms post-stimulus) were averaged separately for the

“Go” and the “No-Go” stimuli. In addition, motor-related activity was assessed by analyzing

response-locked ERPs. Epoch segments (400 ms pre-response to 500 ms post-response) were

averaged for the response-locked Go condition. For the AOB data, epoch segments (200 ms

pre-stimulus to 1200 ms post-stimulus) were averaged separately for the “Frequent”, “Novel”

and “Target” sounds. These ERPs were used as input data for the BNA analysis.

Brain Network Analytics (BNA)

The BNA methods have been previously described [42]. Briefly, BNA produces a set of event-

related spatiotemporal parcels (hereafter referred to as ‘STEPs’) of the ERP activity. Each STEP

contains information about the magnitude, temporal and spatial features of the ERP including

amplitude, latency, spatial location (left-right and posterior-anterior, each on a scale of -1 to 1)

and a topographic similarity score (S2 Fig). After STEPs are generated for each participant in

each frequency band of the ERP, clustering is applied to generate group STEPs that represent

spatiotemporal events common to at least 70% of the subjects in the group. A pool of healthy

subjects divided into age bins (120 subjects per bin) was used to generate each STEP. For indi-

vidual participants, STEPs corresponding to group STEPs in a matching process are selected

and their attributes are calculated (i.e., BNA scores). The topographic similarity scores repre-

sent the similarity of the participant’s STEP to the normative group’s STEP in terms of shape

and dynamics around the peak, after spatially and temporally aligning the peaks. STEP attri-

butes served as input data for the ML algorithm as discussed below. In addition to the BNA

scores, the ERP variability (ERPv) was calculated. This measure considers the variability of the

ERP waveform (at a frequency band of 0.5–30 Hz) across multiple trials in a single electrode

and is based on the standard error (SE). Low ERPv reflects good repeatability across multiple
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trials, while high ERPv reflects the variability of the neural response to the same stimulus. The

ERPv is averaged across electrodes in each of nine scalp regions as detailed in S2 Table.

Machine-learning based classification

We used 199 engineered features extracted by the BNA analysis from the HC and ESPD

groups as input data for the ML model training to identify a neuromarker associated with

ESPD. To lessen over-fitting, we used the False Positive Rate (FPR) feature selection method to

reduce the number of input features for training a logistic regression (LR) classifier. The LR

classifier predicted the probability of being healthy (i.e., [1- probability for ESPD]). The classi-

fication model was evaluated with a 10-fold cross-validation stratified by group (in each itera-

tion, data of 3 HC and 2 ESPD were left out). In each iteration, the FPR feature selection

method was applied, followed by the LR classifier based on the selected features. Hence, each

cross-validation iteration resulted in a model, which coefficients were used to calculate the

scores for the left-out subjects (i.e., cross-validation scores). The scores from the cross-valida-

tion iterations were also used for the ROC analysis. Finally, we ran feature selection and fitted

a model on the full data set of the HC and ESPD groups, to get the final model. The coefficients

of the final model were used to calculate the linear term for the established PD group (see

below). Fig 1A shows the weight of each feature in each iteration (i.e., fold). The weight of each

feature in the final model was used to determine its importance. In the logistic function:

p ¼
1

1þ e� ðb0þb1x1þb2x2þ���þbmxmÞ
ð1Þ

bi is the coefficient for BNA feature i; xi is an observation value for BNA feature i. The linear

term, marked in grey in Eq (1), is a weighted sum of the input features.

As an exploratory analysis, the relevance of the BNA score to PD symptoms was assessed by

correlating the outcome of the linear term of the final LR model with the motor UPDRS

(mUPDRS) scores from the established PD group. We took the linear term values rather than

the probability values for checking the relevancy of the model to PD symptoms, since we used

a linear correlation analysis and considering the non-linear nature of the logit function. It is

important to note that the data of the established PD group were not part of the training set.

Statistical analysis

Statistical analyses were carried out using JMP version 12 software (SAS Institute Inc., Cary,

NC, 1989–2019). The majority of the demographic, clinical and task performance measures

were not normally distributed and therefore they were compared between groups by the non-

parametric Wilcoxon rank-sum test or a Chi-square test. P-values <0.05 were considered sta-

tistically significant. Performance measures were adjusted for multiple comparisons with Bon-

ferroni correction. Response time was measured using the median response time of correct

responses. Correlations were assessed using Pearson’s correlation coefficient.

Results

Thirty HC participants and 21 participants with early-stage idiopathic PD were enrolled in the

study. All participants completed the cognitive tasks in each of two EEG recording sessions.

Two ESPD participants had poor quality data and are not included in the analysis, leaving 19

participants in the ESPD group. Demographic and relevant clinical characteristics of study

subjects are shown in Table 1. The percentage of male participants and BDI scores (a trend)

were higher, while the average MMSE scores were lower in the ESPD group in comparison to

the HC group.
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Cognitive task performance

Behavioral results of the VGNG and AOB tasks in the ESPD and HC groups, are shown in

Table 2. One ESPD patient performed the AOB below chance level and was therefore not

included in the AOB performance analysis. There were no significant differences in the AOB

task performance between groups. In the VGNG task, accuracy was significantly lower in the

ESPD group than in the HC group.

Discriminant ability of the BNA neuromarker

The output of the BNA system was analyzed by the ML algorithm (see Methods and Fig 1A),

which identified a BNA neuromarker composed of 15 features. Box plots with the neuromar-

ker scores from the cross-validation process for the ESPD and HC groups are shown in Fig 1B.

The cross-validation scores are more representative in terms of model validity, in the case a

validation set is lacking.

The discriminant ability of the BNA neuromarker was assessed using a receiver-operating

characteristic (ROC) analysis (Fig 1C). Again, the cross-validation scores were used for the

ROC analysis. The area under the ROC curve was 0.79 (95% CI: 0.65, 0.93). At the cutoff point

Fig 1. The BNA neuromarker characteristics. (A) Weights of each feature in each iteration (fold) of the cross-validation process. The consistency of the selected

features in each fold can be observed. The names of the 5 most important features of the final model are indicated at the top. (B) BNA neuromarker scores for

participants in the ESPD and the HC groups. The scores were obtained from the cross-validation process and represent [1- probability for ESPD]. Whiskers extend to

the highest and lowest observations, boxes represent 25–75 interquartile ranges, and horizontal bars represent medians. Mann-Whitney U test (normal

approximation): U = 120, Z = -3.38, p-value = 0.0007. (C) Receiver-operating characteristic (ROC) curve for the BNA neuromarker. The cross-validation scores were

used for the ROC analysis. topo, topographic similarity; PD, Parkinson’s disease; HC, healthy controls.

https://doi.org/10.1371/journal.pone.0261947.g001
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that maximizes sensitivity while specificity is still above chance level, sensitivity was 74% and

specificity was 73%. The ROC curve data in S3 Table shows various sensitivity-specificity val-

ues for different cutoffs.

While the control’s gender was balanced, the ESPD group was predominantly male (84%).

This could potentially lead to a false neuromarker identification due to gender differences in

the groups rather than disease-related difference. To check this possibility, we first examined

Table 1. Demographic and clinical characteristics of participants included in the BNA neuromarker.

Early-stage PD Healthy Control P-value

Number of participants 19 30

Males, n (%)a 16 (84) 15 (50) 0.012

Mean age, years (SD) 63.7 (7.8) 64.4 (6.2) NS

Mean duration of PD, years (SD) 1.1 (0.9) -

Mean Hoehn and Yahr stage (SD) 1.8 (0.6) -

Mean BDI score (SD) 5.4 (3.7) 3.5 (3.7) 0.059

Mean MMSE score (SD) 26.2 (2.1) 29.7 (0.8) <0.001

Mean mUPDRS score (SD) 20.1 (8.8) -

Treatments for PD, number of patients (%)b

Levodopa 0

Monoamine oxidase B inhibitor 15 (79)

Dopamine agonist 5 (26)

Amantadine 7 (37)

Anticholinergic agent 1 (5)

aChi-square test.
bPatients can be on multiple treatments.

SD, standard deviation; BDI, Beck Depression Inventory; MMSE, mini mental status scale; mUPDRS, motor examination (part III) score of the Unified Parkinson’s

Disease Rating Scale.

https://doi.org/10.1371/journal.pone.0261947.t001

Table 2. Results of the cognitive tasks performance.

Early-stage PD Healthy Control P value

Visual Go/No-Go task

Number of participants 19 30

Response time, ms 420.3 (56.9) 421.9 (47.0) NS

Response time SD, ms 92.07 (21.5) 90.8 (17.6) NS

Accuracy, % 92.4 (4.1) 95.4 (2.7) 0.005�

Omission errors, % 4.1 (4.9) 1.6 (2.4) NS

Commission errors, % 21.4 (14.0) 16.2 (9.9) NS

Auditory Oddball task

Number of participants 18 30

Response time, ms 474.9 (88.0) 504.5 (85.8) NS

Response time SD, ms 101.9 (35.0) 106.1 (33.0) NS

Accuracy, % 99.4 (0.5) 99.1 (1.9) NS

Omission errors, % 3.5 (4.0) 2.5 (3.5) NS

Commission errors, % 0.27 (0.4) 0.64 (2.0) NS

�Statistically significant after Bonferroni correction for multiple comparisons.

Performance values are mean (±standard deviation) per group; ms, milliseconds; NS, not significant.

https://doi.org/10.1371/journal.pone.0261947.t002
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the difference between the neuromarker scores of males and females in the HC group, which is

gender balanced. A Wilcoxon rank-sum test showed no statistically significant effect (Z =

-0.83, p-value = 0.41). Second, we ran 5 iterations of the ROC analysis with balanced gender

across groups, i.e., taking each time data of randomly chosen three females (with no repeat)

from the HC group and all the 15 HC males. The average area under the curve was 0.77 (range

0.76–0.78). At the cutoff point that maximizes sensitivity, while specificity is maximal above

chance level for this sensitivity value, sensitivity was 0.74 (in all iterations) and average speci-

ficity was 0.69 (range 0.67–0.72). These results are very similar to those obtained with all HC

females and thus suggest that gender differences are not the basis of the neuromarker discrimi-

nation between patients and HC.

Components of the BNA neuromarker

The weights of the 15 features of the BNA neuromarker are shown in Fig 2A. The most impor-

tant features, as determined by their weights, included the P50 amplitude from the No-Go con-

dition and the N100 latency from the Novel condition, both of which are associated with early

sensory processing; the P200 amplitude from the Frequent condition and the P200 topo-

graphic similarity from the Novel condition, associated with filtering of information; and P-

200 topographic similarity from the response-locked Go condition, activity which precedes the

motor response and is suggestive of reflecting motor-related processes. These features were

ERPs in the alpha frequency band. Other features of the BNA neuromarker were ERPv scores

of frontal and central locations from the response-locked and stimulus-locked VGNG ERPs.

Two other components with relatively modest contributions to the BNA neuromarker were

related to cognitive control and novelty processing (Novel N2 P-A in alpha band) [53] and Go

processing including response preparation and execution [54] (Go P300 P-A in delta band; a

“target” in the sense that it requires a response) [55]. See S4 Table for a summary of physiologi-

cal explanations of the features.

The differences between the ESPD and the HC groups, in the neuromarker features with

the highest importance, are shown in Fig 2B. Compared with HC, ESPD patients had higher

No-Go P50 amplitude, slower Novel N100 latency, lower Frequent P200 amplitude, and lower

Novel P200 and response-locked Go P-200 topographic similarity.

Further exploration of the neuromarker

Twenty established PD patients went through the same procedures as the ESPD patients (see

S5 Table for demographic and relevant clinical characteristics). The established PD patients’

scores from the linear term of the LR model (see Methods) correlated significantly with their

mUPDRS scores (r = 0.70, p = 0.0008, 95% CI: 0.36, 0.88; Fig 3).

Lastly, we calculated for each early-stage patient the levodopa equivalent daily dose

(LEDD), a measure of the total daily medication a patient receives, which enables comparison

across patients with different drug regimens [56]. LEDD was then correlated with the neuro-

marker score. As can be seen in Fig 4, there was no correlation between the neuromarker and

the LEDD (r = 0.075, p = 0.760, 95% CI: -0.39, 0.51).

Discussion

In this exploratory study we used BNA to analyze ERPs from ESPD patients and HC to estab-

lish a BNA neuromarker for ESPD. Using a ML algorithm, we identified a neuromarker com-

posed of 15 BNA features with an AUC of 0.79 on ROC analysis and with sensitivity of 68%

and specificity of 87%.
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Notable in the current study, ERP signals were sensitive for discriminating ESPD patients

from HC, while behavioral results differed only in accuracy of the VGNG task between groups.

This result shows that electrophysiological ERPs capture deviations in specific cognitive pro-

cessing aspects at early stages of the disease that are less manifested on the coarser behavioral

level, which may benefit from compensatory mechanisms.

The BNA features with the highest importance could be classified into three cognitive func-

tions: early sensory processing (P50, N100) [57], filtering of information (also defined as with-

drawal of attention from irrelevant information; P200) [58] and motor-related processes

(response locked P-200) [59,60]. Previous studies have shown alterations in the P50, N100 and

P200 ERP components in PD patients, although some studies failed to find differences from

HC and other showed controversial results (for an exhustive review see [61]). Many ERP stud-

ies have shown altered motor-related potentials in PD, mainly in self-initiated movements

Fig 2. Features of the BNA neuromarker. (A) Weights of the BNA neuromarker features. The box indicates the five

most important features. Weights are absolute value model weights normalized by their sum. (B) Box plots of the BNA

scores of the five most important neuromarker features in participants with ESPD and HC. See Fig 1 for boxplot

description. Points outside the whiskers are outliers, exceeding 1.5 times the interquartile range below the 1st quartile

or above the 3rd quartile. Values are provided in S1 Table. AOB, auditory Oddball; VGNG, visual Go/No-Go; Topo,

topographic similarity; ERPv, event related potential variability; μV, micro volts; ms, milliseconds.

https://doi.org/10.1371/journal.pone.0261947.g002
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[62]. However, alterations in motor-related potentials of externally cued movements, which

are more similar to our task-derived response-locked ERPs, were also found [63,64].

The present analysis is unique and differs from previous ERP studies in the BNA scores that

entered feature selection. These included early and late ERP components from each and every

task condition, in addition to introducing new features such as topographic similarity and pos-

terior-anterior measures of ERPs, ERPv and ERPs in various frequency bands. In contrast, ear-

lier research analyzed only a few commonly studied ERPs from each task condition. Thus, we

enabled selection of features that previously were not subject to analysis. In addition, the

majority of previous work showed ERP alterations in established PD rather than in ESPD

patients. Our criteria for early stage,�2 years, were more stringent as compared to previous

EEG studies of ESPD [25,26].

Previous studies showed differences between PD patients and HC in the AOB task, mainly

in the P300 ERP components, which include P3a and P3b. The amplitude of the P3a compo-

nent elicited by the Novel stimuli, which is thought to be mediated by dopaminergic activity

Fig 3. Correlation between the BNA neuromarker linear scores and the mUPDRS scores. Correlation between the

BNA neuromarker linear scores and the mUPDRS scores in an independent established PD group (N = 19; one subject

was assessed only in the on-state and was not included). mUPDRS, the motor examination (part III) of the Unified

Parkinson’s Disease Rating Scale.

https://doi.org/10.1371/journal.pone.0261947.g003

Fig 4. BNA Neuromarker scores as a function of LEDD. LEDD, levodopa equivalent daily dose.

https://doi.org/10.1371/journal.pone.0261947.g004
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[65] and to reflect attention allocation towards potentially important changes in the environ-

ment, is attenuated in PD (reviewed in [36,37]). The P3b component elicited by the Target sti-

muli, reflects updating of working memory representations in the prefrontal cortex [39,65].

Surprisingly, our neuromarker did not include P300 features of the AOB Novel or Target sti-

muli. Only the VGNG Go P300 was included in the neuromarker with a relatively moderate

weight. Although the Go P300 is a “target” in the sense that it requires a response, its frequent

occurrence in the task (80%) makes it different from the rare AOB Target stimulus. It might be

that only in later stages of PD, the AOB P3a and P3b components are aberrant enough to hold

a significant difference from HC.

ESPD subjects were on stable anti-parkinsonian therapy, which might raise concerns that

we found a neuromarker of the therapy rather than a neuromarker of the disease. However,

we used several means to limit drug effects. The first was excluding levodopa and anti-cholin-

ergic drugs for the early-stage patients, agents known to induce EEG changes [66,67] (there

was one patient exception for anticholinergic drug). Second, patients were tested in the off-

medication state, in the morning, before receiving their drugs. Lastly, there was no correlation

between the neuromarker score and LEDD, showing that the neuromarker does not represent

drug effects.

As the study sample size was not large enough to have an independent validation group, we

used data from an established PD patient group (disease duration > 2 years, N = 20) for evalu-

ating the relevance of the neuromarker to other PD symptoms. The scores from the linear

term of the LR model correlated significantly with the mUPDRS scores suggesting that the

BNA neuromarker captures some aspects related to the motor symptoms severity, the hall-

mark of PD.

Several ML-based classification models for ESPD diagnosis have been reported (reviewed

in [30]), which showed higher sensitivity and specificity than the current findings. However,

most of these implied expensive, invasive, or complicated medical assessments. In contrast, the

BNA neuromarker is based on the accessible and available EEG acquisition, which is optimal

for use in a clinical setting and can be easily repeated over time for monitoring purposes.

The major limitations of the current study include the small study sample size and the lack

of a validation group. Additionally, the difference in gender distribution and baseline MMSE

scores between groups may present confounders affecting the results. It is important to note

that the greater proportion of PD males than females in our study, reflects the higher (1.5–2

times) incidence and prevalence of PD in men than in women in the general population

[68,69]. Taken together, it is of true concern that the biomarker is a consequence of a combina-

tion of these confounders and other random factors due to the small sample size, potentially

leading to a faulty classification. This will need to be refuted in future studies, with a strict bal-

ance of such parameters between groups and a separate validation group to evaluate the neuro-

marker performance. Moreover, it is yet to be proven that the use of the BNA neuromarker for

differentiation between the two non-demented subject groups relates to the diagnosis of PD

and not to cognitive differences per se. The lack of comprehensive neurocognitive testing of

enrolled subjects is a barrier to exploring this possibility in the present study. Furthermore,

future studies will need to investigate whether the BNA neuromarker is specific for PD among

other brain disorders, both degenerative and not. While the restriction of the BNA features to

the cognitive domain may represent a limitation of the importance of this neuromarker for

PD, we showed that it correlates with motor symptom severity, supporting its association with

other PD related pathology. In addition, in the past several decades there have been a substan-

tial research on abnormal oscillatory and synchrony patterns in the CBGTC loops in PD

patients [70,71]. Specifically, excessive cortical beta band activity, beta synchronization within

BG and synchronization between BG and cortex in PD patients have been repeatedly found
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(summarized in [70]). Adding such EEG features in combination with ERPs may boost perfor-

mance of an early-stage neuromarker of PD.

Further studies assessing BNA’s potential for ESPD diagnosis should include large and

diverse PD cohorts, such as patients in the premotor prodromal phase of the disease. Analysis

of the BNA’s value in other brain disorders is recommended to identify diseases-specific fin-

gerprints and to differentiate PD from atypical parkinsonian disorders. Additionally, longitu-

dinal studies would help to identify novel BNA neuromarkers for disease progression or for

progression of cognitive dysfunction in PD.
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