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SUMMARY

The impacts of low soil moisture (SM) and high vapour pressure deficit (VPD) on
tree’s photosynthesis and productivity are ultimately realized by changing water
content in the canopy leaves. In this study, variations in canopy water content
(CWC) that can be detected from microwave remotely sensed vegetation optical
depth (VOD) have been proposed as a promising measure of vegetation water
status, and we first reported that the regulation of CWC on productivity stability
is universally applicable for global forests. Results of structural equation model
(SEM) also confirmed the significant negative effect of CWC on coefficient of vari-
ation (CV) of productivity, indicating that the decrease in CWC could inevitably
induce the instability of forest productivity under climate change. The most
significant decrease (p < 0.01) of CWC is observed primarily in evergreen broad-
leaf forest in the tropics, implying an increasing instability of the most important
carbon sink in terrestrial ecosystem.

INTRODUCTION

More frequent drought events and increasing water constraint have considerable impacts on forest growth

and can alter global carbon-water cycles and energy exchanges.1–3 Related studies have revealed that the

worldwide vapor pressure deficit (VPD) has increased considerably since the 1990s, inducing an enhanced

atmospheric water demand for forests.4–6 In semi-arid ecosystems, warming-related drought stress may

also be characterized by limited soil moisture (SM), which serves as the direct water pool for forest

growth.7–9 From the perspective of the soil-plant-atmosphere continuum (SPAC), the water availability

of global forests has inevitably been constrained by changing VPD and SM.10–12 Considering that water

is fundamental in determining plant photosynthesis, vegetation water content has the direct impact on

forest productivity.13,14 However, most previous studies have focused on the roles of VPD, SM and their

interaction, instead of the vegetation water content itself.15–17

Numerous metrics have been proposed for forest water status, ranging from the leaf-level equivalent wa-

ter thickness (EWT), live fuel moisture content (LFMC), and relative water content (RWC) to the higher-

level canopy water content (CWC).18–21 In particular, CWC underpins important physiological functions

(e.g. photosynthesis) and has been adopted as an indispensable representation of warming-induced dis-

turbances in forests.22 In contrast to in situ measurements with spatiotemporal limitations in data acqui-

sition, remote sensing observations contribute to the large-scale monitoring of long-term variations in

forest water status.23,24 Widely applied optical remote sensing techniques utilize multispectral and hy-

perspectral indices to provide estimates of CWC.25 However, the inherent defects of optical remote

sensing could be summarized as the high sensitivity to atmospheric conditions (e.g., aerosol pollution,

cloud cover, and water vapor), which used to prevent the accurate and timely acquisition of data.26

Benefitting from relatively long wavelengths, microwave remote sensing possesses a stronger penetra-

tion capacity in the atmosphere and can thus provide valid global observations at almost daily fre-

quencies.27,28 Specifically, the vegetation optical depth (VOD) obtained from passive microwave obser-

vations is a dimensionless parameter that describes the attenuation rate of microwaves as they pass

through the vegetation canopy.29 Theoretical considerations and related experiments have revealed

that VOD is linearly proportional to the vegetation water content, and the responses of VOD to forest

water status (e.g., CWC) are primarily determined by corresponding wavelengths.30,31 Among numerous

microwave datasets,32,33 VOD estimates from short wavelengths (e.g., the Ku-band and X-band) are more

sensitive to canopy leaves, while the long wavelength VOD (typically as the L-band) generally presents
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higher sensitivity to deeper forest layers, including stems and other woody components.20,21,34 Accord-

ingly, short wavelength microwaves contribute to reducing the significant impacts of heterogeneous

understorey cover on canopy VOD estimates, meanwhile eliminating more compensating errors from

the SM contribution. All these features make short wavelength VOD a promising proxy for forest CWC

assessments at regional and global scales.

In this study, we adopted the short wavelength Ku-band VOD as the proxy for forest CWC, intending to

assess the regulation of CWC on forest productivity (represented by gross primary productivity, GPP)

over the 1987–2017 period. The global forest types were first extracted from time-series MODIS land cover

data, meanwhile eliminating the disturbances induced by land cover changes. This work continued the

exploration of forest CWC in our previous studies,35,36 further expanding the observations from single

tree species at sample plots to global-scale forest vegetation. The trend analysis was then conducted

with the Mann-Kendall (MK) monotonic trend test to determine the spatial and temporal patterns of

CWC variation trends within each forest type. Finally, the impacts of CWC on the stability of forest GPP

(represented by coefficient of variation, CV) were quantified with weighted linear regression and structural

equation model (SEM). We adopted forest CWC as a starting point to assess the regulation of water

content on the stability of forest productivity, contributing to the comprehensive understanding of forest

carbon sinks in the context of future climate change.

RESULTS

Spatial and temporal patterns of VOD variation trends in global forests

The results of the MK test exhibited obvious spatial heterogeneity, reflecting distinguished VOD dynamics

among the various forest types (Figure 1A). In terms of latitudinal zonality, forests with significant increases

in VOD occupied as low as 6% at low latitudes and higher than 50% at middle-high latitudes, respectively

(Figure 1B). In particular, regions with significant increases in VOD at high latitudes in the Northern

Hemisphere primarily corresponded to mixed forest. In contrast, significant decreases in VOD were in

the majority in low-latitude forests, and the proportion could reach 86% at most. Within the decreasing-

VOD dominated regions at low latitudes, especially around the equator, the area of evergreen broadleaf

forest was the largest. Overall, more than 60% of the global forest presented significant variation trends of

VOD over the past 30 years, and the proportion of 0.01-level decreases (31.14%) was slightly higher than

that of 0.01-level increases (30.11%) (Figures 1D–1I). For the distributions of the six forest types

(Table S1), large differences in area were observed (Figure 1C). Specifically, evergreen broadleaf forest

(EB), woody savannas and woodland (WS) occupy the highest proportions, accounting for more than

32% of global forests each (Figures 1D–II).

Considering the distinguished responses of global forests to climate change, the averaged VOD anomaly

time series within each forest type was calculated at amonthly scale. In particular, the VOD anomaly of ever-

green needleleaf forest generally presented continuous increases over the entire study period, with a peak

in 2011 (Figure 2A). In contrast, the VOD anomaly of evergreen broadleaf forest exhibited an overall

decreasing trend, which was the only case among all forest types (Figure 2B). Especially after 2009, the

values were much lower than the multi-year average of the past decades. In addition, the sliding-window

(15 years) MK test on the VOD anomaly time series of all pixels within each forest type also indicated that

VOD of evergreen broadleaf forest exhibited the most significant decrease around the globe (Figure S1B).

In terms of deciduous needleleaf forest (Figure 2C), relatively large interannual variations in VOD were

observed, possibly owing to the limited amount of data (only 0.62% of global forests, 7314 pixels) induced

by the sparser distribution. The VOD anomaly of deciduous broadleaf forest (Figure 2D) and woody

savannas and woodland (Figure 2F) basically exhibited long-term stability with no continuous increases

or decreases. Last, the mixed forest possessed a trend of increasing VOD anomaly, similar to that of the

evergreen needleleaf forest, which peaked in 2009 (Figure 2E). The results confirmed the differentiated

VOD variation trends among the six types, meanwhile reflecting the ever-changing forest water status in

the past decades.

Similarly, the spatial and temporal patterns of GPP variation trends in global forests were analyzed. In terms

of the spatial heterogeneity, 0.01-level decreases (25.76%) and 0.01-level increases (29.42%) accounted for

about 55% of GPP variations (Figure S2). The averaged anomaly time series of GLASS-GPP calculated from

light use efficiency (LUE) models (Figure S3) and NIR-GPP retrieved from near-infrared remote sensing ob-

servations (Figure S4) both presented increasing instability in evergreen broadleaf forest, especially for the
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variations of GLASS-GPP (Figure S3B), which possessed the most obvious decreases throughout the 21st

century and call for more attention in further study.

Regulation of VOD on the stability of forest GPP

The determination of forest water status on interannual stability of productivity was embodied in the regu-

lating effect of CWC. Specifically, compared with annual averages, forest carbon sequestration capacity

could be well presented in the annual maximum values (peak values) of VOD and GPP, which were served

as the proxies for forest CWC and productivity, respectively.

Scatterplots with a 31-year (1987–2017) VOD and GLASS-GPP were generated for each forest type (Fig-

ure 3), exhibiting the fluctuation in GPP with the variation in VOD values. It is worth noting that the scatter-

plots corresponded to the substitution of space for time, and the temporal variation of forest CWC was

represented by the values of VOD in the x axis. Particularly, instead of calculating commonly used standard

deviation (SD), which required the mean values of the compared populations to be equal, the interannual

variation of GPP values was expressed with CV in this study. For evergreen forest, the distributions of GPP

values in both needleleaf (Figure 3[A1]) and broadleaf (Figure 3[B1]) types became increasingly concen-

trated as VOD increased. Based on the scatter density of GPP data, weighted linear regression of the

CVGPP was further conducted, indicating that higher VOD values of evergreen forest corresponded to

more stable productivity (Figure 3[A2, B2]). In particular, evergreen broadleaf forest possessed the highest

values of VOD in global forests (Figure 3[B1]), and the R2 (0.82) of the CVGPP fitting line exceeding those of

Figure 1. Variation trends of the Ku-band VOD over global forests between 1987 and 2017

(A–D) The results of the MK test on the VOD time series (A) were conducted at a 99% significance level. The proportions of significant increases (increases*)

and significant decreases (decreases*) (B) were computed for each latitude at increments of 0.05�. The global distributions of six forest types (C) were based

on MODIS land cover data. The impacts of land cover change in the past decades were eliminated with the change detection of the time-series land cover

data, and only unchanged forest areas were maintained. The proportions of distinguished VOD trends (D-I) and the proportions of six forest types (D-II) were

both computed over global forests. EN, evergreen needleleaf forest; EB, evergreen broadleaf forest; DN, deciduous needleleaf forest; DB, deciduous

broadleaf forest; MI, mixed forest; WS, woody savannas and woodland.
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other forest types. The regulating effect of the VOD in deciduous forest was consistent with that in ever-

green forest (Figure 3[C2, D2]), although deciduous needleleaf type corresponded to theminimum number

of pixels in global forests. The scatter distribution of mixed forest (Figure 3[E1]) was remarkably close to that

of evergreen needleleaf forest, likely owing to the similarity of dominant forest types. Last, despite the

impacts of grassland in woody savannas, the regulation of VOD on the stability of GPP was still significant,

and R2 of the CVGPP fitting line reached the second largest value (0.77) of all forest types (Figure 3[F2]).

Additionally, considering the impacts of leaf area index (LAI) on both VOD and GPP, their correlation in

Figure 3 may arise from collinearity with LAI, rather than the regulation of water content on GPP. The scat-

terplots with LAI and GPP were subsequently generated, and the regulating effect of LAI on the stability of

GPP was not observed, except for the positive correlation between them (Figure S5). Hence, as shown in all

forest types in Figure 3, large number of GPP values were concentrated in the range from approximately 7

to 10 (g C/m2/d), and the CVGPP values presented downwards trends with increasing VOD, reflecting the

determination of VOD on the stability of GPP. Furthermore, the second product of GPP estimates (NIR-

GPP) also yielded similar results, confirming the robustness of the previous conclusions (Figure S6). We

generated the scatterplots of VOD and GPP with different spatial resolutions (0.25 or 0.05�), different
calculations of annual value (annual average or annual maximum values) and different processing modes

of land cover data (land cover changes were eliminated or not eliminated). The results indicated that the

relationship between VOD and the stability of GPP would not be impacted by the calculation and process-

ing methods of input datasets (Figure S7).

Figure 2. Globally averaged Ku-band VOD anomaly time series within six forest types

The orange lines represent the averaged values of the monthly anomaly within each forest type, and the black lines

represent the results filtered by the moving average method. The gray shaded area indicatesG1 standard deviation (SD).

EN, evergreen needleleaf forest; EB, evergreen broadleaf forest; DN, deciduous needleleaf forest; DB, deciduous

broadleaf forest; MI, mixed forest; WS, woody savannas and woodland.
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Effect pathways of the variables on forest productivity

SEM confirmed the dominant role of CWC (represented by VOD) in determining the stability of forest GPP,

meanwhile clarifying the indirect contributions of environmental variables. We fitted pathways for all the

Figure 3. The regulation of VOD on the stability of GPP over global forests

Each scatterplot of VOD and GPP (A1-F1) contained 31-year data for 1987 to 2017. Considering the 0.05-degree spatial

resolution, all six forest types, including evergreen needleleaf forest (EN, 103494 pixels), evergreen broadleaf forest (EB,

387273 pixels), deciduous needleleaf forest (DN, 7314 pixels), deciduous broadleaf forest (DB, 85319 pixels), mixed forest

(MI, 209384 pixels), woody savannas and woodland (WS, 390018 pixels), possessed large raster data. The scatter density

directly reflected that the distributions of GPP and VOD values within each forest type were very uneven, concentrating in

certain value ranges. CVGPP quantified the interannual variation of GPP values with the variation in VOD. The weighted

linear regressions of CVGPP (A2-F2) were conducted at a 99% significance level.
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variables that directly or indirectly affected productivity, and all the final models of the six forest types

passed the statistical test (p >0.05) (Figure 4).

The obtained SEM consisted of a three-layer structure, and VOD with LAI in the middle layer were the core

variables connecting the environmental variables (SM, VPD, TMP, CO2, PAR) from the top layer and produc-

tivity-related variables (CVGPP) in the bottom layer. More precisely, twomain effect pathways were centered

on VOD and LAI. On the one hand, the pathway containing environmental variables and VOD reflected the

effects of climate change on forest water status, which was actually embodied in the transpiration of the

canopy. On the other hand, LAI was a proxy of canopy greenness, and the pathway containing environ-

mental variables and LAI corresponded to the affected photosynthesis of the forest canopy. Hydraulic

characteristics of the six forest types were well presented in the different effect pathways of VPD on

VOD, especially the only case in evergreen broadleaf forest, where significant negative effects of TMP

(�0.14) and VPD (�0.19) on VOD were observed simultaneously (Figure 4B), exactly corresponding to

the most significant decreasing trend of VOD. In contrast, the results of SEM presented consistent effect

pathways of the environmental variables on greenness-related LAI, despite the distinguished intensity.

For each significant pathway, SM, TMP, CO2, and PAR possessed positive effects on LAI, while only VPD

corresponded to a negative effect.

Figure 4. The results of SEM for six forest types

The established SEM for (A) evergreen needleleaf forest (p = 0.777, AIC = 96.505, BIC = 318.269, Fisher’s C = 0.505),

(B) evergreen broadleaf forest (p = 0.291, AIC = 98.466, BIC = 330.348, Fisher’s C = 2.466), (C) deciduous needleleaf forest

(p = 0.242, AIC = 98.835, BIC = 320.599, Fisher’s C = 2.835), (D) deciduous broadleaf forest (p = 0.092, AIC = 100.772, BIC =

369.615, Fisher’s C = 4.772), (E) mixed forest (p = 0.058, AIC = 101.689, BIC = 323.453, Fisher’s C = 5.689) and (F) woody

savannas and woodland (p = 0.859, AIC = 96.305, BIC = 318.069, Fisher’s C = 0.305). The solid lines represent the

significant effect pathways (p <0.01), and the dotted lines represent the pathways that fail to pass the significance test.

The blue and red lines represent the positive effect pathways and negative effect pathways, respectively. EN, evergreen

needleleaf forest; EB, evergreen broadleaf forest; DN, deciduous needleleaf forest; DB, deciduous broadleaf forest; MI,

mixed forest; WS, woody savannas and woodland. SM, soil moisture; VPD, vapor pressure deficit; TMP, temperature; PAR,

photosynthesis active radiation; VOD, vegetation optical depth; LAI, leaf area index; CV, coefficient of variation.
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The significant negative effect (p <0.01) of VOD on CVGPP (from�0.16 to�0.49 in six forest types) and non-

significant effect of LAI on CVGPP were universally applicable (Figures 4A–4F). Particularly, VOD of woody

savannas and woodland possessed the greatest negative effect (�0.49) on CVGPP despite the interference

of grassland (Figure 4F). In conclusion, SEM confirmed the significant effects of rising air temperature and

VPD on VOD, and VOD further possessed the significant negative effect on CVGPP, indicating that the

decrease in VOD could inevitably induce the instability of forest productivity under climate change.

DISCUSSION

Our results revealed that the forest CWC (represented by VOD) was not completely stable on the interan-

nual scale. For the temporal patterns, differing from the commonly recognized seasonal VOD anomaly,26,28

the interannual fluctuations in VOD could significantly threaten forest productivity in some areas. For the

spatial patterns of the ever-changing VOD, the typical and continuous increases were presented in ever-

green needleleaf forest and mixed forest, while evergreen broadleaf forest possessed the most significant

decreasing trend. Some previous studies have focused on forest growth in the context of water deficits in

both the atmosphere and soil,5,14,35 but the scaling up from specific areas to global forest ecosystems is still

needed. Owing to the spatial heterogeneity of global VPD and SM, variations in CWC in the six forest types

responded inconsistently to climate change. Specifically, the CWC of evergreen needleleaf forest

presented continuous increases, and there was no sign of canopy water deficit in this area. A related study

has also suggested that gymnosperms have higher hydraulic safety margins than angiosperms, reflecting

higher tolerance to drought stress and a lower likelihood of hydraulic failure.46 The CWC of evergreen

broadleaf forest exhibited a continuous and significant decreasing trend in our results, which indicated

its higher vulnerability to climate change from the perspective of water stress.47,48 In contrast, the CWC

of mixed forest possessed an overall increasing trend for the entire study period, probably owing to a

certain proportion of evergreen needleleaf trees therein, also reflecting the contribution of higher

forest-type diversity in reducing the adverse effects of climate change in vast boreal forests.49

There was a high probability for the dynamic balance of forest CWC to be disrupted by the enhanced at-

mospheric water demand under climate change. Related studies have revealed that the global averaged

VPD exhibited a slight increase before the late 1990s, after which, especially throughout the 21st century, a

sharp increase was observed based onmultiple climate datasets.4,6 Correspondingly, the decadal variation

trends of CWC in evergreen needleleaf forest, mixed forest, and evergreen broadleaf forest were generally

marked by a transition around the 2010s. Hence, the persistent and widespread increase in VPD could be

considered a major driving factor in the variations in forest CWC. A higher VPD indicates a stronger atmo-

spheric water demand, which could alter land evapotranspiration in global forests primarily through the

transpiration of the canopy. Transpiration pull used to be considered the primary impetus of water uptake

from roots, transporting almost 97% of water to the atmosphere in a gaseous form.50 Besides, the hydraulic

architecture of each forest type also has considerable impact on the long-term variation trends of

CWC.51,52 Water in the forest canopy is always in a state of dynamic change while the overall trend is rela-

tively stable. However, for the most surprising situation, the CWC of evergreen broadleaf forest failed to

remain stable against global warming, consequently exhibiting a decreasing trend in the past decades.

Water stored in the canopy enables physiological and biochemical functions, such as maintaining the

normal process of photosynthesis.19,53 A previous study indicated that CWC may decrease at first during

a drought period, and sustained water deficit may in turn induce an accompanying reduction in canopy

greenness,36 so the stability of CWC determines the stability of photosynthetic assimilation. Rising air tem-

peratures and the accompanying increase in evapotranspiration rates are predicted for the forthcoming

years,4,5 which would bring greater uncertainty to the variations in forest CWC.

Our results further suggested that the regulating effect of CWC on the stability of GPP was universally

applicable for global forests, and higher CWC values generally corresponded to more stable GPP within

each forest type. In other words, the decrease in CWC could inevitably induce the instability of forest

productivity, particularly in evergreen broadleaf forest that used to be the largest contributor to terrestrial

productivity.54,55 Owing to the impacts of high cloud cover and rainy weather on the quality of optical

remote sensing observations, especially the satellite-based LAI and PAR, there are large uncertainties in

the estimates of forest productivity over tropical areas, consequently inducing discrepancies among

different GPP products.40 However, quite a few studies, including all-weather microwave monitoring,

showed that the decrease in global forest productivity occurred primarily in evergreen broadleaf forest,

especially in the Amazon.56,57 In contrast to other types, the productivity of evergreen broadleaf forest
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exhibited a decreasing trend from the 1980s and went below the average throughout the 21st century.48

Hence, the continuous decrease in CWC in evergreen broadleaf forest resulted in less stable GPP, which

presented a downwards trend, reflecting the nonnegligible risks under climate change. Evergreen

needleleaf forest and mixed forest exhibited continuous increases in CWC during the entire study period,

indicating more stable GPP in the forthcoming years, which could serve as the stabilizer of global forest

productivity.48 Relatively large interannual variations of CWC were observed in deciduous needleleaf

forest, and related studies also indicated that deciduous needleleaf forest was one of the most

sensitive biomes to temperature and exhibited larger interannual variations.58 Considering the compli-

cated response of deciduous needleleaf forest to climate change, more attention is needed in further

studies.

Limitations of the study

Our results are subject to some limitations. First, the mechanism study of adopting Ku-band VOD as the

proxy for forest CWC needs to be strengthened. Remote sensing products from rest microwave bands

(e.g., the C-band and X-band) or other effective proxy indicators of CWC from multi-source datasets

need to be explored. Second, in order to eliminate redundant elements, the research objects are

determined as six forest types based on land cover data. However, considering the wide variation and

spatial heterogeneity across pixels within each forest type, further studies could be more precise and

targeted with differentiating the confounding impacts of biomass, climatic and hydrological conditions.

Third, it would bemore persuasive to conduct field validation for the remotely sensed relationship between

CWC and forest productivity. There is a huge spatial-scale difference between VOD products (resolution of

0.25�) and traditional field investigation in ecological research. Hence, the practical problems of scale

difference and data limitation should be resolved in the validation.

Conclusions

In summary, our results indicated that the regulation of CWC on the stability of productivity was

universally applicable for global forests, and higher CWC values corresponded to more stable produc-

tivity. In particular, the CWC of evergreen broadleaf forest possessed the most significant decreasing

trend in the six forest types. However, as the largest contributor to terrestrial productivity, the decreasing

CWC and productivity of evergreen broadleaf forest call for more attention in the context of climate

change.
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METHOD DETAILS

Forest cover extraction

The global forest cover was obtained from the MODIS Land Cover Climate Modelling Grid Product

(MCD12C1), adopting the classification scheme of the International Geosphere-Biosphere Programme

(IGBP) (Table S1). The dataset supplies global maps of land cover at annual time steps and 0.05-degree

spatial resolution for 2001 to present. Within the 17 land cover types, six forest types were determined

as the research objects, including evergreen needleleaf forest (EN), evergreen broadleaf forest (EB), decid-

uous needleleaf forest (DN), deciduous broadleaf forest (DB), mixed forest (MI) and woody savannas (WS).

In particular, woody savannas possess the maximum distribution area in global forests, covering a wide

range of latitudes and climate zones. However, according to our expertise, woody savannas in the IGBP

REAGENT or RESOURCE SOURCE IDENTIFIER

Deposited data

Global forest cover MODIS Land Cover Climate Modelling

Grid Product (MCD12C1)

https://lpdaac.usgs.gov/products/

mcd12c1v006/

Ku-band VOD dataset Moesinger et al. (2020)37 https://zenodo.org/record/2575599#.

Yk57AMhBxPZ

GLASS-GPP and GLASS-LAI datasets National Earth System Science Data Sharing

Infrastructure, National Science & Technology

Infrastructure of China38,39

http://www.geodata.cn; http://www.glass.umd.

edu/Download.html

NIR-GPP dataset Wang et al. (2021)40 https://figshare.com/articles/dataset/Long-

term_1982-2018_global_gross_primary_

production_dataset_based_on_NIRv/12981977/2

TS 4.04 Temperature and vapour

pressure datasets

Climatic Research Unit http://www.cru.uea.ac.uk/

SM and PAR of NASA Global Land Data

Assimilation System (GLDAS) data products

Goddard Earth Sciences Data and Information

Services Center (GES DISC)

https://disc.gsfc.nasa.gov/

Global CO2 concentration dataset NOAA Earth System Research

Laboratory (ESRL)

https://www.esrl.noaa.gov/gmd/ccgg/trends/

Software and algorithms

R programming language (version 4.1.2) R Foundation, USA https://www.r-project.org/

R package piecewiseSEM 2.1.0 Lefcheck (2016)59 https://www.r-project.org/
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classification scheme should be given a more accurate classification name of ‘‘woody savannas and wood-

land (WS)’’ in this study. Considering the possible impacts of land cover change in the past decades, the

change detection of time-series MCD12C1 data was conducted, and only unchanged forest areas of

each type were maintained (Figure 1C).

VOD processing

Compared with other frequency bands, the observational records of the Ku-band VOD are much longer,

combining various datasets from a series of passive microwave instruments.37 Hence, we used the short

wavelength Ku-band VOD (�19 GHz) product as the proxy for forest CWC and examined its spatial and

temporal variations globally over the period of 1987–2017 (lasting for 31 years). The original product is

available as daily global files, possessing a coarse spatial resolution of 0.25�. Furthermore, the VOD dataset

was resampled to a 0.05-degree grid in accordance with the resolution of MODIS land cover data. In terms

of temporal resolution, the daily files were averaged into monthly values, and then the annual maximum

VOD was determined from the 12 values within each corresponding year.

GPP and LAI processing

We adopted two GPP products that were obtained with different data sources and calculation methods

to strengthen the effectiveness and credibility of the conclusions. The first GPP product is the Global

LAnd Surface Satellite (GLASS) dataset, obtained from the National Earth System Science Data Sharing

Infrastructure, National Science & Technology Infrastructure of China (http://www.geodata.cn).38,39

GLASS-GPP (g C/m2/d) possesses a spatial resolution of 0.05� and a temporal resolution up to 8 days.

Meanwhile, the GLASS-LAI product, possessing the same spatial and temporal resolution as the GPP

data, was also adopted for further calculation. The second GPP product is retrieved from the satellite-

based near-infrared reflectance (NIR), providing global monthly GPP estimates (g C/m2/d) with a spatial

resolution of 0.05�.40

Considering the phenology changes in most parts of the world, both variations of VOD and GPP possess

phonological characteristics with the growth of forest in each year.26,28,40,57 Correspondingly, we focused

on the photosynthetic assimilation of global forests in this study, and the maximum values (peak values)

could effectively reflect the carbon sequestration capacity. Hence, to give a more accurate depiction of

the peak state of photosynthesis that GPP could achieve, the annual maximumGPP was served as the proxy

for forest productivity. For the 12 values of NIR-GPP within each year, themaximum value was chosen as the

proxy for the corresponding year. For the 8-day averaged GLASS-GPP, the monthly averaged values were

first calculated to avoid possible outliers, and then the annual maximum GPP was determined from the 12

values within the corresponding year. Accordingly, the annual maximumGLASS-LAI was obtained from the

original dataset.

Temperature and VPD processing

For the acquisition of time-series climate variables of forest areas, we adopted the air temperature

(TMP, �C) and vapour pressure (VAP, h Pa) from the TS 4.04 dataset of the Climatic Research Unit

(http://www.cru.uea.ac.uk/). In particular, the VPD was calculated as the difference between the satu-

rated water vapour pressure (SVP, h Pa), determined by near-surface temperature, and actual water

vapour pressure.41 The annual mean TMP and VPD with a resolution of 0.05 degrees were consequently

obtained.

SVP = 6:1121e
17:502�TMP
240:97+TMP (Equation 1)

VPD = SVP � VAP (Equation 2)

SM and PAR processing

Considering the spatial and temporal coverage of SM and photosynthesis active radiation (PAR), we ob-

tained NASA Global Land Data Assimilation System (GLDAS) data products from Goddard Earth Sciences

Data and Information Services Center (GES DISC) (https://disc.gsfc.nasa.gov/). In comparison, the monthly

SM and PAR data with a spatial resolution of 0.25� from the Noah-3.6 Land Surface Model were suitable for

our study. The SM values (kg/m2) of different soil layers (0–10 cm, 10–40 cm and 40–100 cm) between 0 cm

and 100 cm were then summed (weighted by the thickness of each layer). In addition, PAR can be obtained
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from incident shortwave radiation (W/m2).38 The annual mean SM and PAR were resampled to 0.05 degrees

in accordance with the resolution of other environmental variables.

Acquisition of CO2 concentration

The global CO2 concentration dataset (annual values) from the NOAA Earth System Research Laboratory

(ESRL), resampled to 0.05 degrees, was used to express the CO2 fertilization effect (https://www.esrl.noaa.

gov/gmd/ccgg/trends/).

Conduction of MK test

For the purposes of detrending, the VOD anomaly of each month was calculated by subtracting the 31-year

monthly average based on the monthly values of the VOD time series. Then, in response to the temporal

autocorrelation of the time-series VOD anomaly, we conducted a trend analysis with the widely used

nonparametric method, MK monotonic trend test, which possesses advantages in determining significant

trends in time-series data.42,43 For the time series (x1, x2, ., xn), the null Hypothesis H0 is that there is no

trend in the records, and the MK test is conducted as follows:

S =
Xn� 1

k = 1

Xn

j = k+1

sign
�
xj � xk

�
(Equation 3)

sign
�
xj � xk

�
=

8<
:

+ 1
�
xj � xk >0

�
0

�
xj � xk = 0

�
� 1

�
xj � xk <0

� (Equation 4)

where n is the number of data points (j, k % n and j s k) and S is a normally distributed variable that has a

zero mean. When n % 10, the procedures proposed by44 could be adopted to determine if there is a vari-

ation trend in the original time-series data. When n > 10, the variance of S is calculated as:

VarðSÞ =

nðn � 1Þð2n+5Þ � Pm
i = 1

tiðti � 1Þð2ti+5Þ
18

(Equation 5)

Z =

8>>>>>>><
>>>>>>>:

S � 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
VarðsÞp ðS > 0Þ

0 ðS = 0Þ
S+1ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
VarðsÞp ðS < 0Þ

(Equation 6)

where ti is the number of ties for the i group,m is the number of tied groups, and Z is the statistic of the MK

monotonic trend test.

A positive value of Z indicates that there is an increasing trend in the original records, and a negative Z value

indicates a decreasing trend. Moreover, with a given significance level, a variation trend is considered

significant when the values of Z exceed the corresponding thresholds (i.e., G 2.32 for the 99% significance

level).

Construction of SEM

SEM is a multiple regression analysis widely used to verify complex causal relationships among variables.45

Each pathway is from the independent variable to the dependent variable, with a directional arrow for every

regression model. The standard coefficients of the pathways represent the quantified effects, including

positive and negative effects. The SEM in this paper was conducted using the R (version 4.1.2) package

piecewiseSEM 2.1.0,59 which could return the statistic p value, Fisher’ C, Akaike information criterion

(AIC) and Bayesian information criterion (BIC).

As VOD may be simultaneously regulated by climate change, the SEM contributes to removing other

dominant confounding effects and making inspection and complement on the results obtained from

empirical relationship between VOD and CVGPP. For the construction of initial model, the variations of
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forest CWC (represented by VOD) were mainly subject to VPD and SM. In terms of the effects on forest

productivity, input variables of classical GPP conceptual model and widely used light use efficiency (LUE)

models were adopted as references.38,60 Hence, LAI was adopted as the biological variable, while envi-

ronmental variables included SM, VPD, TMP, CO2 and PAR. Furthermore, collinearity test would be con-

ducted for all the variables with variance inflation factor (VIF).61 As the setting of this study, the result

would be considered unacceptable if any VIF value exceeded 10, and the corresponding variable should

be eliminated.
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