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This study aimed to understand the prognosis of patients with head and neck

squamous cell carcinoma (HNSCC) and to develop and validate a prognostic

model for HNSCC based on pyroptosis-associated genes (PAGs) in

nasopharyngeal carcinoma. The Cancer Genome Atlas database was used to

identify differentially expressed PAGs. These genes were analyzed using the

Kyoto Encyclopedia of Genes and Genomes functional annotation analyses and

Gene Ontology analyses. The NLR family pyrin domain containing 1 (NLRP1)

gene, charged multivesicular body protein 7 (CHMP7) gene, and cytochrome C

(CYCS) gene were used to create a prognostic model for HNSCC. The results of

the Kaplan-Meier (K-M) and Cox regression analyses indicated that the

developed model served as an independent risk factor for HNSCC.

According to the K-M analysis, the overall survival of high-risk patients was

lower than that of low-risk patients. The hazard ratios corresponding to the risk

scores determined using the multivariate and univariate Cox regression

analyses were 1.646 (95% confidence interval (CI): 1.189–2.278) and 1.724

(95% CI: 1.294–2.298), respectively, and the area under the receiver

operator characteristic curve was 0.621. The potential mechanisms

associated with the functions of the identified genes were then identified,

and the tumor microenvironment and levels of immune cell infiltration

achieved were analyzed. The immune infiltration analysis revealed

differences in the distribution of Th cells, tumor-infiltrating lymphocytes,

regulatory T cells, follicular helper T cells, adipose-derived cells,

interdigitating dendritic cells, CD8+ T cells, and B cells. However, validating

bioinformatics analyses through biological experiments is still recommended.

This study developed a prognostic model for HNSCC that included NLRP1,

CHMP7, and CYCS.
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Introduction

Head and neck squamous cell carcinoma (HNSCC) is a

highly heterogeneous malignancy of various anatomical sites

in the upper respiratory and digestive tracts. The sites of its

origin are the paranasal sinuses, nasal cavity, oropharynx, oral

cavity, and larynx. HNSCC accounts for 90% of all HNSCC cases

(Bray et al., 2018; Ferlay et al., 2019). Each year, approximately

450,000 deaths and 890,000 new cases of HNSCC are recorded

worldwide (Bray et al., 2018; Ferlay et al., 2019). HNSCC causes

include smoking, alcohol consumption, and viral infections

(Stein et al., 2015; Johnson et al., 2020). More than half the

patients with HNSCC are diagnosed at an advanced stage of

HNCC due to the lack of effective clinical risk assessment tools

and early-stage diagnostic resources, resulting in a low survival

rate (34.9%) (Chauhan et al., 2015). Currently, treatment options

are selected, and the overall survival (OS) of HNSCC patients is

primarily determined using the tumor–lymph node–metastasis

(TNM) staging system developed by the American Joint

Committee on Cancer (AJCC) (Amin et al., 2017; Keung and

Gershenwald, 2018). Though this system is simple to implement

and useful in a wide range of fields, it only considers tumor-

related anatomical information and ignores biological

heterogeneity. As a result, the ability to predict risk and assess

the prognosis for patients with HNSCC is limited. Therefore,

developing a novel, valid, and robust risk prediction and

prognosis-assessment model is critical to improving the risk

prediction accuracy and individualized treatment process.

Intracellular genes regulate cell death (including apoptosis,

necroptosis, ferroptosis, pyroptosis, necrosis, autophagy, and

others), which significantly impacts the process of immune

system development (Fink and Cookson, 2005; Bedoui et al.,

2020; Chen et al., 2021; Shi et al., 2021). Pyroptosis, a novel form

of caspase-1-mediated programmed cell death, is characterized

by the rapid rupture of the plasma membrane. Following the

rupture, cellular contents and pro-inflammatory substances such

as interleukins are released. This triggers an inflammatory

cascade response, resulting in cellular damage. The process

has a significant impact on tumor progression, including

tumor proliferation, metastasis, and invasion (He et al., 2016;

Tsuchiya, 2020). Pyroptosis induces the onset and progression of

various diseases, including hepatocellular carcinoma, leukemia,

lung cancer, breast cancer, gastric cancer, cervical cancer, and

colorectal cancer (He et al., 2016). The dual role of pyroptosis

significantly affects tumor pathogenesis. During pyroptosis,

multiple signals are generated, and inflammatory mediators

are released. The generation of these signals and the release of

these mediators have an impact on tumorigenesis and resistance

to chemotherapeutic agents. The high expression level of the

pyroptosis effector gasdermin D promotes the process of tumor

metastasis. For example, it is associated with a poor prognosis in

patients with lung adenocarcinoma (Gao et al., 2018). Moreover,

the increased susceptibility of cells to caspase-3-dependent

signaling pathways that trigger pyroptosis can increase

melanoma cells’ resistance to etoposide (Lage et al., 2001).

Pyroptosis, on the other hand, may inhibit tumor onset and

progression (Fiddian-Green and Silen, 1975; Yu et al., 2021). The

expression of the pyroptosis effector gasdermin E accelerates

tumor cell phagocytosis. The action of the tumor-associated

macrophages mediates the process. As a result, the number of

CD8+ T lymphocytes and tumor-infiltrating natural killer

lymphocytes increases (Ding et al., 2016). CD8+ T

lymphocytes and tumor-infiltrating natural killer lymphocytes

have also shown improved function. Additionally,

downregulation of the oncogene LncRNA–XIST inhibits the

progression of non-small cell lung cancer. The activation of

the miR-335/SOD2/ROS cascade-related pyroptosis process

results in the downregulation of the oncogene (Liu et al.,

2019). However, more research into the link between HNSCC

and pyroptosis is needed.

Researchers recently discovered that pyroptosis is crucial in

developing nasopharyngeal carcinoma (NPC) (Cai et al., 2021; Xia

et al., 2021). NPC arises from epithelial cells in the nasopharynx, and

squamous carcinoma is the most common type (Chen et al., 2019).

Exploring the relationship between NPC and pyroptosis-associated

genes (PAGs) could aid in the understanding of HNSCC. Basic

medical research can benefit from bioinformatics as it can provide

information at multiple levels and aspects about molecular

mechanisms of disease (Holtsträter et al., 2020; Lin et al., 2021;

Chen et al., 2022; Luo et al., 2022; Sun et al., 2022; Yan et al., 2022).

Biomarkers related to PAGs for NPC-related bioinformatics can

provide effective treatment for HNSCC. This study combined

genomic, transcriptomic, proteomic, metabolomic, and

immunomics data to explore the microenvironmental

composition of head and neck tumors and identify indicators

associated with patient prognosis. A prognostic model for

HNSCC was developed and validated based on PAGs in NPC.

Methods

Data download and pre-processing

Nasopharyngeal carcinoma (NPC)-related gene expression

profiles was obtained from the Gene Expression Omnibus (GEO)

database. The keyword “nasopharyngeal carcinoma”was selected

to obtain three eligible mRNA microarray datasets (GSE12452,

GSE53819, and GSE64634). GSE12452 and GSE64634 were from
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the GPL570 platform, whereas GSE53819 was based on

GPL6480. 61 NPC samples and 32 normal samples were

obtained and normalized using R 4. 0. 3 software. In cases

where a single gene was associated with multiple probes, the

value for the expression of that gene was set to the average

expression value corresponding to the multiple probes.

Additionally, a batch correction was performed using the

ComBat function in the sva package to eliminate the effect of

different biological companies, researchers, and experimental

batches on the results. Raw ribonucleic acid (RNA)

sequencing data and clinical information were also

downloaded from the TCGA database. Information on the

survival time, age, survival status, clinical stage, gender, tumor

grade, TNM staging, and pathological stage was obtained.

Identification of pyroptosis-related long
non-coding RNAs

A total of 52 pyroptosis-related lncRNAs were obtained from

literature reports (Broz et al., 2020; Wang et al., 2020; Zhou et al.,

2020; Tan et al., 2021). Subsequently, the co-expression for lncRNAs

and PAGs was studied using the Person correlation analysis method

and the limma package in Rwas used to study the pyroptosis-related

lncRNAs (correlation coefficient ≥0. 4; p < 0. 001).

Expression analysis of BAK1, NLRP1,
CHMP7, RIPK1

We used the Gene Expression Profiling Interactive

Analysis (GEPIA) 2. 0 (http://gepia.cancer-pku.cn/), which

integrates gene expression data from the Cancer Genome

Atlas (TCGA) database, to analyze the expression of BAK1,

NLRP1, CHMP7, and RIPK1 genes (Tang et al., 2017). The

Cancer Genome Atlas (GSCA) (http://bioinfo.life.hust.edu.

cn/web/GSCALite/) was also used to analyze target gene

expression in tumors (Liu et al., 2018). UALCAN (http://

ualcan.path.uab.edu) analyzes cancer and paracancer gene

expression data in depth using TCGA data (Chandrashekar

et al., 2017). In addition, it can be used to analyze the

correlation between gene expression and clinical

information, including age, gender, tumor clinical staging,

tumor pathological staging, and other clinical data.

Mutation and correlation analysis of BAK1,
NLRP1, CHMP7, and RIPK1 genes

CbioPortal (cBio Cancer Genomics Portal) (http://www.

cbioportal.org/) was used to study gene mutation information

in tumors, and we identified BAK1, NLRP1, CHMP7, and RIPK1

gene mutations in HNSCC using the TCGA-HNSCC status (Gao

et al., 2013). Meanwhile, GeneMANIA (http://genemania.org/), a

website for constructing gene networks and functional

prediction, was used to study the interaction of BAK1, NLRP1,

CHMP7, and RIPK1 genes (Warde-Farley et al., 2010).

Survival analysis

We used the kaplan-meier plotter (http://kmplot.com/analysis/)

to analyze the survival curves of different genes in HNSCC, where

we chose the best cutoff value for the selection, where higher than

this value is considered high expression and lower than this value is

low expression, where the vertical lines are censored data (Lánczky

and Győrffy, 2021). In addition to overall survival (OS), we analyzed

Disease Free Survival (DFS), progression-free interval (PFI), and

progression-free interval survival data.

Combined indicator long non-coding
RNAs (lncRNAs) receiver operator
characteristic (ROC) curves for NPC
diagnosis

The diagnostic effectiveness and diagnostic value of single or

multiple combined indicators (biomarkers) were determined using

ROC curves. The pROC package (R4. 0.3 software) was used to

conduct the analysis. The area under the curve (AUC) represents the

clinical significance of the experiment. Generally, an AUC value

closer to 1.0 indicates high accuracy, and vice versa. Multiple

lncRNAs (identified using the preceding procedures) were

subjected to the process of single or multiple combined-indicator

ROC curve analysis. The pROC package in the R4. 0.3 software was

used for analysis and determining diagnostic values.

Enrichment analysis of NPC-related PAGs

The ROC analysis method was used on 52 PAGs to screen

genes with AUC values >0.5. As in previous studies, the

“clusterProfiler” and “org. Hs. eg. db” packages (R

4.0.3 software) were used for the Kyoto Encyclopedia of

Genes and Genomes (KEGG) pathway and Gene Ontology

(GO) enrichment analyses (Lin et al., 2021; Wu et al., 2021;

Zhao and Jiang, 2022). In addition, the “clusterProfiler” package

was used to analyze and visualize the genes and gene clusters in

functional profiles (GO and KEGG). Biological process (BP),

molecular function (MF), and cellular component (CC) are the

three components associated with GO analyses (screening

criteria: Q-value < 0. 05; p-value < 0. 05).

We analyzed the functional enrichment of BAK1, NLRP1,

CHMP7, and RIPK1 genes in the TCGA-HNSCC status and

applied the LinkedOmics database (http://www.linkedomics.org/

login.php) for analysis. We chose TCGA_HNSCC and RNA-seq
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data on this website and entered BAK1, NLRP1, CHMP7, and

RIPK1 genes using the Pearson Correlation test. Later, we

selected over-representation analysis (ORA) as an enrichment

tool, PANTHER pathway data as functional data, and rank

criteria as p-value, with <0.05 being considered statistically

significant (Vasaikar et al., 2018).

Immunomodulator analysis

We used the TISIDB database (http://cis.hku.hk/TISIDB/

index.php) to analyze the correlation between genes and

immunomodulation-related genes in HNSCC, where

immunosuppressive markers included CD244, CD274,

CTLA4, and LGALS9, the immune activation marker was

ICOS, and major histocompatibility complex (MHC)

molecules included HLA-E (Ru et al., 2019).

Immuno-infiltration analysis

For immune infiltration analysis, we used the tumor immune

estimation resource (TIMER) database (https://cistrome.shinyapps.

io/timer/). Immune cells were selected as B cells, CD8+ T cells, CD4+

T cells, macrophages, neutrophils, and dendritic cells (DCs). The

correlation between the aforementioned immune cells and the genes

BAK1, NLRP1, CHMP7, and RIPK1 was analyzed (Li et al., 2016; Li

et al., 2017). Subsequently, we used the TIMER database to analyze

the correlation between the degrees of immune cell infiltration of

HNSCC tumors and the variation in the copy number of different

somatic cells of the gene.

Construction of the prognostic model

The survival analyses method was used to screen the genes

associated with the prognosis of patients with HNSCC. The gene

expressions were combined with the clinical prognostic information

of the patients. After the false discovery rate (FDR) is corrected for

both univariate Cox regression analysis and Kaplan-Meier (KM)

survival analysis results, we identified the other genes that affected

the prognosis of HNSCC patients using the univariate Cox

regression analysis method (criterion: p < 0. 05). Genes were

used as dependent variables for curve fitting to obtain an optimal

Cox proportional risk regressionmodel. Themodel characterized by

the minimum Akaike information criterion (AIC) value was

selected. The low AIC value indicated that the model contained

few free parameters and could be used to analyze the data efficiently.

Validation of the prognostic model

Following the identification of the optimal model, the risk scores

were calculated. The risk scores were analyzed, and based on the risk

scores at the maximum of the Youden index in the ROC curve, the

patients were classified into low- and high-risk groups. The following

FIGURE 1
Single- and combined-indicator receiver operating characteristic curve (ROC) curves of pyroptosis-related long non-coding RNA (lncRNAs) for
nasopharyngeal carcinoma (NPC) diagnosis. (A). Single-indicator ROC curves forDGCR5,HOTAIR, LINC00308, LINC00311, PRNT, and TMEM105 for
NPC diagnosis; (B). Six lncRNAs as co-diagnostic biomarkers.
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methods were used to determine whether the risk scores could

influence a patient’s prognosis for hepatocellular carcinoma (Bray

et al., 2018): non-parametric tests were conducted to compare the

differences in risk scores by studying various clinicopathological factors

(sex, age, pathological stage, clinical stage, grading, and TNM stage)

(Ferlay et al., 2019); the survival curves of the prediction model for

patients with HNSCC were plotted using the survival analysis method

(Johnson et al., 2020); the prediction accuracywas studied by analyzing

the time-dependent ROC curves generated using R software; and

(Stein et al., 2015) Cox regression analysis results were used to

determine if the risk score and other clinicopathological factors

contributed to patients’ poor prognosis for HNSCC.

Nomogram construction and calibration
curve plotting

A nomogram was generated with the “rms” package in R, and

the calibration curves were plotted for 1-, 3-, and 5-years OS. The

risk score, sex, age, grading, clinical stage, and tumor stage were

analyzed to obtain the results. Additionally, the Hosmer-Lemeshow

test was employed to check whether the predicted and actual

outcomes agreed.

Analysis of the level of immune cell
infiltration and the tumor
microenvironment

Various analytical methods for detecting immune cell infiltration

are currently available. These methods include TIMER, CIBERSORT,

XCELL, QUANTISEQ, McCounter, EPIC, and CIBERSORT on

TIMER2 (Newman et al., 2015; Becht et al., 2016; Aran et al.,

2017; Li et al., 2017; Racle et al., 2017; Chen et al., 2018; Finotello

et al., 2019; Deng et al., 2021; Mei et al., 2022; Sun et al., 2022). The

correlation coefficients for the correlation between different risk scores

(obtained using different calculation methods) and certain immune

cells can be obtained by determining the relationship between the

immune cells and risk scores. The R software packages limma,

ggplot2, scales, ggtext, ggpubr, and tidyverse were used for

analysis, and the results were visualized using bubble plots. The

scores for immune cells and immune-related functions were

obtained using the single-sample gene set enrichment analysis

(ssGSEA) technique. Additionally, using limma, ggpubr, and

reshape2 (R software) were used to determine the differences

between the immune cells and immune-related functions

corresponding to the low- and high-risk groups. Finally, the TME

was scored using the estimate package (R software) to compare the

TME between the two groups.

Statistical analysis

Statistical results were presented as mean ± standard

deviation, and statistical differences between the two samples

were analyzed using two-tailed t-tests or analysis of variance.

p-value ≤ 0.05 was considered statistically significant.

Results

Data download and pre-processing

Three NPC datasets (GSE12452, GSE53819, and GSE64634)

were downloaded from the Gene Expression Omnibus (GEO)

database, normalized, and batch corrected to form a dataset with

FIGURE 2
Gene Ontology (A) and The Kyoto Encyclopedia of Genes and Genomes (B) Enrichment analyses for nasopharyngeal carcinoma-related
pyroptosis-associated genes.
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FIGURE 3
Risk and prognostic analysis of the single gene. (A). Survival analysis to determine the correlation between the expressions of BAK1, NLRP1,
CHMP7, and CYCS and head and neck squamous cell carcinoma (HNSCC); (B). Kaplan-Meier survival curves present the correlation between the
prognostic risk scores of patients suffering from HNSCC and the corresponding overall survival rates; (C–D). The forest plot shows the univariate (C)
andmultivariate (D)Cox regression results; and (E). Receiver operating characteristic curves are calculated for determining risk scores based on
the sensitivity and specificity of the prognosis of patients with HNSCC.
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61 NPC samples and 32 normal samples (16,820 genes). The TCGA

database was analyzed, and the transcript data and relevant clinical

information forHNSCC patients (n= 360) were downloaded from it.

Pyroptosis-related lncRNAs ROC curves
for NPC diagnosis

The raw dataset included 15,153messenger RNA (mRNAs) and

199 lncRNAs. Previously reported results were analyzed to extract

52 PAGs to obtain the relevant expression profile (Supplementary

Table 1). Subsequently, six pyroptosis-related lncRNAs (DGCR5,

HOTAIR, LINC00308, LINC00311, PRNT, and TMEM105) were

identified (p < 0. 001; correlation coefficient ≥0. 4) using three NPC
datasets (GSE12452, GSE53819, andGSE64634). The lncRNAswere

analyzed using the single-indicator ROC curve analysis method. The

following results have been presented: DGCR5: (AUC = 0.503, 95%

confidence interval (CI): 0. 371–0. 635), HOTAIR: (AUC = 0.652,

95% CI: 0.515–0.788), LINC00308: (AUC = 0.516, 95% CI:

0.398–0.634), LINC00311: (AUC = 0.514, 95% CI: 0.391–0.637),

PRNT: (AUC = 0.534, 95% CI: 0.402–0.665), and TMEM105:

(AUC = 0.654, 95% CI: 0.525–0.783) (Figure 1A). Subsequently,

the combined-indicator ROC curves for the six lncRNAs were

plotted with an AUC of 0.703 and a 95% CI of 0.583–0.824

(Figure 1B). These results suggest that the six lncRNAs (DGCR5,

HOTAIR, LINC00308, LINC00311, PRNT, and TMEM105) have

FIGURE 4
Evaluation and development of the prognostic model. (A) Prognostic model (nomogram) constructed using the “rms” R package; (B) The area
under the curves for 1-, 3-, and 5-years clinical outcomes (0.607, 0.598, and 0.612, respectively). The values indicate good predictive power; and (C)
Calibration plots reflect the agreement between the predicted and actual survival rates.
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FIGURE 5
Expression of BAK1,NLRP1, CHMP7, and RIPK1markers in tumors. (A) BAK1 expression in 33 tumor species in the Cancer Genome Atlas (TCGA)
database; (B) Expression of NLRP1 in tumor of 33 species in the TCGA database; (C)CHMP7 expression in 33 tumor species in the TCGA database; (D)
TCGA database of RIPK1 expression in 33 tumor species; (E) BAK1 expression is increased in head and neck squamous cell carcinoma (HNSCC)
tissues; (F) NLRP1 expression is elevated in HNSCC tissues; (G) CHMP7 expression is elevated in HNSCC tissues; (H) RIPK1 expression was
elevated in HNSCC tissues. *p < 0.05, **p < 0.01, ***p < 0.001.
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good diagnostic values and can function as co-diagnostic

biomarkers.

Enrichment analysis of NPC-related PAGs

Analyzing the ROCs yielded NPC-related 42 genes with AUC

values >0.5 (p-value < 0.05; Q-value < 0.05; Supplementary Table S2).

GO and KEGG analyses were performed on these genes. These

42 genes were enriched in BPs (positive regulation of cytokine

production; positive regulation of cysteine-type endopeptidase

activity involved in the apoptotic process; positive regulation of

interleukin-1 production; and others); CCs (inflammasome

complex, ESCRT III complex, multivesicular body, nuclear

envelope, and others); and MFs (cysteine-type endopeptidase

activity involved in the apoptotic signaling pathway; cysteine-type

endopeptidase activator activity involved in apoptotic process;

peptidase activator activity involved in apoptotic process; cytokine

FIGURE 6
Mutations of BAK1,NLRP1, CHMP7, and RIPK1 genes in head and neck squamous cell carcinoma (HNSCC) and their interplay network. (A) Total
mutations of BAK1, NLRP1, CHMP7, and RIPK1 in HNSCC; (B) GeneMANIA demonstrates the gene interaction network of BAK1, NLRP1, CHMP7, and
RIPK1.
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receptor binding; and others) (Figure 2A). The NOD-like receptor

signaling pathway was the most enriched in KEGG pathways.

Salmonella infection, necroptosis, lipid and atherosclerosis,

legionellosis, pathogenic Escherichia coli infection, influenza A,

pertussis, shigellosis, tuberculosis, apoptosis, Yersinia infection,

measles, C-type lectin receptor signaling pathway, apoptosis-

multiple species, cytosolic DNA-sensing pathway, inflammatory

bowel disease, hepatitis B, human cytomegalovirus infection,

platinum drug resistance, graft-versus-host disease, Kaposi sarcoma-

associated herpesvirus infection, Epstein-Barr virus infection, AGE/

RAGE signaling pathway in diabetic complications, non-alcoholic fatty

liver disease, hepatitis C, pathways of neurodegeneration-multiple

diseases, TNF signaling pathway, and non-small cell lung cancer

p53 signaling pathway respectively (Figure 2B).

Construction and evaluation of a
prognostic model

The 42 PAGs were incorporated into the TCGA database and

four genes [BAK1 (p = 0.032, HR = 1.34 (1.03–1.76)], NLRP1 [p =

0.022, HR = 0.73 (0.56–0.95)], CHMP7 [p = 0.005, HR = 0.68

(0.52–0.89)], and CYCS [p = 0.001, HR = 1.61 (1.22–2.11)]

associated with the prognosis of HNSCC patients were identified

following the process of survival analysis (Figure 3A). Subsequently,

the minimum AUC value was considered when selecting the best

model, which consisted of three genes (NLRP, CHMP7, and CYCS).

The risk score was calculated as follows: risk score =NLRP1*(−0. 067)

+ CHMP7*(−0. 044) + CYCS*(0. 111). The patients were then

classified into two groups (low-risk and high-risk) based on their

risk scores. The median risk score was used as the cut-off value.

Analyzing the K-M survival curves showed that the OS of patients in

the high-risk group was lower than that of patients in the low-risk

group (p = 4.208e-03) (Figure 3B). This indicated that the prognosis

could be predicted using the risk scores. The multivariate and

univariate Cox regression analysis method was used to assess the

clinical prognostic factors (sex, age, stage, pathological TNM staging,

and clinical TNM staging) and risk scores to determine whether the

survival model could function as an independent prognostic factor for

HNSCC. The HR values for the risk scores obtained using the

multivariate and univariate Cox regression analyses were 1.646

(95% CI: 1.189–2.278, p = 0.003) and 1. 724 (95% CI:

1.294–2.298, p < 0.001), respectively (Figures 3C,D). This indicated

that the risk model could be used as an independent prognostic factor

for HNSCC. Furthermore, the AUC value (0.621) for the risk score

was calculated to assess its predictive sensitivity and specificity

(Figure 3E). The findings suggested that the developed risk model

was a viable independent prognostic factor for HNSCC patients.

Moreover, to predict patient prognosis, “rms” (anRpackage)was used

to construct a nomogram based on risk score, age, sex, grade, clinical

stage, and tumor stage (Figure 4A). The survival rate for each

individual was calculated using the total score obtained by adding

all the scores corresponding to each variable. The process was used to

obtain the 1-, 3-, and 5-years OS. The corresponding AUCs were

0.607, 0.598, and 0.612, indicating good predictive performance

(Figure 4B). The analysis of nomogram calibration plots revealed

that the predicted survival rate was in good agreement with the actual

survival rate (Figure 4C).

Expression of BAK1, NLRP1, CHMP7, and
RIPK1 in HNSCC and normal tissues

Figures 5A–D show the expression of BAK1, NLRP1,

CHMP7, and RIPK1 markers in 33 tumors. These four

markers were overexpressed in cholangiocarcinoma (CHOL),

HNSCC, and liver hepatocellular carcinoma (LIHC), and they

were all statistically different. Figures 5E–H show that the

expression of BAK1, NLRP1, CHMP7, and RIPK1 was higher

in HNSCC tumor tissues than in paraneoplastic tissues.

Mutation of BAK1, NLRP1, CHMP7, and
RIPK1 genes in HNSCC and gene
interaction network

Because all the above genes were expressed at higher levels in

HNSCC, we investigated their mutations in HNSCC using

cBioportal and found that BAK1, NLRP1, CHMP7, and RIPK1

genes were highly conserved in HNSCC (Figure 6A). The

interaction of the genes above was then investigated using

GeneMANIA (http://genemania.org). The interplay network of

the BAK1, NLRP1, CHMP7, and RIPK1 genes may include

20 potential target genes (Figure 6B).

Prognostic role of BAK1, NLRP1, CHMP7,
and RIPK1 in HNSCC

We analyzed the relationship between BAK1, NLRP1,

CHMP7, and RIPK1 mRNA and HNSCC survival. Figure 7A

demonstrates the relationship between BAK1, NLRP1, CHMP7,

and RIPK1 mRNAs and tumor survival. The Kaplan-Meier

(K-M) plotter was also used to analyze its relationship with

the prognosis of HNSCC patients. As shown in Figures 7B–D, the

higher expression of BAK1 worsens the HNSCC prognosis.

Unlike BAK1, the higher expression of NLRP1, CHMP7, and

RIPK1 improves HNSCC prognosis, as shown in Figures 7E–M.

Relationship between BAK1, NLRP1,
CHMP7, and RIPK1 mRNAs and clinical
characteristics in HNSCC

Because the above results showed that BAK1, NLRP1,

CHMP7, and RIPK1 mRNAs and HNSCC prognosis were
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FIGURE 7
Relationship between BAK1, NLRP1, CHMP7, and RIPK1 messenger RNAs (mRNAs) and prognosis of head and neck squamous cell carcinoma
(HNSCC) patients. (A) Relationship between BAK1, NLRP1, CHMP7, and RIPK1, Bcl-2 mRNAs expression and tumor survival in the Cancer Genome
Atlas database; Kaplan-Meier (K-M) plotter showing survival curves for disease free survival (DFS); (B) Progression-free interval (PFI); (C) Overall
survival (OS); (D) For BAK1 and HNSCC; the K-M plotter shows DFS for NLRP1 andHNSCC; (E) PFI; (F)OS; (G) Survival plots; K-M plotter showing
DFS; (H) PFI; (I) OS; (J) Survival plots for CHMP7 and HNSCC; K-M plotter showing DFS; (K) PFI; (L) OS; (M) Survival plots for RIPK1 and HNSCC.
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closely related, we investigated the relationship between the

above genes and the clinical characteristics of HNSCC further.

Table 1 shows that in HNSCC, BAK1 and CHMP7 are associated

with sex, clinical staging, and tumor histological grading,

NLRP1 is associated with sex and clinical staging, and

RIPK1 is not associated with any of these clinical characteristics.

Functional analysis of the genes BAK1,
NLRP1, CHMP7, and RIPK1 in HNSCC

The LinkedOmics database was used to further analyze the

predicted function of the above genes in HNSCC. As shown in

Figure 8A, BAK1 is primarily enriched in pathways such as

pyrimidine metabolism, androgen/estrogen/progesterone

biosynthesis, 2-arachidonoylglycerol biosynthesis, and

gamma-aminobutyric acid synthesis. As shown in

Figure 8B, NLRP1 functions are mainly enriched in purine

metabolism, valine biosynthesis, isoleucine biosynthesis, and

alanine synthesis. As shown in Figure 8C, the functions of

CHMP7 are primarily enriched in pathways such as

P53 pathway feedback loops, tetrahydrofolate biosynthesis,

ascorbate degradation, and succinate to propionate

conversion. Similarly, the functions of RIPK1 are mainly

enriched in pathways such as purine metabolism, valine

biosynthesis, isoleucine biosynthesis, and salvage

pyrimidine deoxyribonucleotides, as shown in Figure 8D.

Analysis of immune cell infiltration levels
and TME

The immune cells and risk scores were correlated using

different calculation methods. The findings suggested a

correlation between the immune cells and low-risk

populations. The low-risk population, in particular, was

associated with the CD4+ T cells, immune score, and DCs

using the XCELL algorithm; CD4+ T cells and CD8+ T cells

using the TIMER algorithm; macrophages using the

QUANTISEQ algorithm; CD8+ T cells using the

MCPCOUNTER algorithm; B cells using the EPIC algorithm;

CD4+ T cells, B cells, and CD8+ T cells using the CIBERSORT-

ABS algorithm; and CD8+ T and B cells using the CIBERSORT

algorithm (Figure 9A). Moreover, the ssGSEA scores for immune

cells and immune-related functions revealed a difference in the

distribution patterns of Th cells, regulatory T cells, tumor-

infiltrating lymphocytes, follicular helper T cells, adipose-

derived cells, interdigitating dendritic cells, CD8+ T cells, and

B cells between the high- and low-risk groups. Furthermore, a

difference was observed in the immune functions (for the

antigen-presenting cells, T cells, and immune checkpoints)

associated with the two groups (Figures 9B,C). The TMEs

corresponding to the low- and high-risk groups were

analyzed, and the results indicated that the immune scores of

the high-risk patients were lower than those of the low-risk

patients (Figures 9D–F).

TABLE 1 Demographic characteristics of the patients.

Variable Total

Age 60.84 ± 11.85

Sex

Male 264

Female 96

Grade

G1 43

G2 229

G3 87

G4 1

cStage

Stage I 16

Stage II 60

Stage III 81

Stage IV 203

cT

T1 27

T2 85

T3 96

T4 152

cN

N0 183

N1 69

N2 103

N3 5

cM

M0 356

M1 4

pSatge

Stage I 20

Stage II 46

Stage III 64

Stage IV 230

pT

T1 31

T2 94

T3 82

T4 153

pN

N0 154

N1 56

N2 143

N3 7
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Correlation between BAK1, NLRP1,
CHMP7, and RIPK1 genes and
immunomodulators

Interaction network results revealed that BAK1, NLRP1,

CHMP7, and RIPK1 genes could interact with immune

factors, including TNF-α, suggesting their influence on the

immune microenvironment of the HNSCC tumor. We used

the TISIDB database to investigate the relationship between

the above genes and immunomodulators. As shown in

Figure 10A, in HNSCC, BAK1 has a positive correlation with

CD244, CD274, CTLA4, HLA-E, and ICOS, while having a

negative correlation with LGALS9; as shown in Figure 10B,

NLRP1 has a positive correlation with CD244, CD274,

CTLA4, HLA-E, and ICOS, while having a negative

correlation with LGALS9; as shown in Figure 10C, CHMP7

correlates positively with CD244, CTLA4, ICOS, and LGALS9,

and negatively with CD274 and HLA-E; similarly, as shown in

Figure 10D, RIPK1 correlates positively with CD244, CD274,

CTLA4, HLA-E, ICOS, and LGALS9.

Correlation of BAK1, NLRP1, CHMP7, and
RIPK1 genes’ expression and immune
infiltration

In HNSCC, the expression of BAK1, NLRP1, CHMP7, and

RIPK1 genes and numerous immunomodulatory markers

showed a certain relationship. We used the TIMER

database to analyze the relationship between different genes

and immune infiltration. We selected B cells, CD8+ T cells,

CD4+ T cells, macrophages, neutrophils, and DCs for immune

cell infiltration analysis. As shown in Figure 11A, in HNSCC,

BAK1 has a positive correlation with CD8+ T cells, CD4+

FIGURE 8
Functional enrichment analysis of BAK1, NLRP1, CHMP7, and RIPK1 in head and neck squamous cell carcinoma (HNSCC) from the LinkedOmics
database. (A) Functional enrichment analysis of BAK1 in HNSCC; (B) Functional enrichment analysis of NLRP1 in HNSCC; and (C) Functional
enrichment analysis of CHMP7 in HNSCC; and (D) Functional enrichment analysis of RIPK1 in HNSCC.
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FIGURE 9
Analysis of tumor microenvironment and of degrees mmune cell infiltration. (A) Determination of the relationship between immune cells and
risk scores using different calculation methods; (B–C) Immune cell and immune-related function scores were obtained using the single-sample
gene set enrichment analysis technique; and (D–F) The differences between the immune cell infiltration levels in the low- and high-risk groups.

Frontiers in Genetics frontiersin.org14

Chen et al. 10.3389/fgene.2022.981222

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://doi.org/10.3389/fgene.2022.981222


T cells, neutrophils, and DC infiltration while having a

negative correlation with B cells and macrophage cell

infiltration; as shown in Figures 11B–D, NLRP1, CHMP7,

and RIPK1 genes and immune cell infiltration all show

some positive correlation.

All the above genes can influence tumor development by

affecting immune infiltration. We used the TIMER database to

analyze the correlation between the level of immune cell infiltration

and gene copy number variation in HNSCC tumors. As shown in

Figure 12A, the levels of B cell, CD8+ T cell, CD4+ T cell,

macrophage, neutrophil, and DC infiltration decrease as the copy

number of the BAK1 gene increases. As shown in Figure 12B, the

levels of B cell, CD4+ T cell, and DC infiltration increase as the copy

number of the NLRP1 gene increases, whereas the levels of CD8+

T cell, neutrophil, and macrophage decrease, and the changes in

macrophage are not statistically significant. As shown in Figure 12C,

when the CHMP7 gene copy number is increased, B cell, CD8+

T cell, CD4+ T cell, and DC infiltration levels decrease; macrophages

and neutrophils do not show statistical differences. As shown in

Figure 12D, when the RIPK1 gene copy number is increased, B cell,

CD8+ T cell, CD4+ T cell, macrophage, neutrophil, and DC

infiltration levels decrease.

In summary, the BAK1, CHMP7, and RIPK1 genes can

reduce immune cell infiltration by activating

immunosuppressive markers, whereas NLRP1 can both reduce

immune infiltration by activating immunosuppressive markers

FIGURE 10
Correlation between BAK1, NLRP1, CHMP7, and RIPK1 genes and immunomodulators. (A) Correlation between BAK1 gene and CD244, CD274,
CTLA4, HLA-E, ICOS, and LGALS9 in HNSCC according to TISIDB database; (B)Correlation betweenNLRP1 gene and CD244, CD274, CTLA4, HLA-E,
ICOS, and LGALS9 in HNSCC according to TISIDB database; (C) Correlations between CHMP7 gene and CD244, CD274, CTLA4, HLA-E, ICOS, and
LGALS9 in HNSCC according to TISIDB database; and (D) Correlations between RIPK1 gene and CD244, CD274, CTLA4, HLA-E, ICOS, and
LGALS9 in HNSCC according to TISIDB database.
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and promote immune infiltration by activating immune

activation markers.

Discussion

HNSCC is a group of heterogeneous solid tumors originating

from upper respiratory tract epithelial cells. It tends to metastasize

and recur, increasing mortality, morbidity, and disability rates (Bray

et al., 2018). Effective clinical risk assessment and early-stage

diagnostic tools for HNSCC are scarce. Poor prognosis is

primarily associated with local invasion, drug resistance,

recurrence, and metastasis (Pulte and Brenner, 2010; Leemans

et al., 2011). Traditional clinicopathological indicators, such as

tumor size, vascular invasion, and TNM staging, cannot be used

to stratify patients’ risks or predict their prognosis (Cheng et al.,

2009). As a result, transcriptionomics and epigenetics should be used

for screening potential biomarkers that aid in the early detection of

the disease. The biomarkers have the potential for risk assessment,

treatment, andmonitoring of the prognosis of patients with HNSCC.

We obtained 52 PAGs by analyzing the NPC-related gene

expression profile obtained from the GEO database. Six PAG-

related lncRNAs were identified based on the correlation

coefficient (r) and p-value (≥0.4 and <0.001, respectively). The
single- and combined-indicator ROC curve analysis results

suggested that the six lncRNAs had good diagnostic values

and could be used as co-diagnostic biomarkers. These were

accurate predictors of NPC. Moreover, 42 genes with AUC

values of >0.5 were screened using the ROC analysis method.

Their association with MF, CC, and BP was analyzed using the

GO and KEGG enrichment analysis methods. Subsequently, the

42 genes were incorporated into the TCGA database, and the four

FIGURE 11
Correlation between BAK1, NLRP1, CHMP7, and RIPK1 genes’ expression and immune infiltration. (A) Correlation between BAK1 expression
levels and B cell, CD8+ T cell, CD4+ T cell, macrophage, neutrophil, dendritic cell (DC) infiltration; (B) Correlation between NLRP1 expression levels
and B cells, CD8+ T cells, CD4+ T cells, macrophages, neutrophils, and DC infiltration; (C) Correlation between CHMP7 expression levels and the
infiltration of B cells, CD8+ T cells, CD4+ T cells, macrophages, neutrophils, and DCs; and (D) Correlation between RIPK1 expression levels and
the infiltration of B cells, CD8+ T cells, CD4+ T cells, macrophages, neutrophils, and DCs.
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FIGURE 12
Correlation of BAK1, NLRP1, CHMP7, and RIPK1 gene copy number variation and immune infiltration. (A) Correlation between BAK1 gene copy
number variation and B cell, CD8+ T cell, CD4+ T cell, macrophage, neutrophil, dendritic cell (DC) infiltration; (B) Correlation between NLRP1 gene
copy number variation and B cell, CD8+ T cell, CD4+ T cell, macrophage, neutrophil, DC infiltration; (C) Correlation between CHMP7 gene copy
number variation and B cell, CD8+ T cell, CD4+ T cell, macrophage, neutrophil, andDC infiltration; and (D)Correlation between RIPK1 gene copy
number variation and B cell, CD8+ T cell, CD4+ T cell, macrophage, neutrophil, and DC infiltration. *p < 0.05, **p < 0.01, ***p < 0.001.
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genes (BAK1, NLRP1, CHMP7, and CYCS) associated with the

prognosis of HNSCC patients were screened using the survival

analysis method. The obtained genes were used as dependent

variables for curve fitting to select the best Cox proportional risk

regression model, which consisted of three genes (NLRP1,

CHMP7, and CYCS). It has previously been reported that the

genes incorporated into this model regulate tumor progression

and significantly influence the process associated with the onset

of oral squamous cell carcinoma, cutaneous squamous cell

carcinoma, melanoma, breast cancer, and lung cancer (Sand

et al., 2019; Xu et al., 2021).

NLRP1, a NOD-like receptor family protein, is widely

expressed in various cell types. It is associated with the

formation of inflammasomes. NLRP1 is linked to the

production of IL-1 β and IL-18 and pyroptosis and plays a

crucial role in developing innate immunity and generating

inflammation. Thus, it influences the processes involved in the

onset and progression of multiple diseases, including tumors,

autoimmune diseases, neurological diseases, and metabolic

diseases (Tupik et al., 2020). The downregulation of

NLRP1 expression promotes the progression of human

cutaneous squamous cell carcinoma (Sand et al., 2019).

NLRP1 is also linked to the progression of various

malignancies. It has also been reported that the regulation of

TME by NLRP1 affects the prognosis of patients with lung

adenocarcinoma (Shen et al., 2021). Moreover, elevated

NLRP1 expression levels promote breast cancer cell

proliferation, metastasis, and invasion. These processes are

mediated by the induction of the process of epithelial-

mesenchymal transition (Wei et al., 2017). The inflammasome

is activated, and apoptotic pathways are inhibited in these

conditions, resulting in the rapid progression of melanoma

(Ehrhart et al., 1975).

As a component of the endosomal sorting complex (ESCRT

III), CHMP7 significantly influences the processes of endosomal

sorting, nuclear envelope formation, and neurodevelopment

(Olmos et al., 2016; Sadoul et al., 2018). CHMP7 is also

associated with the pathogenesis of amyotrophic lateral

sclerosis. These conditions cause spinal cord damage, and

bulbar muscular atrophy is observed under these conditions

(Fairfield et al., 2019; Malik et al., 2019). A statistical

relationship was found between CHMP7 expression levels and

the clinical prognosis of cancer patients, and protein

phosphorylation and immune cell infiltration processes were

established (Guo et al., 2021).

CYCS is a central component of the mitochondrial electron

transport chain. It is primarily associated with energy production

in normal and tumor cells (Hüttemann et al., 2011). Mutations in

this gene cause autosomal dominant thrombocytopenia, and

apoptosis in oral squamous cell carcinoma cells is also

triggered under these conditions (Ong et al., 2017; Uchiyama

et al., 2018; Sabit et al., 2021).

To our knowledge, we are the first to report NPC-related

PAGs. HNSCC was retrieved to screen the genes associated

with the prognosis of HNSCC patients. A novel and robust

prognosis assessment model for HNSCC patients has been

developed. However, this study still has some limitations, and

the sample size is small. Due to data set restrictions, there is a

risk of racial bias in this study. In addition, bioinformatics

analysis does not provide comprehensive results and should

be supplemented with biological experiments. Further

experimental studies are needed to gain a comprehensive

understanding.

Conclusion

In this study, NPC and PAGs were investigated in relation to

nasopharyngeal carcinoma, and indicators related to the

prognosis of HNSCC patients were identified. PAGs were

used to develop and validate a prognostic model for NPC,

and the genes incorporated into the model were closely

related to the tumor microenvironment. Therefore, this study

suggests that prognosis-related PAGs of NPC also predict the

prognosis of HNSCC, which helps to improve our understanding

of the treatment of NPC and HNSCC.
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