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Abstract

Computational drug repositioning aims to identify potential applications of existing drugs for

the treatment of diseases for which they were not designed. This approach can considerably

accelerate the traditional drug discovery process by decreasing the required time and costs

of drug development. Tensor decomposition enables us to integrate multiple drug- and dis-

ease-related data to boost the performance of prediction. In this study, a nonnegative tensor

decomposition for drug repositioning, NTD-DR, is proposed. In order to capture the hidden

information in drug-target, drug-disease, and target-disease networks, NTD-DR uses these

pairwise associations to construct a three-dimensional tensor representing drug-target-dis-

ease triplet associations and integrates them with similarity information of drugs, targets,

and disease to make a prediction. We compare NTD-DR with recent state-of-the-art meth-

ods in terms of the area under the receiver operating characteristic (ROC) curve (AUC) and

the area under the precision and recall curve (AUPR) and find that our method outperforms

competing methods. Moreover, case studies with five diseases also confirm the reliability of

predictions made by NTD-DR. Our proposed method identifies more known associations

among the top 50 predictions than other methods. In addition, novel associations identified

by NTD-DR are validated by literature analyses.

Introduction

Developing a new drug is a costly process in terms of time, risk, and financial resources. For

one drug from an initial idea to a product in the market it requires 17–20 years and ~USD 2

billion [1]. Fortunately, complementary approaches can hasten the process of drug discovery.

Drug repositioning, wherein an existing approved drug is used to treat a disease other than the

one it is designed for, is an opportunity to decrease the relative expense of drug discovery.

Both experimental and computational methods can be used for drug repositioning. Experi-

mental drug repositioning includes screening drugs across a set of targets (i.e. proteins, nucleic

acids, etc. which interact with drugs) and diseases that requires facilities and procedures which

are expensive and tedious. On the other hand, computational approaches try to avoid these

limitations by predicting associations between existing drugs and diseases. The later methods

are promising because they are efficient in terms of time, expenses, and results.
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Computational drug repositioning methods can be classified into different categories

including machine learning, network-based, text mining, and signature matching methods.

Most machine learning methods solve the question of drug repositioning as a classification

task. Among the many classification algorithms available, support vector machines (SVMs)

[2, 3] and random forest [4] have been used for drug repositioning. The most widely used

methods for drug repositioning belong to the network-based category, which relies on

interaction network data. These methods include random walk [5, 6], matrix factorization

[7–11], and network inference [12–15]. Text mining approaches [16, 17] rely on biomedi-

cal data and entities, and the co-occurrence of similar/same keywords. Signature match-

ing-based methods for drug repositioning first identify the disease gene signature (drug

signature) based on the gene expression profile of the corresponding disease (drug). Then

the identified disease gene (drug) signature is connected with drugs (diseases) through the

drug-induced gene expression analysis. In this way, the association between drugs and dis-

eases can be identified [18–20].

Regardless of the category, computational methods use experimentally validated associa-

tions of drugs and diseases to identify new associations between drugs and diseases. Most of

these methods are based on the assumption that if drug C1 is associated with disease D1, and

drug C2 is similar to drug C1, disease D1 can be associated with drug C2. Li and Pan [12] used

similarity side-information and a hybrid neural network to develop a recommendation system

to identify existing and novel associations between drugs and diseases to be used for drug

repositioning. Luo et al. [21] developed a recommendation system for drug-disease association

identification called Drug Repositioning Recommendation System (DDRS). Their method

uses drug-disease, disease-condition, and drug-condition networks to determine whether a

drug can be used to treat a disease. Xuan et al. [8] proposed a nonnegative matrix factorization

method called DisDrugPred. They constructed similarity matrices for drugs and diseases

based on drug-disease associations. They then used these similarities to predict new associa-

tions between drugs and disease. He et al. [22] introduced a unique method called PIMD that

predicts drug therapeutics using multi-dimensional data. In their method, clusters of drugs

that can be used for the treatment of a particular disease are constructed based on multiple

drug similarities. Jin et al. [13] proposed an approach that integrates multiple heterogeneous

networks to predict association scores of drugs and diseases. Their method combines drug and

disease features retrieved from multiple drug networks and known drug-disease association

networks, respectively.

Despite the advantages of these methods, they usually do not consider drug-disease associa-

tions at the molecular level. Any association between drugs and diseases is facilitated by a hid-

den component or target (gene, protein, etc.) which is typically ignored in drug repositioning

methods. To integrate these hidden components in drug repositioning, a method is required

that can handle different types of data. A tensor, as an n-dimensional array, can store multiple

types of association information where each dimension represents one type of data. Tensor

decomposition has been used as an effective way to study tensors in various fields of bioinfor-

matics for novel association identification. Huang et al. [23] proposed a tensor decomposition

method named tensor decomposition with rational constraints (TDRC) to identify the multi-

ple types of associations between microRNAs and diseases. Luo et al. [24] developed a tensor

decomposition method to identify microRNA-disease associations. In their work, the associa-

tion information of microRNAs, genes, and diseases was used. To boost the performance of

their method, the authors used biological similarity information of microRNAs, genes, and

diseases as auxiliary information. Chen et al. [25] proposed a tensor decomposition approach

to identify drug-target-disease associations for drug discovery. Moreover, Wang et al. [26]

developed a tensor decomposition method to identify new drug-target-disease triplet
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associations. Chen et al. [27] described a tensor decomposition method named neural tensor

network (NeurTN) for personalized medicine. This method combines the concept of tensor

and deep neural networks to find the associations among drugs, targets, and diseases. Existing

methods suffer from two shortcomings: they consider only triplet associations of drugs, tar-

gets, and diseases which ignores valuable pairwise associations; or they use single similarity for

drugs, targets, and diseases which ignores the impact of various similarity information.

Inspired by this, we use a tensor to integrate triplet association information of drugs, targets,

and diseases. In contrast to previous works, we propose a nonnegative tensor decomposition

for drug repositioning (NTD-DR) which applies drug-target, drug-disease, and target-disease

pairwise associations and combines them to make predictions using multiple types of similari-

ties for drugs, targets, and diseases. Moreover, NTD-DR not only can identify the triplet drug-

target-disease associations, but also it can predict the pairwise associations between drugs, tar-

gets, and diseases.

NTD-DR is outlined as follows. First, we collect drug-disease, drug-target, and target-dis-

ease pairwise associations to construct a three-dimensional association tensor. Second, we for-

mulate an objective function to decompose the constructed tensor into three factor matrices

and integrate them with similarity information of drugs, targets, and diseases. Then we recon-

struct the tensor, based on the factor matrices. Finally, we retrieve the prediction score for trip-

let and pairwise associations from the reconstructed tensor. We evaluate the performance of

our method using cross-validation and separate data. Fig 1 schematically illustrates our

algorithm.

Fig 1. The workflow of NTD-DR. a) Known drug-target (ACT), drug-disease (ACD), and target-disease (ATD) pairwise associations are collected. b) Drug-

target-disease association tensor X is constructed based on ACT, ACD, and ATD. c) Multiple similarity measures for drugs, targets, and diseases are collected and

are fused to build a single similarity matrix for each of drugs, targets, and diseases. d) Drug-target-disease association tensor is factorized into three factor

matrices A, B, and C. e) Tensor Y is reconstructed using similarity matrices upon the convergence of the factor matrices (see Section “Optimization process”).

f) The pairwise or triplet association scores are computed.

https://doi.org/10.1371/journal.pone.0270852.g001
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Materials and methods

Data

Association information. We retrieve data from various public sources. To construct a

drug-target association matrix, we download data from DrugBank [28], UniProt [29], and

SuperTarget [30]. After removing redundant entries, the drug-target association matrix

(ACT2RI×J) consists of 13898 validated associations. Drug-disease associations are downloaded

from Online Mendelian Inheritance in Man (OMIM) [31] and the Comparative Toxicoge-

nomics Database (CTD) [32], and ACD2RI×K is constructed with 550319 known associations.

Moreover, 14730 associations between targets and diseases are retrieved from the Comparative

Toxicogenomics Database, OMIM, Uniprot, DisGeNET [33], and GAD [34] to construct

ATD2RJ×K.

After the associations between drugs, targets, and diseases are retrieved, we construct

the drug-target-disease tensor (X 2 RI�J�K
) with 114319 triplet associations. Not surpris-

ingly, our constructed tensor is very sparse (the ratio of known to unknown interactions is

1:119884). The sparsity of the drug-target-disease tensor can lead to the inability of our

association models to learn robust feature representations of drugs, targets, and diseases,

making them more vulnerable to the cold-start problem, which results in low generaliza-

tion performance of the models. To mitigate the sparsity of the tensor, in this study we fil-

ter out those drugs, targets, and diseases with less than five interactions. After filteration

the tensor includes I = 810 drugs, J = 302 targets and K = 542 diseases. This filtration step

results in a significant reduction in the sparsity to a ratio of known to unknown interac-

tions of 1:1708. In the final constructed tensor, we randomly divide the validated interac-

tions (known as positive samples) into three subsets: 90% for training and testing our

method (dataset P), 5% to set parameters (dataset S), and the remaining 5% as a separate

validation data (dataset I) for case studies. All subsets include randomly chosen negative

samples equal in number to the positive samples.

Similarity information. To boost the performance of prediction we employ different

types of similarities for drugs, targets, and diseases to construct multiple similarity matrices for

each category. For drugs, we construct five types of similarities, including 1) chemical struc-

ture-based and 2) ATC-based similarities using DrugBank data, 3) target-based and 4) gene

ontology (GO)-based similarities using UniProt data, and 5) pathway-based similarity using

Comparative Toxicogenomics Database data. For targets, we construct three types of similarity

matrices: 1) sequence-based similarity, which is computed using sequence structure informa-

tion of targets retrieved from DrugBank and UniProt; 2) protein-protein interaction (PPI) net-

work similarity of targets, which is calculated based on the data retrieved from InAct [35],

BioGrid [36], MINT [37], STRING [38], and HPRD [39]; and 3) gene ontology (GO) semantic

similarity of targets, which is computed using data from UniProt. For diseases, we construct

four types of similarity matrices, including 1) drug-disease association-based, 2) gene ontology

(GO)-based, 3) disease-gene association-based, and 4) PPI-based similarities. These last four

similarities are computed using data retrieved from DisGeNET and Comparative Toxicoge-

nomics Database. The construction of these similarity matrices is described in detail in our

previous work [40]. Finally, after multiple similarity matrices for drugs, targets, and diseases

are constructed, we combine the similarity matrices of each category (drugs, targets, and dis-

eases) via the Similarity Network Fusion (SNF) method described by Wang et al. [41] to con-

struct final fused similarity matrices for each category of drugs, targets, and diseases (SC, ST
and SD).
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Problem formulation

This study aims to identify new drug-target-disease, drug-target, drug-disease, and target-dis-

ease associations. The identification of these associations can be formulated as a tensor com-

pletion problem. Consider a third-order tensor X 2 RI�J�K
to describe known associations

among I drugs, J targets, and K diseases, where X ijk ¼ 1 if the association among drug i, target

j, and disease k is known, and 0 otherwise. Assume that the matrix (second-order tensor)

ACT2RI×J describes known associations among I drugs and J targets, where ACTij = 1 if the

association between drug i and target j is known and 0 otherwise. Similarly, the matrix

ACD2RI×K describes known associations among I drugs and K diseases, while the matrix

ATD2RJ×K describes known associations among J targets and K diseases. Furthermore, matri-

ces SC2RI×I, ST2RJ×J, and SD2RK×K describe the similarity of I drugs, J targets, and K diseases,

respectively. We use the pairwise associations to construct tensor X and after decomposition,

we use similarity information of drugs, targets and diseases to update three factor matrices and

reconstruct tensor Y. The rank of tensor Y is the minimum number of rank-1 tensors needed

to produce Y as their summation. Therefore, a third-order tensor Y 2 RI�J�K
of rank at most

R can be written as:

Y ¼
XR

r¼1

ar � br � cr ð1Þ

where ar2RI, br2RJ, cr2RK for r = 1,. . .,R. Elementwise, Eq (1) can be written as:

Yijk ¼
XR

r¼1

airbjrckr ð2Þ

for i = 1,. . ., I; j = 1,. . ., J; and k = 1,. . ., K.

The factor matrices refer to the combination of the column vectors from the rank-1 compo-

nents; i.e., A = [a1,. . .,aR] and likewise, for B and C. With this notation, the above third-order

tensor can be denoted by Y ¼ ½A;B;C�.

Optimization process

Now we consider estimating A, B, and C from data in a third-order tensor X with the con-

straints that the elements of A, B, and C are nonnegatives. Adopting a least square criterion,

we have the following optimization problem:

min
A;B;C

LTðA;B;CÞ ¼ min
A;B;C

a k X � Y k2
F

¼ min
A;B;C

a k X �
XR

r¼1

ar � br � cr k2
F

s:t: A � 0;B � 0;C � 0

ð3Þ

where α is a positive regularization coefficient to regulate the tensor decomposition, k Y k2
F is

the squared Frobenius norm of the tensor, and the sum of square error is the objective func-

tion computed as follows:

k Y k2

F¼
XI

i¼1

XJ

j¼1

XK

k¼1

Y2

ijk ð4Þ
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With the concept of the tensor matricization [42], the above objective functions are equiva-

lent to any one of the following functions:

LTðA;B;CÞ ¼ a k Xð1Þ � AðC
N

BÞT k2
F

LTðA;B;CÞ ¼ a k Xð2Þ � BðC
N

AÞT k2
F

LTðA;B;CÞ ¼ a k Xð3Þ � CðB
N

AÞT k2
F

ð5Þ

where X(n) is the mode-n matricization of tensor X , and is the Khatri-Rao product of two

matrices. Drug-target, drug-disease, and target-disease pairwise associations are taken into

consideration by the following optimization equation:

min
A;B;C

LAðA;B;CÞ ¼ min
A;B;C

flCT k ACT �
XR

r¼1

ar � br k2
F þlCD k ACD �

XR

r¼1

ar � cr k2
F þlTD k ATD �

XR

r¼1

br � cr k2
Fg

¼ min
A;B;C

flCT k ACT � ABT k2
F þlCD k ACD � ACT k2

F þlTD k ATD � BCT k2
Fg

s:t: A � 0;B � 0;C � 0

ð6Þ

where λCT, λCD, and λTD are positive regularization coefficients to regulate the importance of

their corresponding associations. The similarity of drugs, targets, and diseases are taken into

consideration by the following optimization equation:

min
A;B;C

LSðA;B;CÞ ¼ min
A;B;C

fgC

XI

i;j¼1

SCij k ai: � aj: k2
2
þgT

XJ

i;j¼1

STij k bi: � bj: k2
2
þgD

XK

i;j¼1

SDij k ci: � cj: k2
2
g

¼ min
A;B;C
fgCtrðATLCAÞ þ gTtrðBTLTBÞ þ gDtrðCTLDCÞg

s:t: A � 0;B � 0;C � 0

ð7Þ

where ai: is the i-th row of matrix A, tr(.) is the trace of a matrix, LC = DC−SC is the Laplacian

matrix of drugs, DC is the diagonal matrix whose i-th diagonal element is the summation of

the i-th column of the drug similarity matrix SC, and likewise for LT and LD. Variables γC, γT,

and γD are positive regularization coefficients to regulate the importance of their correspond-

ing similarities. Then the integrated optimization problem is as follows:

min
A;B;C

LðA;B;CÞ ¼ min
A;B;C

fLTðA;B;CÞ þ LSðA;B;CÞ þ LAðA;B;CÞg

s:t: A � 0;B � 0;C � 0
ð8Þ

The Karush–Kuhn–Tucker (KKT) conditions [43] for the above optimization problems are

similar to those in the work of Tian et al. [44] as follows:

A � 0;
@LðA;B;CÞ

@A
� 0;A ?

@LðA;B;CÞ
@A

¼ 0

B � 0;
@LðA;B;CÞ

@B
� 0;B ?

@LðA;B;CÞ
@B

¼ 0

C � 0;
@LðA;B;CÞ

@C
� 0;C ?

@LðA;B;CÞ
@C

¼ 0

ð9Þ
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Taking the derivatives of LðA;B;CÞ with respect to A yields:

@LðA;B;CÞ
@A

¼
@LTðA;B;CÞ

@A
þ
@LSðA;B;CÞ

@A
þ
@LAðA;B;CÞ

@A
¼ að� 2Xð1ÞðC

N
BÞ þ 2AðC

N
BÞTðC

N
BÞÞ þ 2gCLCA

þlCTð� 2ACTBþ 2AðBTBÞÞ þ lCDð� 2ACDC þ 2AðCTCÞÞ

¼ � 2ðaXð1ÞðC
N

BÞ þ gCSCAþ lCTACTBþ lCDACDCÞ

þ2AðaðCTCÞ ? ðBTBÞ þ lCTðBTBÞ þ lCDðCTCÞÞ þ 2gCDCA

ð10Þ

Similarly, the derivatives of LðA;B;CÞ with respect to B and C are as follows:

@LðA;B;CÞ
@B

¼ � 2 aXð2ÞðC
O

AÞ þ gTSTBþ lCTA
T
CTAþ lTDATDC

� �

þ2BðaðCTCÞ ? ðATAÞ þ lCTðATAÞ þ lTDðCTCÞÞ þ 2gTDTB

@LðA;B;CÞ
@C

¼ � 2 aXð3ÞðB
O

AÞ þ gDSDC þ lCDA
T
CDAþ lTDA

T
TDB

� �

þ2CðaðBTBÞ ? ðATAÞþlCDðATAÞ þ lTDðBTBÞÞ þ 2gDDDC

ð11Þ

Therefore, we can have the following updating rules:

A � A ?
aXð1ÞðC

N
BÞ þ gCSCAþ lCTACTBþ lCDACDC

AðaðCTCÞ ? ðBTBÞ þ lCTðBTBÞ þ lCDðCTCÞÞ þ gCDCA

� �

B � B ?
aXð2ÞðC

N
AÞ þ gTSTBþ lCTAT

CTAþ lTDATDC
BðaðCTCÞ ? ðATAÞ þ lCTðATAÞ þ lTDðCTCÞÞ þ gTDTB

� �

C � C ?
aXð3ÞðB

N
AÞ þ gDSDC þ lCDAT

CDAþ lTDA
T
TDB

CðaðBTBÞ ? ðATAÞ þ lCDðATAÞ þ lTDðBTBÞÞ þ gDDDC

� �

ð12Þ

where ? is the Hadamard product of two matrices and �

�

� �
is the element-wise division of two

matrices. When matrices A, B, and C converge, tensor association matrices A�CT (drug-target

association prediction matrix), A�CD (drug-disease association prediction matrix), and A�TD
(targe-disease association prediction matrix) can be constructed based on Eq (2). The aim of

this study is to identify the associations between drugs and diseases through the construction

of matrix A�CD, although our method can also be applied to identify the associations between

targets and drugs through A�CT and between targets and diseases through A�TD by appropriately

adjusting the parameters in the objective function (8).

Performance evaluation

In this study, 10-fold cross-validation (CV) is performed in two steps. First, dataset S is

used to set up parameters, then dataset P is used to evaluate the performance of the predic-

tion. In the association matrix where the rows (columns) include drugs (diseases), we use

experimentally verified associations as positive samples. In most studies, undiscovered

associations are used as negative samples. Because these associations can be potentially

associations that are not yet discovered, we use the method developed by Luo et al. [45] to

filter undiscovered associations. Then a number equal to the positive samples in datasets S

and P are chosen randomly from filtered undiscovered pairs to be negative samples. Both

positive and negative samples are randomly divided into 10 equal subsets. Nine subsets are

used in turn as training sets and the remaining subset as test set. CV is performed under

three scenarios including:
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CVpairwise: cross-validation on the pairs within the association matrices, which evaluates the

prediction of new pairs by the method.

CVcolumn-wise: cross-validation on the columns within the association matrices, which evalu-

ates the prediction of new column (disease) entries. The aim of this CV is to evaluate the per-

formance of our proposed method in detecting associations between existing drugs and

diseases that have not been previously treated with those drugs.

CVrow-wise: cross-validation on the rows within the association matrices, which aims to eval-

uate the prediction of new row (drug) entries. The aim of this CV is to evaluate the perfor-

mance of our proposed method in detecting associations between existing diseases and new

drugs or drugs that have not been previously used to treat the diseases.

As discussed before, tensor decomposition has the potential to identify novel associations

between drug-target-disease, drug-target, drug-disease, and target-disease. As the aim of this

study is to focus on the identification of drug and disease associations, we set λCD = 1 and γC =

γD = 1. Also, several parameters introduced to our objective functions in Eqs 3–7 are set so as

to boost the performance of prediction. Grid search is used to set and select the optimum

value for the other parameters. These parameters are as follows: R, the rank of the tensor is set

from {I
2
; J

2
; K

2
, I, J, K}; α, a positive regularization coefficient from {0.1, 0.3, 0.4, 0.7, 0.9}; λCT and

λTD from {10−1, 10−2, 10−3, 10−4}; γT from {10−1, 10−2, 10−3, 10−4, 10−5}.

To either set parameters or investigate the performance of the proposed method, the area

under the receiver operating characteristic (ROC) curve (AUC) and the area under the preci-

sion and recall curve (AUPR) are used as evaluation metrics.

Implementation

The NTD-DR algorithm is implemented in Python 3.6 programming language using standard

modules numpy [46], pandas [47], matplotlib [48], scipy [49], networkx [50], scikit-learn [51].

Comparator methods are also programmed in Python. The source codes and data are available

at https://github.com/AliJam82/NTD-DR.

Case study with a separate dataset

To further investigate the reliability of our method, a separate dataset I as described in Sec-

tion “Data” is used for case studies. We select a case study disease in dataset I and set its

interaction profiles equal to 0. After prediction, we retrieve the association scores of vali-

dated associations originally in dataset I. An optimal model should be able to predict

greater association scores for validated associations. Since the algorithm is completely

blind to this dataset, the accuracy of the predictions made by the method is a reliable mea-

sure of the performance of prediction.

Results

In this section, a comprehensive investigation of the performance of the proposed method

is discussed. First, we discuss parameter tuning for our method to obtain an optimal com-

bination of parameters based on the CV on dataset S. Then, we discuss the superiority of

the proposed method on recovering missing drug-disease associations by comparing with

baseline methods in three CV scenarios using dataset P in terms of AUC and AUPR. More-

over, we present case studies based on the results of an evaluation with a separate dataset,

dataset I.
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Parameter optimization

There are several parameters in our proposed method. We analyze each in turn with Scenario

CVpairwise yielding the results shown in Fig 2. While Fig 2 only shows AUC, the performance

measured AUPR is similar.

Impact of R. The results (Fig 2A) show that the values for AUC and AUPR generally

increase with an increase of R. However, the AUC and AUPR start to decrease when R exceeds

a certain value. The greater values of R might lead to an expensive computation and only result

in insignificant performance improvement. The best performance is achieved when we set R =

J (the number of targets). Thus, we adopt R = J to be the optimal rank of our tensor, which not

only increases the performance of prediction but also reduces the cost of computing resources.

Impact of α. We fix R = J as the optimal rank of our tensor and vary α. As confirmed by

the results (Fig 2B), the performance of our method initially improves with increasing α and

then declines when it is greater than 0.7. The optimal performance achieved when α = 0.7.

Fig 2. The effect of different values of four parameters on the performance of NTD-DR. The panels show the AUC changes with the increase of parameter a) R b)/, c)

λ (the same value is set to both λCT and λTD), and d) γT, respectively.

https://doi.org/10.1371/journal.pone.0270852.g002
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Impact of λCT and λTD. We fix α = 0.7 and R = J and vary λCT and λTD. We find that (Fig

2C) the performance of our method shows an increasing trend with the decrease of λCT and

λTD, but it starts to trend down when λCT and λTD decrease beyond 10−3. The best performance

is obtained when λCT = λTD = 10−3.

Impact of γT. We fix other parameters to the above values and vary γT. The results show

(Fig 2D) that both AUC and AUPR values improve with lower values of γT. However, when

the value of γT is less than 10−4, the performance decreases. The best performance is obtained

when γT is set to 10−4.

Comparison with other methods

To investigate the performance of our proposed method, we compare its performance in

terms of AUC and AUPR with that of existing methods including DRIMC [52], EMUDRA

[53], LRSSL [54], and a tensor decomposition method [55] that we refer to as TDDR in this

paper. Each method is configured with its defined settings and best parameter values as

reported in its original study. Each method is then run with the same data (dataset P) described

in Section “Data” using the three cross-validation scenarios. Based on the result and as can be

seen in Figs 3–5, our proposed method outperforms all competing methods. Under the CVpair-

wise scenario, NTD-DR obtains the best performance (AUC = 0.9338, AUPR = 0.9043) com-

pared to that of other competing methods: DRIMC (AUC = 0.8516, AUPR = 0.8207),

EMUDRA (AUC = 0.8619, AUPR = 0.8574), LRSSL (AUC = 0.8492, AUPR = 0.8329), and

TDDR (AUC = 0.8962, AUPR = 0.8630) (Fig 3). TDDR is another tensor decomposition

method and it achieves the second-best results in terms of AUC and AUPR.

The results under the CVcolumn-wise scenario are presented in Fig 4. To summarize,

NTD-DR achieves the best performance (AUC = 0.9139, AUPR = 0.9076), outperforming

other competing methods: DRIMC (AUC = 0.8398, AUPR = 0.8148), EMUDRA

(AUC = 0.8549, AUPR = 0.8328), LRSSL (AUC = 0.8329, AUPR = 0.8003), and TDDR

(AUC = 0.8762, AUPR = 0.8513). Under this scenario, TDDR, an alternative tensor decompo-

sition method, shows the second-best performance in terms of AUC and AUPR.

Fig 3. ROC and precision-recall curves of NTD-DR and the existing methods for Scenario CVpairwise using dataset P.

https://doi.org/10.1371/journal.pone.0270852.g003
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Fig 5 shows the AUC and AUPR values for all competing methods under the the CVrow-

wise. As shown, NTD-DR again obtains the best values for AUC = 0.9273 and AUPR = 0.8978

compared to the other methods: DRIMC (AUC = 0.8327, AUPR = 0.8269), EMUDRA

(AUC = 0.8614, AUPR = 0.8548), LRSSL (AUC = 0.8219, AUPR = 0.8074), and TDDR

(AUC = 0.8869, AUPR = 0.8653). Similar to the other scenarios, TDDR obtains the second-

best results in terms of AUC and AUPR.

Case study

To further demonstrate the reliability of NTD-DR in discovering novel drug-disease associa-

tions, the case studies on breast ductal carcinoma, prostate cancer, pancreatic neoplasms,

Fig 5. ROC and precision-recall curves of NTD-DR and the existing methods for scenario CVrow-wise using dataset P.

https://doi.org/10.1371/journal.pone.0270852.g005

Fig 4. ROC and precision-recall curves of NTD-DR and the existing methods for Scenario CVcolumn-wise using dataset P.

https://doi.org/10.1371/journal.pone.0270852.g004
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colorectal neoplasms, and small cell lung carcinoma within dataset I (as described in Section

“Case study with an independent dataset”) are performed using the optimal parameter combi-

nation determined in Section “Performance evaluation” (i.e., R = J, α = 0.7, λCT = λTD = 10−3,

and γT = 10−4). The top 50 predictions according to the predicted association scores, which are

drug candidates for the corresponding disease, are shown in S1–S5 Tables. In this study, we

assume that if drug C interacts with target T and target T is associated with disease D, then

drug C can be associated with the disease D (predicted association) and can be used for the

treatment of disease D. We check whether the predictions were in the original dataset I. Those

that are not, are deemed novel, hypothesized assocations. We then perform a literature search

for evidence to support the novel associations.

For breast ductal carcinoma, NTD-DR predicts 46 experimentally verified associations

within its top 50 while the other competing methods predict fewer verified associations.

TDDR is the second-best prediction method predicting 37 known associations out of its top 50

predictions. NTD-DR predicts four novel associations with lumiracoxib, etoricoxib, thimero-

sal, and cisplatin in its top 50 predictions. There is evidence in the literature that the first three

drugs can be associated with breast carcinoma via a mutual protein.

Lumiracoxib and etoricoxib. The interaction of prostaglandin G/H synthase 2 with lumi-

racoxib and Etoricoxib were reported by Esser et al. [56] and Capone et al. [57], respectively.

Also, the role of prostaglandin G/H synthase 2 in breast ductal carcinoma was reported by

Saindane et al. [58]. Therefore, it can be hypothesized that lumiracoxib and etoricoxib are

associated with breast ductal carcinoma, as predicted by NTD-DR, through prostaglandin G/

H synthase 2.

Thimerosal. Stephenson et al. [59] found an interaction between thimerosal and superox-

ide dismutase. On the other hand, Kim et al. [60] reported the role of superoxide dismutase in

breast ductal carcinoma. We can make a hypothesis that thimerosal is associated with breast

ductal carcinoma, as is predicted with NTD-DR, via superoxide dismutase.

Cisplatin. There is no evidence in the literature for the association of cisplatin and breast

ductal carcinoma. However, it could be that an as yet undiscovered intermediate protein con-

nects cisplatin to this disease and experiments could be performed to find this link.

For prostate cancer, our method predicts 48 experimentally verified associations out of its

top 50 predictions. It also identifies two novel associations involving docetaxel and paclitaxel

that are supported by the literature.

Docetaxel and paclitaxel. Chaudhary et al. [61] reported the role of apoptosis regulator

Bcl-2 in prostate cancer. On the other hand, interactions of apoptosis regulator Bcl-2 with doc-

etaxel and paclitaxel were discovered by Marshall et al. [62] and Gan et al. [63], respectively.

Therefore, it can be concluded that NTD-DR is justified in predicting associations of prostate

cancer with docetaxel and paclitaxel. The second-best method for prostate cancer, TDDR, pre-

dicts 41 known associations within its top 50 predictions.

For pancreatic neoplasms, NTD-DR predicts 45 experimentally verified associations and

five novel associations with stiripentol, pazopanib, ponatinib, sunitinib, and etoricoxib out of

its top 50 predictions. All of these novel associations are supported with literature as follows.

Pazopanib, sunitinib, and ponatinib. Dineen et al. [64] discovered the association

between pancreatic and vascular endothelial growth factor receptor 2. Moreover, Sonpavde

et al. [65], Mendel et al. [66], and O’Hare et al. [67] reported interactions between vascular

endothelial growth factor receptor 2 and pazopanib, sunitinib, and ponatinib, respectively.

NTD-DR is able to identify the association between pancreatic neoplasm and these drugs

through the intermediate target.

Stiripentol. Fisher et al. [68] reported an association between stiripentol and gamma-ami-

nobutyric acid receptor subunit delta. On the other hand, the role of gamma-aminobutyric
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acid receptor subunit delta in pancreatic neoplasm was reported by Takehara et al. [69]. These

findings support a hypothesis that stiripentol and pancreatic carcinoma is associated through

an intermediate protein, gamma-aminobutyric acid receptor subunit delta.

Etoricoxib. The association between etoricoxib and prostaglandin G/H synthase 2 is

reported by Capone et al. [57]. Moreover, Eibl et al. [70] found the role of prostaglandin G/H

synthase 2 and pancreatic neoplasm. Based on these findings, we can hypothesize that etori-

coxib is associated with pancreatic neoplasm via a mutual target, prostaglandin G/H synthase

2.

TDDR and EMUDRA, as the second-best methods, predict 36 known associations within

their top 50 predictions.

For colorectal neoplasms, NTD-DR predicts 50 experimentally verified associations within

its top 50 predictions while the second-best method, TDDR predicts 42 known associations

within its top 50 predictions. Finally, for small cell lung carcinoma, our method predicts 47

experimentally verified associations and three novel associations with gefitinib, pazopanib,

and afatinib within its top 50 predictions that are supported by literature as follows.

Gefitinib and afatinib. Sharma et al. [71] reported the association between epidermal

growth factor receptor and small cell lung carcinoma. On the other hand, the interactions of

the epidermal growth factor receptor with gefitinib and afatinib were reported by Ciardiello

et al. [72] and Masood et al. [73], respectively.

Pazopanib. The interaction between pazopanib and endothelial growth factor receptor 2

and the association between endothelial growth factor receptor 2 and small cell lung carci-

noma were reported by Ciardiello et al. [72] and Bonnesen et al. [74], respectively.

These findings confirm that our method can predict the associations between small cell

lung carcinoma and above-mentioned drugs through corresponding targets. TDDR, as the

second-best method, predicts 40 known associations within its top 50 predictions.

The results of these case studies confirm the biological and molecular hypotheses underly-

ing NTD-DR since it can predict the most experimentally verified associations compared to

the other methods (Table 1). Moreover, our method can uncover novel associations between

drugs and disease implicit in the literature and which are facilitated by a mutual, experimen-

tally verified target.

Discussion

In this study, we have proposed NTD-DR, a nonnegative tensor decomposition method, to

discover drug-disease associations and enable drug repositioning using triplet associations of

drugs, targets, and disease. First, NTD-DR uses pairwise drug-target, drug-disease, and target-

disease associations to construct a order-three tensor. Then, to boost the performance of pre-

diction, NTD-DR fuses multiple similarities for drugs, targets, and diseases to construct single

similarity measures for drugs, targets, and diseases and later it integrates the similarities of

Table 1. The number of known associations in the top 50 predictions made by different methods for different diseases.

NTD-DR DRIMC EMUDRA LRSSL TDDR

Breast carcinoma 46 32 35 30 37�

Prostate cancer 48 36 38 37 41�

Pancreatic neoplasms 45 33 36� 31 36�

Colorectal neoplasms 50 37 39 36 42�

Small cell lung carcinoma 47 34 37 34 40�

The best method in the prediction of the most known associations is in boldface, and the second-best method is indicated with �.

https://doi.org/10.1371/journal.pone.0270852.t001
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drugs, targets, and diseases with the decomposed tensor to make a prediction. We showed that

NTD-DR outperforms existing, alternative state-of-the-art methods. Furthermore, to identify

the reliability of NTD-DR, case study analyses were performed. The results confirm that our

method can predict a large number of experimentally verified associations in its top 50 predic-

tions. NTD-DR also predicted novel associations. We performed a literature search for evi-

dence to support the novel predictions and found that most are linked together via a mutual

target. Although this study focused on the identification of drug and disease associations, the

proposed method can investigate associations between drugs and targets, or between targets

and diseases by re-setting the value of parameters γ and λ in the model.

Wet-lab drug-disease and drug-target association identifications are time-consuming.

NTD-DR can shorten the duration of these experiments. For instance, NTD-DR can reduce

the search space and narrow down the set of drug-target and drug-disease trials to experimen-

tally investigate for drug repositioning. This advantage of NTD-DR makes it a potential filter-

ing approach not only for drug-target interactions, but also for drug-disease associations. We

envision various research directions leading from this study. First, to increase the reliability of

prediction in terms of biological validation, applying different types of pairwise associations

can be used to construct the initial tensor. Second, the tensor decomposition requires huge

computational effort for making a prediction, especially when the dimension of the tensor is

large. In such a case, a paralleled tensor decomposition would increase the speed of computa-

tion. Finally, to make better use of predictions in health care and disease treatment, the predic-

tions need to be validated biologically, experimentally, and pathologically.

In summary, NTD-DR could be effectively used as a reliable method to predict potential

associations between drugs and diseases and provide a complementary tool to be used in drug

discovery.
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