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A wide spectrum of volatile organic compounds (VOCs) are released from algae
in aquatic ecosystems. Environmental factors such as light, temperature, nutrition
conditions and abiotic stresses affect their emission. These VOCs can enhance the
resistance to abiotic stresses, transfer information between algae, play allelopathic roles,
and protect against predators. For homogeneous algae, the VOCs released from algal
cells under stress conditions transfer stress information to other cells, and induce the
acceptors to make a preparation for the upcoming stresses. For heterogeneous algae
and aquatic macrophytes, the VOCs show allelopathic effects on the heterogeneous
neighbors, which benefit to the emitter growth and competing for nutrients. In
cyanobacterial VOCs, some compounds such as limonene, eucalyptol, β-cyclocitral,
α-ionone, β-ionone and geranylacetone have been detected as the allelopathic agents.
In addition, VOCs can protect the emitters from predation by predators. It can be
speculated that the emission of VOCs is critical for algae coping with the complicated
and changeable aquatic ecosystems.
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INTRODUCTION

In terrestrial ecosystems, more than 30,000 volatile organic compounds (VOCs) are released
from higher plant leaves, flowers and underground parts through secondary metabolism pathway
(Peñuelas and Llusià, 2004). These compounds are involved in a broad array of ecological functions
and are beneficial to the emitters, such as inhibiting seed germination and seedling growth of other
plants (Zuo et al., 2011; Zhang et al., 2012), defensing against herbivores and pathogens (Rapisarda
et al., 2012; Bee Park et al., 2013; Zhang et al., 2014), and communicating with other plants (Weir
et al., 2004; Baldwin et al., 2006).

In aquatic ecosystems, algae can also release a wide spectrum of VOCs, including terpenoids,
furans, sulfo compounds, alkanes, alkenes, alcohols, aldehydes, ketones, and esters (Walsh et al.,
1998; Zuo et al., 2012a,b; Xu et al., 2017), which are affected by environmental factors, such
as light, temperature, nutrition conditions and abiotic stresses (Bonsang et al., 2010; Zuo et al.,
2012a,b; Xu et al., 2017; Ye et al., 2018). Geosmin and 2-methylisoborneol (Figure 1) released from
cyanobacteria are two well-known terpenoids (Suurnäkki et al., 2015), as they can cause earthy-
musty odor of lake waters (Jüttner, 1995; Huang et al., 2007). Meanwhile, the compounds from the
degradation of carotenoids, including β-cyclocitral, β-ionone and geranylacetone (Figure 1), also
contribute to the water odor (Jüttner, 1979, 1984). It is not clear whether these odor compounds
influence human health, but they dramatically impact water supplies by decreasing esthetic quality
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and increasing the costs of water treatment. In addition to causing
water odor, algal VOCs serve important functions in enhancing
emitters’ tolerance, communicating with homogeneous algae,
playing allelopathic roles in heterogeneous algae and aquatic
macrophytes, and protecting against predators, which may be the
true reason for algae releasing VOCs, benefiting to the survival
and propagation of emitters. In this review, the emission and roles
of algal VOCs are summarized.

ENVIRONMENTAL FACTORS AFFECTING
VOC EMISSION FROM ALGAE

Light
Isoprene (Figure 1) is composed of 5 carbon atoms and
called hemiterpene, the minimum terpenoids. Cyanobacteria,
diatoms and green algae can release it with dependence
on light condition (Shaw et al., 2003), e.g., the isoprene
emission rate from Prochlorococcus increased with raising light
intensity (Bonsang et al., 2010). When Thalassiosira weissflogii,
T. pseudonana, Pleurochrysis carterae, and Rhodomonas salina
were kept in different light intensity for 4 h, isoprene was
the maximum released compound with some monoterpenes
which are composed of the isoprene C5 unit, and high
light intensity showed promoting effect on isoprene emission
(Meskhidze et al., 2015). Isoprene and monoterpenes are
synthesized in plastids via methylerythritol-4-phosphate pathway
(MEP) (Figure 2; Rohmer et al., 1993), and are released
from algae after direct synthesis, due to no storage structure.
Light promotes their emission, as the availability of energetic
cofactors and C intermediates increases the availability of
dimethylallyl pyrophosphate (DMAPP), immediate precursor
of isoprene and monoterpenes in MEP (Rasulov et al., 2009;
Niinemets and Sun, 2015).

FIGURE 1 | Chemical structures of some main terpenoids in algal VOCs.

In marine algae, halogenated hydrocarbons are common
compounds in their VOCs. Solieria chordalis released 9
halogenated hydrocarbons, such as CH3I, CH3CH2I, CH2ClI,
CH2Br2, CHBrCl2, CHBr2Cl, CH2BrI, CHBr3 and CH2I2, of
which emission rate increased in the light but declined in the
dark (Bondu et al., 2008). During a day, the highest production
rate of halogenated hydrocarbons from Hypnea spinella and
Falkenbergia hillebrandii was observed at mid-day (Ekdahl et al.,
1998). The formation of halogenated hydrocarbons depends on
the haloperoxidases that catalyze H2O2 oxidizing halide ions to
form halogenated compounds (Ohsawa et al., 2001; Winter and
Moore, 2009). H2O2 can be directly produced and indirectly
transformed from other reactive oxygen species (ROS) in cells
(Milne et al., 2009). High light intensity leads to massive ROS
production and then promotes the formation and emission of
halogenated hydrocarbons (Hughes and Sun, 2016).

Temperature
When Pleurosira laevis and Enteromorpha flexuosa were
kept at 17◦C and 23◦C, higher temperature promoted
the emission of CHCl3 from P. laevis and CHBr3 from
E. flexuosa (Abrahamsson et al., 2003). Heat shock increased
the emission of C6 green leaf volatiles (GLVs) and carotenoid
degradants from Lobaria pulmonaria, a symbiont of fungus,
cyanobacterium Nostoc and green alga Dyctiochloropsis (García-
Plazaola et al., 2017). GLVs mainly include C6 alcohols
and aldehydes, which are formed via oxidative degradation
of fatty acids (Peñuelas and Llusià, 2004). β-Cyclocitral,
α-ionone (Figure 1), β-ionone and geranylacetone are
typical carotenoid degradants in cyanobacteria (Jüttner,
1979, 1984; Ikawa et al., 2001). High temperature can induce
the production of massive ROS in algae, which benefits to the
oxidation of halide ions, fatty acids and carotenoids, leading
to the formation of halogenated hydrocarbons, GLVs and
carotenoid degradants.

Nutrition Conditions
In water bodies, the multiple nutrition conditions, mainly
phosphorus (P) and nitrogen (N) forms and levels, can influence
the emission of VOCs from algae. Polyphosphate (PolyP) and
orthophosphate widely exist in water bodies (Nishikawa et al.,
2006). When two typical algal species of cyanobacterial bloom
Microcystis flos-aquae and M. aeruginosa were kept in the
medium with K2HPO4, sodium pyrophosphate and sodium
hexametaphosphate as the sole P source, they released different
amount and components of VOCs, mainly including furans, sulfo
compounds, terpenoids, benzenoids, hydrocarbons, aldehydes
and esters. Meanwhile, non-P condition showed the maximum
promoting effect on the VOC emission (Ye et al., 2018; Zuo
et al., 2018b). In the field works, a negative relationship between
geosmin amount and P concentration in reservoirs has also
been found (Dzialowski et al., 2009). In aquatic ecosystem, P is
considered as a limiting nutrient for algal massive growth, due to
its easy precipitation as insoluble salts (Qian et al., 2011; Tekile
et al., 2015). Under that condition, algae released maximum
VOCs, which were beneficial to the emitters competing nutrients
by inhibiting other algae (Yang et al., 2018; Zuo et al., 2018b).
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FIGURE 2 | Pathway of terpene synthesis.

When M. flos-aquae and M. aeruginosa were kept in
different N forms such as NaNO3, NaNO2, NH4Cl, urea,
serine, lysine, and arginine, they released different amount and
components of VOCs, and the emission amount increased
with reducing N concentration, with the maximum emission
under non-N condition (Xu et al., 2017; Zuo et al., 2018a).
Similarly increased emission of alcohols and β-cyclocitral was
also detected when M. aeruginosa cells exhausted nitrate N
nutrient after 35 days (Hasegawa et al., 2012). Under non-
N condition, M. aeruginosa cells significantly up-regulated the
expression of 4 genes which encoded pyruvate kinase, malic
enzyme, phosphotransacetylase and aspartate aminotransferase,
respectively (Zuo et al., 2018a). Pyruvate and acetyl-CoA are
immediate precursors of isoprene and monoterpenes in MEP
and sesquiterpenes in mevalonate pathway (MVA) (Figure 2),
respectively. Pyruvate kinase catalyzes the formation of pyruvate
by transferring a phosphate group from phosphoenolpyruvate to
adenosine diphosphate (ADP) (Zhang et al., 2017). Malic enzyme
and phosphotransacetylase are involved in the formation of
acetyl-CoA (Kyrtopoulos and Satchell, 1972; Ikaran et al., 2015).
Benzenoids and phenylpropanoids are considered as the second
largest class of VOCs after terpenoids (Dudareva et al., 2013;
Sun et al., 2016), which are mainly derived from phenylalanine.
Aspartate aminotransferase functioned in the synthesis of

phenylalanine in the last step of shikimate pathway (Maeda
et al., 2011). Non-N condition induced the expression of genes
that were involved in the formation of terpenoid and benzenoid
precursors and promoted VOC emission (Zuo et al., 2018a).

Abiotic Stresses
Chlamydomonas reinhardtii is a model material for algal
research, and released plenty of VOCs, including alkanes,
alkenes, terpenoids, alcohols, aldehydes, ketones, and esters.
Their emission amount and components increased when the
cells were stressed by acetic acid, NaCl and Na2CO3 (Zuo et al.,
2012a,b, 2015). Meanwhile, GLVs were induced to release under
acetic acid and NaCl stresses, but not under Na2CO3 stress
(Zuo et al., 2012a,b). Similarly, NaNO3 stress promoted the
emission of terpenoids, sulfocompounds, benzenoids, aldehydes
and esters from M. flos-aquae and M. aeruginosa cells (Gan et al.,
2015). Under salt stress, Solieria chordalis and Gymnogongrus
antarcticus increased the emission of halogenated hydrocarbons,
which may result from the increased ROS under the stress
(Laturnus et al., 2000; Bondu et al., 2008).

Although aquatic environment is relative stable compared
to terrestrial environment, algae are easily influenced by
environmental factors, due to their difficult movement and fast
migration by water flow. They adjust VOC synthesis and increase
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the emission under abiotic stresses, such as high light, warmer
temperature, nutrient deficiency, increased salinity and acidity.
These VOCs perform important ecological functions (Watson,
2003; Fink, 2007; Zuo et al., 2012a, 2018b), which should be
survival strategies for the emitters and their population.

ECOLOGICAL FUNCTIONS OF
ALGAL VOCS

Lowering Oxidative Stress in Algae
Abiotic stresses induce the production of massive ROS in algal
cells, indicating that algae not only suffer the direct abiotic
stresses but also the indirect oxidative stress. Although ROS
are important signaling molecule, their massive accumulation
can damage the photosynthetic apparatus, cell membranes,
proteins and DNA (Affenzeller et al., 2009; Tartoura and Youssef,
2011; Zuo et al., 2014; He et al., 2015), and even induce
programmed cell death (PCD) (Affenzeller et al., 2009; Chen
et al., 2019). In higher plants, their VOCs especially isoprene
and monoterpenes have been recognized as the antioxidant
agents to scavenge ROS and protect cell membrane and
photosynthetic apparatus under several abiotic stresses, such as
high temperature, drought, salinity, ozone, etc. (Vickers et al.,
2009; Schaub et al., 2010; Velikova et al., 2011; Zuo et al., 2017).
Isoprene and monoterpenes were released from several algae
under abiotic stresses (Zuo et al., 2012a,b; Meskhidze et al., 2015;
Xu et al., 2017), indicating that they might play antioxidative roles
under stresses. pH 5.0 acetic acid induced C. reinhardtii cells to
undergo PCD, and O2− and H2O2 rapidly accumulated to high
levels in the cells at the beginning of the PCD and reduced during
the process. During the ROS decrease, antioxidant enzymes did
not contribute too much in scavenging ROS, as their activities
declined quickly and even disappeared. However, VOCs may
play important roles in scavenging or adjusting ROS levels, due
to the dramatic increase of oxygenated compounds, including
ketones, esters and aldehydes (Zuo et al., 2015). In algae, the
massively produced ROS may be used to oxidize halide ions,
fatty acids and carotenoids to lower oxidative damage, with
emission of halogenated hydrocarbons, GLVs and carotenoid
degradants (Jüttner, 1984; Ohsawa et al., 2001; Peñuelas and
Llusià, 2004; Winter and Moore, 2009). It can be speculated that
the production and emission of VOCs are beneficial to algal cells
resisting ROS under abiotic stresses.

Inducing Defense in
Homogeneous Algae
When healthy C. reinhardtii cells were exposed to the VOCs
from C. reinhardtii undergoing PCD, their normal growth
declined but the activities of antioxidant enzymes increased
(Zuo et al., 2012a). Similar effects were also found when
healthy C. reinhardtii cells were exposed to the VOCs from
the cells under NaCl and NaCO3 stresses (Zuo et al., 2012b).
C. reinhardtii released NO and ethylene during PCD induced
by wasp venom, and the two volatile molecules were considered
as the information compounds that transferred information for

other healthy C. reinhardtii cells, as the healthy cells treated
with the solution that underwent PCD were not induced PCD
by wasp venom (Yordanova et al., 2010). These results indicate
that stress-induced VOCs are information agents that transfer
message to other homogeneous cells and induce them to make
a preparation for the upcoming stresses. This message transfer
has been well studied between higher plants, which is called
“cross-talk trees” and may derive from the primitive organism
algae (Weir et al., 2004; Baldwin et al., 2006; Kessler et al.,
2006). The information transfer mechanism serves the same
function in algae and plants, which can avoid them from the
sustaining defense consumption and be beneficial to the growth
and propagation of the population.

Allelopathic Effects on Other
Heterogeneous Algae and Aquatic
Macrophytes
In eutrophicated water, cyanobacteria massively grow
and dominate the water bodies with reduction and even
disappearance of other algae and aquatic macrophytes. It is well
known that algal toxins from cyanobacteria play an important
allelopathic role during the process (Suikkanen et al., 2004; Fink,
2007; Li and Li, 2012). Similarly, the VOCs from cyanobacteria
have also been found as the allelopathic agents for other algae
(Watson, 2003). When Chlorella vulgaris was exposed to the
VOCs from M. flos-aquae under non-N condition, remarkable
decreases were detected in the cell growth, photosynthetic
pigment content and photosynthetic abilities (Xu et al., 2017).
Similar results were also found in C. reinhardtii cells in exposure
of the VOCs from M. flos-aquae and M. aeruginosa under
non-P condition (Yang et al., 2018; Zuo et al., 2018b). For
aquatic macrophytes, there are very limited reports about their
reduction which results from cyanobacterial VOC allelopathy.
When Lactuca sativa seeds were exposed to dimethyl disulfide,
their germination was inhibited markedly (Gómez-Tenorio
et al., 2015). In addition, C. vulgaris VOCs showed inhibitory
effects on the α-amylase activity and coleoptile growth of barley
(Abdel-Baky et al., 2002), indicating that algal VOCs might
also have allelopathic effects on macrophytes. In eutrophicated
water, the massive growth of cyanobacteria will compete with
nutrients with other algae and aquatic macrophytes, which easily
result in the lack of nutrients, especially N and P. This lack can
induce abundant VOC emissions from cyanobacteria to keep
the emitters’ competitive advantage for nutrients by inhibiting
other competitors.

Among the abundance of VOCs from Microcystis, limonene
and eucalyptol (Figure 1) showed inhibitory effects on C. vulgaris
and C. reinhardtii cell growth by inducing photosynthetic
pigment degradation and declining photosynthetic abilities
(Zhao et al., 2016; Zhou et al., 2016). β-Cyclocitral, α-ionone,
β-ionone and geranylacetone were also the main compounds
in Microcystis VOCs, which showed inhibitory effects on
C. pyrenoidosa cell growth (Ikawa et al., 2001). Meanwhile,
β-cyclocitral of 0.1–0.5 mg·ml−1 can cause cell rupture
of Nitzschia palea (Chang et al., 2011). Moreover, high
concentration β-cyclocitral even impact the growth of
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Microcystis, by causing lysis (Ozaki et al., 2008). These results
suggest that these compounds may be the main allelopathic
agents in cyanobacterial VOCs, but the agents with high
concentration may be detrimental to the emitters.

Protecting Algae Against Predators
Algae are the primary producers in aquatic ecosystems, which
are preyed by predators as food. VOCs play important roles in
protecting algae from predation (Fink, 2007). When diatom cells
were damaged, they released polyunsaturated eicosapentaenoic
acid which was toxic for crustacean herbivores (Jüttner, 2001).
Meanwhile, diatoms can release polyunsaturated aldehydes
to repel herbivorous zooplankton (Jüttner, 2005) and inhibit
sea urchin laying eggs (Miralto et al., 1999). After damage,
Thalassiosira rotula released 2,4-decadienal and 2,4,7-decatrienal
which were converted from free fatty acids by lipoxygenases to
defense (Pohnert, 2002). Compared to Dictyopteris membranacea
with releasing C11 sulfocompounds, Ampithoe longimana tended
to feed Dictyopteris hoytii without releasing the compounds
(Schnitzler et al., 2001). In the treatments with β-cyclocitral
and 2,4,7-decatrienal, the swimming velocity of Daphnia magna
increased significantly (Watson et al., 2007; Jüttner et al., 2010),
indicating that the two compounds can protect algal cells by
repelling the predators. Meanwhile, polyunsaturated fatty acids
showed inhibitory effects on D. magna laying eggs (Martin-
Creuzburg and von Elert, 2009). Although sterols produced from
algae were not detected in the VOCs, they impacted the growth
and reproduction of Daphnia (Martin-Creuzburg and von Elert,
2004; Martin-Creuzburg et al., 2014) and sexual development
of sea scallop (Wang and Croll, 2004) due to their roles as
hormones, indicating these compounds should also be protective
agents. These protective mechanisms are also reserved in higher
plants to repel insects or impact their development with more
compounds (Rapisarda et al., 2012; Bee Park et al., 2013; Zhang
et al., 2014), which are crucial to algae and plants protecting
themselves against predators.

PROSPECTION

In aquatic ecosystems, algae release an abundance of VOCs
to increase their tolerance to abiotic stresses, transfer
stress information to homogeneous algae to induce defense,
play allelopathic roles on heterogeneous algae and aquatic
macrophytes for competing nutrients, or protect against
predators. The functions of VOCs in algae are very similar
to that in higher plants. However, the studies about algal
VOCs, especially their roles, are still in the primary stage. For
emitters, how do they release the VOCs to response different
environmental conditions? For acceptors, it is important for them
to identify and sense the signaling molecule and make a correct
response further. Algal VOCs are a blend of compounds. Which
are the exact information agents among them? What is the exact
information for each agent? These questions should be answered
in future studies to uncover the VOC communication by using
molecular biology and technology. Undoubtedly, the emission
of VOCs from algae is critical and beneficial to the survival and
reproduction of emitters and their population in response to the
complicated and changeable aquatic ecosystems.
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