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Deletion of Gpr27 in vivo reduces 
insulin mRnA but does not result in 
diabetes
Deeksha G. chopra1, nicholas Yiv1, thomas G. Hennings1,2, Yaohuan Zhang3 & Gregory M. Ku  1,4*

Gpr27 is a highly conserved, orphan G protein coupled receptor (GpcR) previously implicated in 
pancreatic beta cell insulin transcription and glucose-stimulated insulin secretion in vitro. Here, we 
characterize a whole-body mouse knockout of Gpr27. Gpr27 knockout mice were born at expected 
Mendelian ratios and exhibited no gross abnormalities. insulin and Pdx1 mRnA in Gpr27 knockout 
islets were reduced by 30%, but this did not translate to a reduction in islet insulin content or beta cell 
mass. Gpr27 knockout mice exhibited slightly worsened glucose tolerance with lower plasma insulin 
levels while maintaining similar insulin tolerance. Unexpectedly, Gpr27 deletion reduced expression of 
Eif4e3, a neighboring gene, likely by deleting transcription start sites on the anti-sense strand of the 
Gpr27 coding exon. Our data confirm that loss of Gpr27 reduces insulin mRnA in vivo but has only minor 
effects on glucose tolerance.

Pancreatic beta-cells play a central role in regulating blood glucose homeostasis by secreting precise amounts of 
insulin in response to blood glucose concentrations. Beta-cell death or dysfunction contributes to the pathogen-
esis of both type 1 and type 2 diabetes mellitus. Since current diabetes therapies are often insufficient to manage 
hyperglycemia, novel strategies are needed. Therapies to improve beta cell function and survival are an attractive 
approach to generate new therapies for diabetes.

GPCRs have a proven track record of being viable drug targets. Thirty-four percent of currently approved 
therapies target 103 different GPCRs1. In diabetes, the blockbuster GLP1R agonists2 and the dipeptidyl peptidase 
IV inhibitors3 are prominent examples of successful drugs targeting a beta cell GPCR. Nonetheless, many GPCRs 
remain orphan receptors and are poorly characterized; these could be future diabetes drug targets4.

We previously identified the highly conserved GPCR Gpr27 (also known as SREB1, or super conserved recep-
tor in brain 1) as a positive regulator of both insulin transcription and insulin secretion during a loss of function 
screen conducted in the MIN6 pancreatic beta cell line5. Gpr27 is predominantly expressed in the brain, pituitary, 
and the pancreatic beta cell5 (GTEx Portal). While this previous work indicates that Gpr27 may represent a new 
therapeutic target for diabetes, Gpr27 remains uncharacterized in vivo.

To explore the role of Gpr27 in glucose homeostasis in vivo, we studied a whole body Gpr27 knockout mouse. 
Islets from Gpr27 knockout mice had lower mRNA expression of insulin mRNA but unchanged insulin protein. 
Gpr27 knockout mice had reduced body mass, had modest worsening of glucose intolerance, and had decreased 
plasma insulin levels. This work adds to our understanding of the role of Gpr27 in regulating glucose homeostasis 
in vivo.

Results
Gpr27 knockout mice were generated by the Texas A&M Institute for Genomic Medicine (TIGM) by replacing 
the Gpr27 coding exon with an a beta galactosidase-neomycin fusion protein and a 3-phosphoglyerate kinase 
promoter driving puromycin resistance cassette in embryonic stem cells (Fig. 1A and Methods). Crosses of hete-
rozygous Gpr27 mice revealed all 3 genotypes at the expected Mendelian ratios (89 wild type, 154 heterozygous, 
77 knockouts at 3 weeks of age, chi-squared p value = 0.509) and displayed no gross abnormalities.

Gpr27 mRNA was undetectable in islets isolated from Gpr27 knockout mice (Fig. 1B). Gpr27 mRNA was also 
undetectable in the cerebral cortex of Gpr27 knockout mice (Fig. 1C). As we initially identified Gpr27 as a positive 
regulator of insulin transcription, we measured mature insulin mRNA by quantitative PCR (Fig. 1D). Confirming 
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our in vitro data5, we found that insulin mRNA was reduced by ~30% in Gpr27 knockout islets. Levels of Pdx1 
were also reduced by ~30% in Gpr27 knockout mice while Glis3, Pax6, and Hnf4a were not changed (Fig. 1D).

At 12 weeks of age, Gpr27 mice were 10% lighter than their wild type littermates (Fig. 2A). Despite their lower 
average weight, we found that Gpr27 knockout animals had slightly impaired glucose tolerance compared to 
their wild type littermates (two-way mixed ANOVA, time*genotype p = 0.048) that just passed our significance 
threshold of 0.05 (Fig. 2B). Area under the curve (AUC) analysis of blood glucose measurements confirmed this 
impaired glucose tolerance in Gpr27 knockout mice (p = 0.049) (Fig. 2C). Insulin tolerance testing was not signif-
icantly different between wild type and knockout animals (Fig. 2D,E). Based on our prior studies of Gpr27 in beta 
cell lines, we predicted Gpr27 knockout mice might have reduced insulin secretion. Indeed, plasma insulin levels 
were reduced in the knockout animals (two-way mixed ANOVA, time*genotype p = 0.03) (Fig. 2F), and this was 
due to a significant reduction in the plasma insulin measured 15 minutes after glucose challenge (p = 0.011). Islet 
morphology from Gpr27 knockout mice was largely normal as determined by immunofluorescence staining for 
insulin and glucagon (Fig. 3A). Beta cell mass and the distribution of islet sizes were unchanged. (Fig. 3B–D).

Islets isolated from Gpr27 mice did not display a detectable decrease in fractional insulin secretion in response 
to glucose (Fig. 4A) or potassium chloride stimulation (Fig. 4B). Despite the fact that insulin mRNA was reduced, 
there was also no detectable change in amount of insulin protein when normalized to islet number or to total 
protein concentration (Fig. 4C,D).

To confirm impaired glucose tolerance, we challenged the mice with increased insulin resistance by plac-
ing an independent cohort of Gpr27 knockout mice and wild type littermate controls on a high fat diet from 3 
weeks to 12 weeks of age. After high fat feeding, the body weights of Gpr27 and wild type mice were not different 
(Fig. 5A). The glucose tolerance and the glucose AUC were again statistically significantly changed in the Gpr27 
knockout mice (Fig. 5B,C). Insulin sensitivity exhibited a trend towards being improved in the knockout ani-
mals that did not reach our statistical significance threshold, further implying an underlying an insulin secretory 
defect (Fig. 5D,E). Plasma insulin levels were significantly lower in the Gpr27 knockout mice (2-way ANOVA for 
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Figure 1. A global Gpr27 knockout mouse has reduced islet insulin and Pdx1 mRNA. (A) The Gpr27 locus 
contains a single exon (blue). The top panel shows polyA RNA-seq reads from sorted primary mouse beta cells16 
The targeting vector (bottom) replaces the single coding exon of Gpr27 with an internal ribosomal entry site, 
beta-galactosidase (lacZ)-neomycin (neo) resistance cassette and polyadenylation signal (pA). This is followed 
by a 3-phosphoglycerate kinase promoter puromycin resistance cassette (pgk-puro-pA). (B) Gpr27 mRNA 
measured by RT-qPCR from isolated islets of 9 to 17-week old Gpr27 knockout animals or their wild type 
littermates. n = 9 wt, 11 ko. (C) Gpr27 mRNA measured by RT-qPCR from cerebral cortex, n = 3 wt, 3 ko. (D) 
As in 1B but for Ins1/2, Glis3, Hnf4a, Pax6 and Pdx1 mRNA. For Ins1/2, Pax6, and Hnf4a, n = 6 wt, 8 ko. For 
Glis3 n = 9 wt, 10 ko. For Pdx1, n = 10 wt, 11 ko. Error bars indicate SEM. p values were calculated by Student’s 
t-test and corrected for multiple testing by the Benjamini-Hochberg method (part D).

https://doi.org/10.1038/s41598-020-62358-4


3Scientific RepoRtS |         (2020) 10:5629  | https://doi.org/10.1038/s41598-020-62358-4

www.nature.com/scientificreportswww.nature.com/scientificreports/

genotype p = 0.04) (Fig. 5F). This effect came from both the fasting and 15-minute time points as the p value for 
interaction (time*genotype) was not significant and the post-hoc test between genotypes at 0 and 15 minutes did 
not reach the significance threshold (p = 0.1 for each).

Given the mild phenotype of the Gpr27 knockout mice, we measured the expression of the two other Gpr27 
family members, Gpr85 (SREB2) and Gpr173 (SREB3). Expression of Gpr85 in islets was unchanged in the Gpr27 
knockout mice (Fig. 6A) while Gpr173 was not reliably detected above background in either genotype (not 
shown). We also considered the possibility that the deletion of the Gpr27 coding exon could have affected neigh-
boring gene expression. While the Prok2 (the nearest telomeric gene) is not expressed in mouse islets, the nearest 
centromeric gene, Eif4e3 is expressed. Surprisingly, mRNA levels of Eif4e3 were reduced in Gpr27 knockout islets 
(Fig. 6B) but not in Gpr27 knockout cerebral cortex (Fig. 6C). To attempt to explain this, we examined mRNA-seq 
data from wild type primary mouse beta cells and observed splicing events between the antisense strand of the 
Gpr27 exon and the Eif4e3 gene (Fig. 6D). We observed similar splice junctions in 2 human RefSeq EIF4E3 tran-
scripts (NM_173359 and NM_001134649), each beginning with an exon located on the anti-sense strand of the 
GPR27 coding exon. Taken together, these data suggest that the deletion of the Gpr27 exon has the unintended 
consequence of removing the first exon of a subset of Eif4e3 transcripts. A less likely possibility would be that 
Gpr27 mRNA expression is required for Eif4e3 transcription. To test this, we knocked down Gpr27 mRNA using 
an shRNA in MIN6 cells (Fig. 6E). We found that Gpr27 knockdown did not reduce Eif4e3 mRNA (Fig. 6F), sug-
gesting that the reduction of Eif4e3 in Gpr27 knockout islets is likely due to the deletion of the Gpr27 exon itself.

Finally, we examined data from the International Mouse Phenotyping Consortium on Eif4e3 knockout mice 
to ask if downregulation of Eif4e3 could partially explain the modestly worsened glucose tolerance of Gpr27 
knockout animals. Eif4e3 knockout mice had a trend to lower plasma glucose that did not meet their signifi-
cance threshold (28.38 mmol/L vs 25.17 mmol/L in males, 25.05 mmol/L vs 17.95 mmol/L in females, combined 
p-value = 0.007)6 and an unchanged glucose tolerance (Fig. 6G). On the other hand, the Eif4e3 knockout male 
mice had lower body weights (39.8 grams vs 34.0 grams, p = 0.000928 in males)6, suggesting that Eif4e3 downreg-
ulation might explain lower body weights in the Gpr27 knockout mice.
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Figure 2. Gpr27 knockout mice have modestly impaired glucose tolerance and plasma insulin levels but normal 
insulin sensitivity on a chow diet. (A) Body weight at 12 weeks of age. (B) Intraperitoneal glucose tolerance test 
at 12 weeks of age. For time, F(2.612,211.599), p < 0.001; for time*genotype F(2.612, 3.167), p = 0.041. (C) Area 
under the curve for B. (D) Insulin tolerance test at 12 weeks of age. For time, F(2.139,53.5666), p < 0.001; for 
time*genotype F(2.139, 0.402), p = 0.686. (E) Area under the curve for D. (F) Plasma insulin at 12 weeks of age. 
For time, F(1,122.958), p < 0.001. For time*genotype, F(1, 5.730), p = 0.03. For B, E and D, Mauchly’s test of 
sphericity was violated so these were Greenhouse-Geisser corrected. Error bars show SEM. *p < 0.05. n = 8 wt, 
9 ko.
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Discussion
Herein we provide a description of the in vivo consequences of Gpr27 deletion. We found that Gpr27 loss reduces 
insulin mRNA in vivo, confirming our previous findings in vitro in MIN6 cells5. This reduced insulin transcript 
may be caused by a reduction in mRNA levels of Pdx1 as we found in MIN6 cells after knockdown of Gpr27. 
However, we found only a non-significant trend towards reduction in levels of Hnf4a and Glis3 in Gpr27 knockout 
islets in contrast to the clear reductions in these genes that we found in Gpr27 knockdown MIN6. One possible 
reason for this difference is that our experiments in cultured cells silenced Gpr27 for only 72 hours5 while the 
Gpr27 knockout beta cells have been without the gene for months and may have compensated for the loss of 
Gpr27. Alternatively, this could be due to differences between cultured beta cells and primary beta cells.

We were initially surprised to find that mRNA transcripts of Eif4e3, a gene 25 kb away from Gpr27, were 
reduced in islets but not cerebral cortex of Gpr27 knockout animals. We believe that the most likely reason for 
this is that unannotated Eif4e3 transcriptional start sites are located on the antisense strand of the Gpr27 cod-
ing exon. Although the mouse Refseq annotation does not describe such transcripts, we find evidence of them 
in mRNA-seq data from mouse beta cells. Confirming this, we find very similar overlapping GPR27/EIF4E3 
transcripts are present in the human Refseq annotation. We speculate that these alternative transcriptional start 
sites  of Eif4e3 may be more specific to the islet in mouse versus human, possibly explaining why Eif4e3 levels are 
unchanged in the brain of Gpr27 knockout mice and why the mouse Refseq annotation lacks these transcripts (as 
islet expression data may not have been included). Our observations suggest that future attempts to manipulate 
the Gpr27 exon (e.g. by a Cre-lox strategy or CRISPR) must be done with caution since they may also affect Eif4e3. 
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Figure 3. Gpr27 knockout mice have normal beta cell mass and islet size. (A) Normal islet morphology in 
Gpr27 knockout islets. Sections were stained for insulin and glucagon and DNA. Representative of 2 mice per 
genotype. (B) Representative pancreas sections from wild type and Gpr27 knockout animals stained for insulin 
(dark brown). (C) Beta cell mass at 20–23 weeks of age, n = 4 wt, 4 ko. (D) Histogram of islet size, n = 4 wt, 4, 
ko. Error bars show SEM. p-value by Student’s t-test.
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Notably, the alternative transcription start sites change only the 5′ untranslated region of Eif4e3, suggesting that 
the primary effect would be on the Eif4e3 expression level and not on the protein sequence.

We cannot completely rule of the possibility that the phenotype of our Gpr27 knockout mice is due to local 
downregulation of Eif4e3 by the knockout allele. However, we do not believe this is likely since silencing (by RNA 
interference) of Gpr27 does not affect Eif4e3 transcription but does reduce insulin and Pdx1 mRNA5 and Eif4e3 
knockout mice have unchanged glucose tolerance.

While we did observe worsened glucose tolerance in the Gpr27 knockout mice on a chow diet, the p-values 
were close to our predetermined statistical threshold and the magnitude of the phenotype was quite mild and 
likely biologically inconsequential. To minimize the chance of a type 1 error, we confirmed worsened glucose 
tolerance on an independent cohort of mice fed a high fat diet. In both cases, worsened glucose tolerance in com-
bination with reduced plasma insulin after glucose challenge and unchanged insulin tolerance suggest the Gpr27 
global knockout mice have an insulin secretory defect. However, we did not observe a defect in insulin secretion 
in ex vivo islets from Gpr27 knockout mice. We speculate that one possibility for the normal ex vivo GSIS could 
be the lack of a hypothetical Gpr27 ligand ex vivo. Alternatively, the defect in GSIS in Gpr27 deficient islets could 
be below our limit of detection, especially given the modest effect on glucose tolerance. Finally, given Gpr27’s 
expression in the brain, we cannot rule out a primary brain effect of Gpr27 loss that then causes reduced GSIS in 
the periphery.
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Figure 4. Ex vivo GSIS of Gpr27 knockout islets is normal. (A) Ex vivo GSIS of male 9 to 17-week old Gpr27 
wild type and Gpr27 knockout islets in response to 2.8 mM and 16.7 mM glucose. n = 5 wt, 6 ko mice. (B) Ex 
vivo GSIS of male 9 to 17-week old Gpr27 wild type and Gpr27 knockout islets in response to 2.8 mM and 
2.8 mM glucose and 40 mM KCl. n = 5 wt, 6 ko mice. (C) Total islet insulin from 25 islets of each genotype. n = 5 
wt, 6 ko. (D) As in 4 C except normalized to total protein content. Error bars indicate standard error.
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Gpr27 remains an orphan GPCR. One possible explanation for the phenotype in Gpr27 knockout mice is 
that there are as of yet unidentified endogenous ligands that stimulate Gpr27, and loss of Gpr27 blocks these 
signals. Alternatively, Gpr27 may simply have basal activity that is required for insulin production and insulin 
secretion7. Several groups have now described small molecules that may activate Gpr27. Through a chemical 
screen, Dupuis and Hanson identified two small molecules that can trigger Gpr27 association with β arrestin-2 
in 293T cells8. Plasmalogens, a form of glycerophospholipid, may also signal through Gpr27, although direct 
binding of plasmalogens to Gpr27 has not been demonstrated9. Additionally, two inverse agonists of Gpr27 have 
been described10. The Gpr27 knockout mouse will be a useful resource for testing the specificity of these putative 
ligands.

The G-protein coupling of Gpr27 has been controversial. While our initial study showed that Gpr27 
over-expression in 293T cells increased IP1 suggesting Gαq coupling, this finding was not reproduced by Dupuis 
and Hanson who found no evidence of Gαq, Gαs, or Gαi coupling8. On the other hand, Martin and Aronstam 
found evidence of constitutive Gαi coupling in 293T cells7. Thus, it is not clear how Gpr27 signals even in these 
heterologous over-expression systems. However, impaired insulin secretion in Gpr27 knockout mice implies 
that Gpr27 might normally signal to enhance insulin secretion, which would implicate either Gαs or Gαq11. 
Additional studies are needed to further interrogate the signaling mechanism and pathway of Gpr27.

In summary, we describe a whole-body knockout mouse for Gpr27 and show reduced insulin mRNA but only 
modest effects on glucose homeostasis and an unexpected effect on Eif4e3 gene expression.
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Figure 5. Gpr27 knockout mice are modestly hyperglycemic on a high fat diet with unchanged insulin 
sensitivity. (A) Body weight at 12 weeks after HFD. (B) IPGTT. For time, F(2.612, 211.599) p < 0.001. 
time*genotype F(2.612,3.167) p = 0.041. n = 9 wt mice, 12 ko mice. (C) Area under the curve for IPGTT. 
(D) Insulin tolerance test. n = 7 wt mice, 9 ko mice. For time, F(2.366,77.525), p < 0.001. For time*genotype 
F(2.366, 1.985), p = 0.147. (E) AUC for insulin tolerance test. SEM is shown. (F) Plasma insulin concentrations 
as in 2 F; Two way ANOVA: time, F(1, 9.252), p = 0.006, for genotype F(1,4.371), p = 0.04. For time*genotype 
F(1,0.465), p = 0.5. n = 7 ko and 4 wt. For B and F, Mauchly’s test of sphericity was violated so these were 
Greenhouse-Geisser corrected. Error bars show SEM.
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Methods
Animals. 129SvEvBrd embryonic stem cells were transfected with a targeting vector containing 5′ and 3′ 
homology arms to the Gpr27 locus where the entire coding sequence of Gpr27 was replaced with an IRES-lacZ-
neomycin and a bovine growth hormone polyadenylation signal followed by the 3-phosphoglycerate kinase pro-
moter driving a puromycin resistance gene and another bovine growth hormone polyadenylation signal. Cas9 
was not used. A clone containing proper integration by homologous recombinaton was confirmed by PCR and 
southern blot (Supplemental Fig. 1). This clone was injected into blastocysts12,13 and germ line transmission was 
achieved. We obtained heterozygous mice from the Texas A&M Institute for Genomic Medicine and bred the 
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Figure 6. Gpr27 knockout islets have reduced Eif4e3 mRNA. (A) As in Fig. 1B but for Gpr85 mRNA. (B) As in 
6A except for Eif4e3 mRNA. (C) As in Fig. 1C except for Eif4e3 mRNA. (D) mRNA-seq coverage and junctions 
from sorted primary mouse beta cells showing splicing between the Gpr27 coding exon and the Eif4e3 gene. 
Data plotted from16 using17. (E) Human Refseq EIF4E3 transcripts showing two that contain overlap with the 
GPR27 coding exon. Note the similar splicing structure to 6D. (F) MIN6 cells were infected with the indicated 
adenoviruses. Expression of Gpr27 was measured by RT-qPCR. (G) As in E, but Eif4e3 was measured. For F and 
G, n = 4. p values were determined by Student’s t-test. (H) IPGTT of 13-week old Eif4e3 knockout mice versus 
control mice. n = 8 male knockout mice vs 320 control mice. Error bars indicate standard error. Data plotted 
from IMPC6.
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mice to C57B6J for >5 generations in our mouse facility. The mouse line is currently available from Taconic 
(https://www.taconic.com/knockout-mouse/gpr27-targeted). The sequence of the targeting vector and the final 
genomic sequence of the targeted allele are in Supplemental Data.

Mice were group-housed in a colony maintained with a standard 12 h light/dark cycle and given food and 
water ad libitum. Experiments were conducted according to the Guide for the Care and Use of Laboratory 
Animals, as adopted by the National Institutes of Health, and with approval of the UCSF Institutional Animal 
Care Use Committee (IACUC). Genotyping for the mutant allele was performed with the following primers: pur
oLR = GAACCAGCTGATTACCCTGTTATCCCTAC and Gpr27-R = CGCAAAGGTAATGCCACTTGAGG. 
Genotyping for the wild type allele was performed with the following primers: Gpr27-F = CTGAAAGGCATTGG
TTTGTGAAGC and Gpr27-R = CGCAAAGGTAATGCCACTTGAGG. Male mice age 9–15 weeks were used for 
all experiments unless otherwise specified in figure legends. For high fat diet, mice were placed on Research Diets 
D12492 (5.21 Kcal/g, 20% protein, 20% carbohydrates, 60% fat) from 3 weeks until 12 weeks of age. For all other 
experiments, animals were fed PicoLab Mouse Diet 20 (3.75 Kcal/g, 23.2% protein, 55.2% carbohydrates, 21.6% 
fat). Intraperitoneal glucose tolerance test, insulin tolerance test, and plasma insulin collection were performed 
as previously described14. Briefly, mice were fasted individually for 16 hours prior to 2 g/kg glucose injection or 
0.1 mU/kg insulin. Glucose (Freestyle Lite, Abbott) and insulin (mouse insulin ELISA, Mercodia) were measured 
from blood or plasma taken from the tail.

islet Rt-qpcR. Pancreatic islets were isolated as previously described15 and cultured overnight in RPMI 
with 10% fetal bovine serum, 1% penicillin/streptomycin, 25 mM HEPES. Total RNA was extracted by Trizol 
(ThermoFisher) or Direct-zol RNA MiniPrep Kit (Zymo 11–330), treated with DNase I (Turbo DNase, 
Ambion), and reverse transcribed with Superscript III (ThermoFisher). Gene expression was calculated utiliz-
ing the delta delta CT method relative to Gusb. Probes utilized were: Ins1/25, Gpr275, Glis3 (Mm00443081_m1, 
ThermoFisher), Hnf4a (Mm01247712_m1, ThermoFisher), Pax6 (Mm00615386_m1, ThermoFisher), Pdx1 
(Mm00435565_m1, ThermoFisher), Eif4e3 (Mm01182452_m1, ThermoFisher), Gpr85 (Mm00460767_s1, 
ThermoFisher), Gpr173 (Mm02620389_s1, ThermoFisher), Gusb5.

Gpr27 knockdown. Control or Gpr27 shRNA adenovirus5 were used to infect MIN6 cells at an MOI of 50, 
cultured for 3 days and analyzed for Gpr27 and Eif4e3 expression as above.

Ex vivo glucose stimulated insulin secretion (GSiS). Islets were rested for 24 hours after isolation RPMI 
(Gibco) with HEPES, penicillin, streptomycin, and glutamine supplementation. For static GSIS, 15–20 islets were 
hand-picked and equilibrated in Krebs-Ringer Bicarbonate HEPES buffer (KRBH; 137 mM NaCl, 4.7 mM KCl, 
1.2 mM KH2PO4, 1.2 mM MgSO4, 2.5 mM CaCl2, 25 mM NaHCO3, 20 mM HEPES) containing 2.8 mM glucose 
for 1 hour at 37 °C. Equilibration buffer was then removed and islets were sequentially stimulated with KRBH 
containing glucose and compounds as indicated in figure panels. Islets were lysed in RIPA buffer for determina-
tion of total islet insulin content. Islet lysate protein content was determined using the Pierce 660 Protein Assay 
with Ionic Detergent Compatibility Reagent (ThermoFisher).

Immunofluorescence imaging. Pancreata were fixed in Z-FIX (Anatech) and paraffin embedded. Five µm 
sections were deparaffinized and subjected to antigen retrieval using Citrate unmasking solution (Vector H3300). 
Primary antibodies used: guinea-pig anti-insulin (1:250, Dako A0564), rabbit anti-glucagon (1:250, Immunostar 
20076). Secondary antibodies: anti-guinea pig Alexa Fluor 488 (1:500, ThermoFisher A11073), anti-rabbit Alexa 
Fluor 555 (1:500, ThermoFisher A31572) Images were captured with a Zeiss Apotome widefield microscope.

Beta cell mass and distribution of islet size. Pancreatic sections as above were taken at approximately 
every 100 microns through the whole pancreas, fixed and cut as done for the immunofluorescence except only 
the guinea-pig anti-insulin antibody was used for the primary antibody at 1:1000. The ABC Kit (Elite EK-6100) 
and DAB Chromogen System (Dako) were used to develop. A Keyence BZ-X710 at 2X magnification was used to 
capture images. Beta cell area was measured with photoshop for each section and % beta cell area was measured. 
Beta cell mass was calculated by the product of % beta cell area * pancreas wet weight.

Statistical analysis. For IPGTT and plasma insulin, a mixed two-way ANOVA with repeated measures 
was implemented by SPSS (IBM). For multiple testing of individual time points, we used Benjamini-Hochberg 
post-hoc testing. For AUC and body weight, we used a two-tailed Student’s t-test.

Data availability
All data generated or analyzed during this study are included in this published article.
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