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ABSTRACT
Breast cancer is the most common form of cancer among women globally, and chemoresistance is 
a major challenge to disease treatment that is associated with a poor prognosis. This study was 
formulated to identify a reliable prognostic biosignature capable of predicting the survival of patients 
with chemoresistant breast cancer (CRBC) and evaluating the associated tumor immune microenviron-
ment. Through a series of protein-protein interaction and weighted correlation network analyses, genes 
that were significantly associated with breast cancer chemoresistance were identified. Moreover, uni-
variate Cox regression and lasso-penalized Cox regression analyses were employed to generate 
a prognostic model, and the prognostic utility of this model was then assessed using time-dependent 
receiver operating characteristic (ROC) and Kaplan-Meier survival curves. Finally, The CIBERSORT and 
ESTIMATE algorithms were additionally leveraged to assess relationships between the tumor immune 
microenvironment and patient prognostic signatures. Overall, a multigenic prognostic biosignature 
capable of predicting CRBC patient risk was successfully developed based on bioinformatics analysis 
and in vitro experiments. This biosignature was able to stratify CRBC patients into high- and low-risk 
subgroups. ROC curves also revealed that this biosignature achieved high diagnostic efficiency, and 
multivariate regression analyses indicated that this risk signature was an independent risk factor linked to 
CRBC patient outcomes. In addition, this signature was associated with the infiltration of the tumor 
microenvironment by multiple immune cell types. In conclusion, the chemoresistance-associated prog-
nostic gene signature developed herein was able to effectively evaluate the prognosis of CRBC patients 
and to reflect the overall composition of the tumor immune microenvironment.
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Introduction

Breast cancer is the most prevalent form of malig-
nancy among women and the leading cause of female 
cancer-related mortality in the world [1]. Adjuvant 
treatments for breast cancer primarily consist of che-
motherapy regimens composed of taxanes and 
anthracyclines [2], but the acquisition of chemoresis-
tance and eventual disease recurrence or relapse are 
common, resulting in a poor patient prognosis [2–4]. 
Treatment options are currently unable to overcome 
such chemoresistance in most cases, and differentiat-
ing between low- and high-risk patients based upon 
traditional clinicopathological risk factors is often 
ineffective as a means of prognostic evaluation [5,6]. 
Novel approaches to stratifying chemoresistant breast 
cancer (CRBC) patients according to their risk levels 
are thus essential. The tumor microenvironment plays 

an integral role in shaping the onset and progression 
of breast cancer, and the presence of different 
immune cells within this tumor niche can influence 
the development ofchemoresistance [7,8]. As high- 
throughput sequencing and bioinformatics technolo-
gies have continued to advance, they have aided in the 
development of more reliable diagnostic and prog-
nostic signatures capable of accurately evaluating spe-
cific patient populations [9,10]. While an individual 
gene may be of limited utility as a predictive biomar-
ker, multi-gene signatures offer significant advantages 
in this context [11]. To date, however, there have been 
few studies evaluating multigenic prognostic bio-
signatures in CRBC patient populations. We thus 
hypothesized that chemoresistance-related genes can 
serve as a valuable prognostic biosignature for CRBC 
patient evaluation, in addition to serving as viable 
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therapeutic targets. As such, we herein sought to 
design and validate a novel signature composed of 
chemoresistance-related genes capable of stratifying 
CRBC patients based upon their relative risk. We first 
identified and validated differentially expressed che-
moresistance-related genes so as to develop a risk 
signature related to CRBC patient survival. Protein- 
protein interaction networks (PPINs) were further 
established, relevant biological functions and path-
ways were identified, and relevant candidate drugs 
were predicted based on this prognostic signature. 
Finally, The correlations between risk score values 
and immune cell infiltration were analyzed using the 
CIBERSORT and ESTIMATE algorithms. Overall, 
the multi-gene signature established herein exhibits 
substantial clinical prognostic utilityand can effec-
tively characterize the tumor immune microenviron-
ment in CRBC patients. Therefore, this signature may 
aid in the identification of those patients likely 
to benefit from immunotherapy and it thus has 
the potential to aid clinicians in the development 
of individualized treatment strategies for CRBC 
patients.

Results

A growing body of evidence has shown that 
chemoresistance plays an important role in 
breast cancer development and progression, in 
addition to shaping patient treatment responses 
and overall prognosis. Therefore, we hypothe-
sized that the bioinformatics-based identification 
of a chemoresistance-related prognostic gene sig-
nature may highlight new avenues toward 
understanding breast cancer chemoresistance 
and predicting the survival of patients under-
going taxane and anthracycline-based neoadju-
vant chemotherapy. In the present study, we 
developed and validated a chemoresistance- 
related biosignature as a means of predicting 
CRBC patient prognosisand thereby aiding in 
the design of personalized treatments.

Differentially expressed gene screening

An overview of our study approach is provided 
in Figure 1. Briefly, a publically available data-
set (GSE25066) was downloaded from the GEO 

database (https://www.ncbi.nlm.nih.gov/). This 
dataset was composed of transcriptomic data 
pertaining to 508 patients with breast cancer 
that were undergoing neoadjuvant taxane- 
anthracycline-based chemotherapy, of whom 
169 were chemosensitive and achieved 
a complete response to treatment, whereas 339 
were found to have CRBC and to have experi-
enced stable or progressive disease during treat-
ment. Patient clinical characteristics are 
detailed in Supplementary Table 1. The 
‘limma’ R package was used to identified che-
moresistance-related genes (CRGs) that were 
differentially expressed between these two 
groups of patients. In total, 163 CRGs were 
identified (110 upregulated and 53 downregu-
lated) with a false discovery rate (FDR) thresh-
old of < 0.05 and an absolute log2 fold change 
(FC) > 1. These identified CRGs are were 
arranged in volcano plots and heatmaps 
(Figure 2(a,b)), and are listed in 
Supplementary Table 2.

Figure 1. A flow chart outlining the development of multi-gene 
prognostic signatures pertaining to chemoresistant breast can-
cerpatient prognosis, including data collection, preprocessing, 
analysis, and validation.
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Functional enrichment analyses of identified 
CRGs

The DAVID tool was next used to conduct 
functional enrichment analyses of identified 
CRGs. The primary KEGG pathways in which 
these genes were enriched were identified 
(Figure 3(a)), and included the natural killer 
cell-mediated cytotoxicity, FcγR-mediated pha-
gocytosis, chemokine, drug metabolism- 
cytochrome P450, Chemical carcinogenesis, 
B cell receptor, and osteoclast differentiation 
signaling pathways (Supplementary Table 3). 
GO terms in which these CRGs were enriched 
were also analyzed (Supplementary Table 4), 
and included the zinc ion homeostasis signaling 
pathway, the leukocyte proliferation signaling 
pathway, leukocyte chemotaxis, the immune 
response-regulating cell surface receptor signal-
ing pathway, cellular zinc ion homeostasis, cell 
chemotaxis, antigen receptor-mediated signal-
ing pathways, mononuclear cell proliferation, 
lymphocyte proliferation, and the immune 
response-activating cell surface receptor signal-
ing pathways (Figure 3(b)).

Protein-protein interaction-mediated 
establishment of a core gene co-expression 
network associated with CRBC

PPINs analyses have led researchers to conclude that 
the closely associated genes in these networks may 
represent shared predictive markers of chemosensi-
tivity [12,13]. To apply such findings to the present 
study, the CRGs identified above were treated as 
a primary gene set, and neighboring proteins pre-
dicted to directly interact with them were then 
incorporated into an expanded interaction network, 
yielding a greatly expanded gene set containing 3075 
genes. Next, 2605 candidate genes within this gene 
set were screened in the GSE25066 dataset using the 
WGCNA R package to construct a weighted co- 
expression network [14]. A cluster analysis 
approach was used to group 503 patients with simi-
lar gene expression patterns (other than 5 outliers) 
into modules, with a β = 3 power (scale-free 
R2 = 0.95) being selected for soft-thresholding to 
ensure a scale-free network (Figure 4(a)), In total, 
this led to the identification of 8 modules, of which 
two containing CRGs were retained for further ana-
lyses (Figure 4(b), C; Supplementary Table 5). Breast 

Figure 2. Identifying genes that exhibited differential expression. (a) A volcano plot showing the expression difference between 
chemosensitive and chemoresistant breast cancer patients. Red color is representative of expression that was up-regulated, and 
green color represents expression that was down-regulated. (b) The heatmap of the patients with chemosensitivity of breast cancer 
as compared to samples that were normal. A cutoff with absolute value of log2FC > 1 as well as an FDR < 0.05 was utilized for 
defining genes that exhibited differential expression.
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cancer chemoresistance-related genes were then 
further analyzed by assessing associations between 
particular modules and chemoresistance in breast 
cancer patients, with the modules that were most 
significantly associated with CRBC being of the 
greatest value for the prediction of patient prognosis 
and therapeutic responsiveness. We found that in 
these breast cancer patient cohorts, chemoresistance 
was significantly related to the brown (R = −0.2, 
p = 9E-06) and blue (R = 0.23, p = 2E-07) modules 
when conducting a module-feature relationship 
analysis (Figure 4(c)). These two modules also 
exhibited the greatest degree of gene significance 
as pertains to breast cancer chemoresistance 
(Figure 4(d)). As such, we selected these blue and 
brown modules for further analysis.

Evaluation of the prognostic significance of 
individual genes within the blue and brown 
modules

To examine the functional roles of the blue and 
brown modules, 339 CRBC patients from this 
dataset (excluding four outlier patients) were ran-
domized to yield a training cohort (n = 168) and 
a testing cohort (n = 167) according to a compu-
ter-generated random allocation sequence. CRBC- 
related genes were then identified by uploading 
a list of the 698 genes within the blue and brown 
modules and performing univariate Cox regres-
sion analyses examining the relationship between 
each of these genes and patient survival. This 
strategy led to the identification of 201 genes 

Figure 3. Analysis related to functional enrichment in the context of GO biologic processes as well as KEGG pathway enrichment of 
differentially expressed genes (DEGs). (a) DEG analyses via KEGG enrichment (every KEGG pathway that was significant). (b) DEG 
analyses based on GO terms enrichment (the top ten terms are described in every GO category). KEGG as well as GO analysis was 
conducted with the use of the online instrument known as DAVID, and the cutoff criteria with regards to FDR was less than 0.05. The 
color that is associated with each of the bubbles is representative of the FDR in relation to that specific term, with the color red 
being representative of significance that was greater. The proportion of genes that are enriched for every term is referred to via the 
rich factor.
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Figure 4. Identifying modules that are linked to the chemosensitivity status of cancer of the breast within the WGCNA. (a) The fit index that was 
scale-free for powers that involve soft-thresholding. Determination of the power involving soft-thresholding within the WGCNA was accomplished 
on the basis of a R2 that was scale-free (specifically R2 = 0.95). The panel at the top illustrates the association that exists between soft-threshold as 
well as scale-free R2. The panel at the bottom illustrates the association between mean connectivity as well as the soft-threshold. (b) 
A dendrogram depicting the genes that exhibited differential expression clustered on the basis of metrics that are different. Every branch within 
the figure is representative of one gene, and each color underneath is representative of one module of co-expression. (c) A heatmap that depicts 
the correlation that exists with regards to the gene module as well as clinical attributes. The brown module was composed of 338 DEGs while the 
blue module was composed of 360 DEGs. The coefficient of correlation within each cell is representative of the correlation that exists between the 
chemosensitive phenotype and the gene module, increasing in size from blue to red. The blue module demonstrated a positive correlation that 
was highest with regards to survival whereas the red module demonstrated the negative correlation that was the highest with regards to survival. 
(d) Distributive pattern of average gene-based significance as well as errors within the modules related to DFS in CRBC. On the basis of the 
hierarchical clustering with average linkage as well as the power involving soft-thresholding, the identification of eight modules was subsequently 
accomplished. To facilitate the determination of the significance associated with every module, gene significance (or GS) was ascertained for 
measuring the correlation that exists between chemosensitive phenotype and genes. GS was given the definition of a log10 conversion directed at 
the p-value in the context of the linear regression between clinical data and gene expression (i.e. GS = lgP). The module that is brown and blue 
exhibited a high degree of correlation with survival in patients who had CRBC. GSEA results showed that there was a positive enrichment of two 
immune related terms in the 201 genes associated with patient disease-free survival (e and f).
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associated with patient disease-free survival (DFS), 
with these being considered to represent prognos-
tic genes (p < 0.05) (Supplementary Table 6). Gene 
set enrichment analyses (GSEA) additionally 
examined the enrichment of these 201 genes, and 
revealed the upregulated genes to be primarily 
enriched in pathways including the ‘immune 
response’ and ‘immune system process’ pathways 
according to the normalized enrichment scores 
(NES) (Figure 4(e,f); Supplementary Table 7). 
These 201 genes were also more generally enriched 
in other processes associated with the immune 
system such as the chemotaxis of multiple differ-
ent immune cell types and the regulation of asso-
ciated responses (Supplementary Table 7). 
Together, these results suggested that the genes 
in these two significant chemoresistance-related 
modules were thus closely linked to enhanced 
immune functionality.

Construction and validation of a multigenic 
biosignature

In order to identify a list of genes associated with 
CRBC patient prognosis, the 201 genes identified in 
univariate Cox regression analyses were subjected to 
a lasso-penalized Cox analysis to select appropriate 
parameters for constructing a risk signature 
(Figure 5(a,b)). Four of the 201 candidate genes 
(C4A, KDM7A, MAPT, and PP14571) retained 
their prognostic significance and may thus impact 
the prognosis of CRBC (Supplementary Table 8). 
A subsequent stepwise multivariate Cox regression 
analysis revealed that three of these genes were truly 
prognostic (KDM7A, MAPT, PP14571) and they 
were then utilized to guide prognostic model estab-
lishment. The resultant model was generated by 
summing together the products of expression levels 
for each of these genes multiplied by their relative 
weighting coefficients derived from the above multi-
variate Cox regression model as follows: risk 
score = 0.66179 × (expression level of KDM7A) + 
(−0.38035) × (expression level of MAPT) + 
(−0.16249) × (expression level of PP14571). All 
three of the genes composing this risk scoring 
model were thus predictors of CRBC patient DFS, 
with their weighting coefficients corresponding to 
their overall impact on DFS predictions such that 

higher levels of KDM7A expression and lower levels 
of PP14571 and MAPT expression were associated 
with increased chemoresistance. The median risk 
score value (1.8840) was then used to separate 
patients into a low-risk and a high-risk cohort, after 
which the survival time, status, and gene expression 
levels of patients in these two groups in the training 
cohort were assessed (Figure 5). As expected, 
patients in the low-risk cohort exhibited better DFS 
values relative to patients in the high-risk cohort 
(p < 0.0001, Figure 5(c)). The AUC values for 1-, 
3-, and 5-year DFS for these patients were 0.823, 
0.813, and 0.796, respectively (Figure 5(d)). These 
data thus suggested that this signature was a highly 
effective tool for the prediction of patient DFS, 
emphasizing the value of multi-genic signatures 
when predicting the survival of individuals in this 
training cohort. Risk score distributions, overall sur-
vival outcome data, and prognostic gene expression 
profiles for the training cohort patients are shown in 
Figure 5(e,f,g) with patients being ranked based on 
risk score values. Patients with high risk scores 
exhibited increased mortality, higher levels of 
KDM7A expression, and lower levels of PP14571 
and MAPT expression relative to low-risk patients.

Validation of the prognostic relevance of the 
multigenic CRBC biosignature

To confirm the prognostic relevance of our multi- 
gene biosignature in CRBC patients, the 167 
patients in the validation cohort were stratified 
into high-risk (n = 62) and low-risk (n = 55) 
groups based upon the same cutoff used in the 
training dataset. A significant difference in survi-
val outcomes was observed when comparing 
these high- and low-risk patients (p = 0.0051, 
Figure 6(a)) with AUC values of 0.618, 0.688, 
and 0.622 for 1-, 3-, and 5-year DFS, respectively 
(Figure 6(b)). Risk score, overall survival, and 
prognostic gene expression profiles for the 
patients in the validation dataset are shown in 
Figure 6(c,d,e) with patients being ranked based 
upon risk scores. As above, patients with high 
risk scores exhibited increased mortality, higher 
levels of KDM7A expression, and lower levels of 
PP14571 and MAPT expression relative to low- 
risk patients.
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Evaluation of the independent prognostic value 
of the multigenic biosignature as a predictor of 
patient survival outcomes

To establish whether our multigenic biosignature 
was an independent predictor of CRBC patient sur-
vival outcomes, we next stratified patients in the 
overall dataset according to their age, T stage, 
N stage, PAM50 subtype, and ERα subtype, after 

which Kaplan-Meier analyses were used to compare 
survival outcomes in each subgroup. In these ana-
lyses, individuals in the low-risk group exhibited 
better DFS relative to patients in the high-risk 
group in subgroups of patients < 50 years old 
(p < 0.0001), ≥ 50 years old (p < 0.0001), and patients 
with T0/T1/T2 (p < 0.0001), T3/T4 (p = 0.00013), N0 
(p = 0.0081), N1/N2/N3 (p < 0.0001), ERα Negative 
(p < 0.0001), ERα Positive (p = 0.035), and PAM50 

Figure 5. The multi-genes prognostic signature in relation to predicting survival of CRCB patients in the dataset for training. (a) 
Partial likelihood deviance versus log (λ) was drawn using LASSO-Cox regression model. (b) Coefficients of selected features are 
shown by lambda parameter. (c) Kaplan-Meier curves related to survival overall between high-risk patients and low-risk patients in 
the dataset for training. (d) ROC curve associated with the prediction of survival involving multi-genes prognostic signature within 
a period of five years considered as the training dataset defining point. (E, F, G) The distributive pattern of the three-gene risk scores, 
overall survival in patients as well as heatmap associated with the three-gene profiles of expression within the dataset for training.
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Basal-like (p = 0.0072) disease (Figure 7). These risk 
stratification analyses indicated that our prognostic 
multi-gene biosignature was able to predict CRBC 
patient outcomes in a manner independent of other 
patient clinicopathological variables.

Analyses of the degree of immune cell infiltration 
in high- and low-risk CRBC patients

The tumor microenvironment is a key determi-
nant of breast cancer development, progression, 
and chemoresistance [15]. The ESTIMATE algo-
rithm was next used to calculate non-tumor cell 
infiltration in the tumor microenvironment 
[7,16], with the immune scores of the low-risk 
and high-risk patient groups being compared. 
High-risk patients were found to exhibit 
a higher immune infiltration score relative to 
low-risk patients (p < 0.01, Figure 8(a)). To 
evaluate the relationship between the three-gene 

CRG biosignature developed above and the rela-
tive immune cell infiltration of the tumor micro-
environment in CRBC patients, we next utilized 
the CIBERSOFT algorithm to compare high- and 
low-risk patient immune cell infiltration 
(Figure 8(b)). This analysis revealed significant 
differences in immune cell infiltration between 
groups, including differences in levels of infiltra-
tion by resting mast cells, resting dendritic cells, 
activated CD4 memory T cells, activated dendri-
tic cells, and regulatory T cells (Tregs) 
(Supplementary Table 9). Subsequent univariate 
Cox regression analyses of these five immune 
cell types suggested that they were all signifi-
cantly associated with patient DFS (p < 0.05). 
Of these, resting dendritic cells, resting mast 
cells, and Tregs were all associated with 
a greater risk (HR > 1), whereas resting dendri-
tic cells and activated memory CD4 T cells were 
protective (HR < 1) (Figure 8(c)).

Figure 6. The multi-genes prognostic signature in the prediction of survival in patients who had CRCB within the training dataset. (a) 
Kaplan-Meier curves related to overall survival between high-risk patients and low-risk patients within the dataset for training. (b) 
ROC curve in relation to predicting survival via the multi-genes prognostic signature within a period of five years considered as the 
training dataset defining point. (C, D, E)The distributive pattern of the three-gene risk scores, overall survival in patients as well as 
heatmap of four-gene profiles of expression within the dataset for training.
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In vitro result validation

The taxane drugs paclitaxel and anthracycline 
drugs adriamycin are widely used in chemother-
apy regimens for the treatment of invasive breast 
cancer. For in vitro experiments, the drug- 
resistant MCF-7/Adr and MCF-7/Tax breast can-
cer cell lines were established respectively by gra-
dually increasing the concentration of adriamycin 

and taxol (paclitaxel) in the culture medium rela-
tive to that used to culture the parental MCF-7 
cell line. These cells were then used as drug- 
resistant models to further validate our prognos-
tic signature. MTT assay results indicated that the 
The 50% inhibitory concentration (IC50) of pacli-
taxel for the parental MCF-7 cell line was 
0.01 mg/L, while for the drug-resistant MCF-7/ 
Tax cell line the IC50 was 5.27 mg/L. Similarly, 

Figure 7. Analysis of survival in all patients who had CRCB stratified on the basis of patient age, staging, subtype of tumor along 
with the multi-genes prognostic signature. (a) The Kaplan-Meier curves with regards to the dataset that was younger (specifically, 
age < 50, where n = 86). (b) Kaplan-Meier curves in relation to the dataset that was older (specifically, age ≥ 50, where n = 148). (c) 
Kaplan-Meier curves with regards to the dataset related to early stage (specifically stage II/III, where n = 156). (d) Kaplan-Meier 
curves in relation to the dataset with regards to late stage (specifically, stage IV, where n = 78). (e) Kaplan-Meier curves in relation to 
the non-papillary dataset (that is, subtype of non-papillary, where n = 165). (f) Kaplan-Meier curves in relation to the papillary 
dataset (that is, subtype of papillary, where n = 69).
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the IC50 of adriamycin for the parental MCF-7 
cell line was 0.31 mg/L, while that for the drug- 
resistant MCF-7/Adr cell line was 114.2 mg/L. 
Subsequently, real-time quantitative PCR (RT- 
PCR) was performed to quantify the expression 
of the three key genes (KDM7A, MAPT, and 
PP14571) involved in our prognostic signature 

in these cells. We found that KDM7A was upre-
gulated by 1.97-fold, while MAPT and PP14571 
were downregulated by 0.65- and 0.83-fold, 
respectively, in the MCF-7/Tax cell line compared 
to the MCF-7 control cells. The same gene 
expression trend was observed in the MCF-7/ 
Adr cell line,with KDM7A being upregulated by 

Figure 8. Differences observed when comparing infiltration by immune cells and 22 immune cell subtypes between high-risk CRBC 
patients and those of a low risk.
(A) Differences in scores related to immune cell infiltration between the high-risk group and the low-risk group. (B) Relative 
proportion of 22 immune cells infiltration in high-risk patients and low-risk patients. (C) Forest plot visualizing for immune cells. 
Hazard ratios (HR) and confidence intervals (CI) for HRs were calculated according to the Cox models. (D, E) RT-PCR was performed to 
quantify expression of the three key genes (KDM7A, MAPT, and PP14571) in the drug-resistant breast cancer cell lines (MCF-7/Adr and 
MCF-7/Tax) and their drug-sensitive cell line MCF-7. Bars display as the mean ± SD from three independent experiments. Drug- 
resistant cell lines compared with drug-sensitive cell line,Statistical significance at the level of null ≥ 0.05, *p < 0.05, **p < 0.01. 

8428 M. LIU ET AL.



1.69-fold, while MAPT and PP14571 were down-
regulated by 0.48- and 0.77-fold, respectively 
(Figure 8(d,e)).

Materials and methods

Data collection and study design

The GSE25066 dataset and corresponding clinical 
information were downloaded from the NCBI 
Gene Expression Omnius (GEO) database 
(https://www.ncbi.nlm.nih.gov/) [17]. This dataset 
included 508 total breast cancer patients, of whom 
339 (excluding four outlier patients) and 169 were 
chemoresistant and chemosensitive, respectively. 
Patients without complete clinical information 
including age, stage, subtype, and chemoresistance 
status were excluded from this analysis. Patient 
clinical characteristics are detailed in 
Supplementary Table 1, and an overall study flow-
chart is shown in Figure 1. No ethical oversight 
was required, as these data were downloaded from 
a public repository.

Data preprocessing and CRG identification

Quality control, background correction, normal-
ization, logarithmic conversion, and batch effect 
removal were performed for all samples with the 
‘limma’ R package, after which clinical data were 
filtered and RNA-seq data were analyzed with the 
‘limma’ R package [18]. This same package was 
also used to identify CRGs by identifying those 
genes that were differentially expressed between 
chemoresistant and chemosensitive patients with 
the following cutoff criteria: FDR < 0.05, absolute 
value of log2FC > 1 [19].

Functional enrichment analyses of CRGs

Functional enrichment analyses for CRGs were 
conducted with the DAVID Bioinformatics Tool 
(v 6.7) which was used to evaluate Gene Ontology 
(GO) biological process (GOTERM-BP-FAT) and 
KEGG pathway enrichment, with the full human 
whole genome as the background. For GO ana-
lyses, significance criteria were p < 0.05 and an 
enrichment score > 1.0 [20], while for KEGG ana-
lyses the criteria were p < 0.05 and fold 

enrichment > 2.0 [21]. The Enrichment Map 
Cytoscape plugin (v 3.4.0) and the ‘goProfiles’ 
R package were used to visualize the enriched 
pathways [22].

Protein-protein interaction network-based 
establishment and analysis of a co-expression 
network

An integrated approach was used to assess the 
functional importance of identified and related 
genes in the regulation of breast cancer chemore-
sistance. An initial subset of CRGs was used as 
a seed gene set. Binary PPINs were then used to 
expand this initial gene set, incorporating adjacent 
proteins for each gene signature from this network 
to develop a larger gene set composed of both 
CRGs and their putative interaction partners 
[23]. A weighted gene correlation network for 
these genes was then conducted based upon the 
GSE25066 dataset. Expression profiles of genes in 
this network were inputted into the WGCNA to 
identify co-expression modules [24]. An adjacency 
matrix was then established based upon 
a Pearson’s correlation analysis of all pairs of 
genes, with the resultant network being used to 
construct a scale-free co-expression network based 
on the soft-thresholding parameter β capable of 
enhancing strong correlations between genes and 
penalizing weak correlations [25]. The adjacency 
matrix was then used to generate a topological 
overlap matrix (TOM) measuring the network 
connectivity of a given gene, as measured by sum-
ming its adjacency with other genes within the 
network [26]. Average linkage hierarchical cluster-
ing approaches were then conducted based upon 
TOM dissimilarity measures with a minimum 
gene group size of 50 in order to assess genes 
with similar expression patterns. Gene modules 
were identified via two approaches. First, gene 
significance (GS) was defined as GS = lgP in linear 
regression analyses of gene expression and clinical 
traits. Module significance (MS) was then defined 
as the average GS for all genes within a given 
module [27]. Modules with the top MS values 
were selected as being most closely related to 
CRBC patient clinical traits. Modules that were 
closely correlated with these traits were then 
selected for downstream analyses.
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Construction of prognostic signature in the 
training cohort

The impact of individual genes on patient survival 
was assessed through a series of univariate Cox 
regression analyses. Survival-related CRGs were 
those with a p < 0.01 in these analyses. A LASSO- 
penalized Cox regression approach was then used 
to refine the list of genes identified in these initial 
analyses in order to develop a prognostic risk 
signature [28,29]. This analysis was performed 
with the ‘glmnet’ R package, and was designed to 
reduce regression coefficients for all variables 
toward zero, with those of irrelevant gene features 
being set to zero based upon the regulation weight 
value (λ). An optimal λ value was selected based 
upon the minimum cross-validation error in 10- 
fold cross-validation analyses. A multivariate Cox 
regression analysis was then performed to evaluate 
the contributions of individual genes as indepen-
dent predictors of patient survival outcomes, with 
the best model ultimately being selected via 
a stepwise approach. Risk scores were calculated 
based upon coefficients weighted by the penalized 
Cox model in the training cohort as follows:

risk score ¼
Pn

i¼1
expi � βi

Where n was the number of prognostic gen-
es,expi was the expression value of genei, and βi 
was the corresponding multivariate Cox regression 
coefficient [30,31]. An optimal risk score cutoff 
was selected with the ‘maxstatr’ R package, with 
patients being separated into high- and low-risk 
groups using this cutoff value. Kaplan-Meier 
curves were then used to assess relationships 
between risk scores and patient survival. 
Univariate and multivariate Cox regression ana-
lyses were additionally conducted to assess rela-
tionships between risk scores and clinical features. 
Biosignature accuracy and predictive utility were 
evaluated based upon the area under the ROC 
curve (AUC) as calculated with the ‘time ROC’ 
R package.

Immune cell infiltration analyses

Associations between the tumor microenviron-
ment and CRBC patient risk scores were exam-
ined, with the tumor microenvironment being 

made up of a range of stromal mesenchymal, 
endothelial, and immune cells together with 
a range of inflammatory and extracellular matrix 
molecules [15]. The ESTIMATE R algorithm was 
utilized to calculate immune scores for samples 
and to compare levels of immune infiltration 
between low- and high-risk groups via Wilcoxon 
tests [32].

The CIBERSORT tool (https://cibersort.stanford. 
edu/) can be used to gauge approximate cell frequen-
cies within a mixed population of cells based upon 
gene expression data. For this study, a CIBERSORT 
analysis was used to assess the relative frequencies of 
22 different immune cell types in patient tumor 
samples [33,34]. For the present analysis, 1000 per-
mutations were used, and samples with a p < 0.05 
were retained for subsequent analyses. Differences in 
immune cell infiltration were compared between 
low- and high-risk patients using Mann-Whitney 
U tests [32–34].

Cell culture and treatment

The human breast cancer cell line MCF-7 was 
obtained from Shanghai Cell Bank of Chinese 
Academy of Sciences (Shanghai, China) and the 
paclitaxel-resistant MCF-7/Tax cell line and the 
adriamycin-resistant MCF-7/Adr cell line were 
established in vitro by increasing the concentra-
tion of paclitaxel (Abcam, ab120143, USA) or 
adriamycin (Abcam, ab120629, USA) in 
a stepwise manner using the drug-sensitive paren-
tal cell line (MCF-7/Con) as previously reported 
[35,36]. In order to exclude the impact of the 
direct effects of these drugs on our study results, 
MCF-7/Adr and MCF-7/Tax cells were cultured in 
drug-free medium for at least two weeks before 
further experiments. Untreated parental MCF-7/ 
Con cells were used as a control. All cells were 
maintained in RPMI-1640 medium (Gibco, USA), 
supplemented with 10% heat-inactivated fetal 
bovine serum, 100 units/mL penicillin, and 
100 μg/mL streptomycin in a humidified atmo-
sphere at 37°C under 5% CO2.

Chemosensitivity assay

The level of resistance of the MCF-7/Adr and 
MCF-7/Tax cells to each drug, with MCF-7/Con 
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cells as a control, was assessed by measureing 
cellular viability with an MTT assay (Sigma, 
USA). Briefly, cells in the exponential growth 
phase were seeded at a density of 5 × 104 cells 
per well of a 96-well plate in 100 μL for 24 h. The 
medium was then removed and fresh medium 
containing different paclitaxel or adriamycin con-
centrations was added for 72 h. Culture medium 
was then replaced with 180 μL RPMI-1640 and 
20 μL MTT (5 mg MTT/mL) for 4 h, after which 
supernatants were discarded and formazan crys-
tals were solubilized using 180 μL of DMSO for 
10 min while shaking. Absorbance was then 
assessed at 490 nm on a microplate reader (Bio- 
Rad 550, USA). The IC50 was estimated with 
GraphPad Prism 5 for each cell line and each 
drug.

Real-time quantitative PCR

Total RNA from the cell lines was extracted using 
the RNeasy Mini Kit (QIAGEN, Hilden, Germany) 
according to the provided instructions. All RT- 
PCR experiments were performed via the SYBR 
Green method in a CFX-96 Bio-Rad Real-Time 
PCR (Bio-Rad, USA) instrument. Reactions weres 
prepared at a final volume of 20 µL using a SYBR 
Green Mix. The Ct values for each gene were 
normalized to GAPDH as an internal control, 
and the 2−ΔΔCT method was used to determine 
relative gene expression levels. Each reaction was 
performed in triplicate, and two-way ANOVAs 
were used to identify differentially expressed 
genes among these various treatments. The pri-
mers used for these reactions are presented in 
Supplementary Table 10.

Statistical analysis

Kaplan-Meier curves and two-sided log-rank tests 
were employed to compare patient survival out-
comes using the ‘survival’ R package. The prog-
nostic relevance of the developed multi-gene 
biosignature was assessed via a multivariate Cox 
regression approach and through stratified ana-
lyses in order to demonstrate that it exhibited 
prognostic value independent of patient age, 
stage, subtype, or chemosensitivity status. For 
these analyses, survival was treated as 

a dependent variable, with these other factors 
and the multi-gene signature-derived risk score 
being treated as independent variables. Hazard 
ratios (HRs) and 95% confidence intervals (CIs) 
were calculated. The ‘survivalROC’ R package was 
used for time-dependent ROC analyses of patient 
1-, 3-, and 5-year survival outcomes [37]. AUC 
values were calculated using these ROC curves. 
Differences in variables between groups were com-
pared using two-sided Student’s t-tests. R (v.3.5.0) 
was used for all statistical analyses.

Discussion

Breast cancer remains a leading cause of mortality 
among women globally [38], and it is most fre-
quently treated via chemotherapy, even in women 
that undergo surgery [3]. Chemoresistance 
remains a primary obstacle to breast cancer treat-
ment, often resulting in disease recurrence and 
death in affected individuals [2]. As such, we 
herein sought to design and validate a novel bio-
signature capable of evaluating CRBC patient 
prognosis.

To that end, we analyzed an extant CRBC- 
related dataset, and we then combined PPINs 
and WGCNA approaches to identify eight co- 
expression modules, in turn leading to the identi-
fication of 698 potentially prognostic CRGs of 
which three were ultimately used to develop 
a risk score model. Previously identified single- 
gene prognostic biomarkers have been found to 
be insufficiently reliable for use in clinical con-
texts, potentially because they fail to account for 
gene-gene interactions. As such, we expanded our 
primary gene set based upon a binary PPINs sub- 
class in accordance with prior studies [39], leading 
to the incorporation of adjacent genes with the 
goal of improving the prognostic utility of our 
resultant risk scoring model. We then examined 
the association between the resultant risk scores 
and patient outcomes, revealing that high-risk 
CRBC patients exhibited significant differences in 
immune cell infiltration, chemotherapeutic effi-
cacy, and multiple signaling pathways relative to 
low-risk patients.

KDM7A, MAPT, and PP14571 were identified 
as independent prognostic CRGs that were used to 
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construct our risk model biosignature. All three 
have previously been linked to breast cancer 
patient prognosis. KDM7A encodes a dual histone 
demethylase capable of promoting Bcl-2 upregula-
tion and thereby suppressing apoptotic cell death 
in breast cancer [40]. Estrogen receptor signaling 
has also been shown to influence the expression of 
microtubule-associated protein tau (MAPT) such 
that the ER inhibitor fulvestrant can promote 
MAPT downregulation and thereby increase breast 
cancer cell sensitivity to taxane-based chemother-
apy [41]. PP14571, also referred to as AC110619.1, 
is a long noncoding RNA that is capable of com-
petitively binding microRNAs and thereby indir-
ectly altering the expression of important genes 
associated with breast cancer progression [42].For 
in vitro experiments, paclitaxel- and adriamycin- 
resistant MCF-7/Tax cell lines were established 
using the chemosensitive MCF-7 parental cell 
line, and were used as chemoresistant breast can-
cer cell model systems with basic drug resistance 
characteristics. We also found that the expression 
of KDM7A was upregulated in chemoresistant 
cells (MCF-7/Adr and MCF-7/Tax), while MAPT 
and PP14571 were downregulated compared with 
the chemosensitive breast cancer control cell 
group (MCF-7/Con). The multi-gene risk bio-
signature established herein also exhibited a high 
degree of accuracy and predictive value in subse-
quent analyses. Previous studies have highlighted 
the value of analyzing the immune cell infiltration 
of the tumor microenvironment when conducting 
prognostic assessments of breast cancer patients. 
Ye et al. screened key prognostic genes in the 
breast cancer tumor microenvironment by analyz-
ing the immune and stromal scores of tumor sam-
ples and also constructed a tumor 
microenvironment-related prognostic model [43]. 
Chemoresistance is a major barrier to breast can-
cer patient treatment that is often associated with 
disease recurrence and death [7,8,44]. To date, the 
ESTIMATE and CIBERSORT algorithms have 
only been rarely utilized to examine CRBC- 
related immune cell infiltration profiles. As such, 
we herein analyzed the degree of infiltration by 22 
different immune cell populations, revealing that 
the expression levels of the three CRGs composing 
our risk score model were associated with CRBC 
patient immune infiltration scores. This, in turn, 

suggested that the prognostic value of this scoring 
model was related to differences in immune 
responsivity in high- and low-risk CRBC patients. 
The tumor microenvironment has also been pre-
viously linked to the acquisition of chemoresis-
tance in breast cancer [8]. Using the CIBERSORT 
algorithm, we detected significant differences in 
the levels of resting mast cells, resting dendritic 
cells, activated CD4 memory T cells, activated 
dendritic cells, and Tregs when comparing low- 
and high-risk CRBC patient samples.

The results of this study are subject to a number 
of limitations. First, as our results are solely 
derived from in silico analyses, further in vitro 
and in vivo validation of the underlying molecular 
mechanisms will be essential. Second, this was 
a retrospective study, and future prospective large- 
scale analyses of CRBC patients will be critical to 
confirm the prognostic relevance of our multigenic 
risk biosignature.

In summary, we herein developed an effective 
prognostic multigenic CRG biosignature capable 
of predicting CRBC patient outcomes. These dif-
ferences in survival between high- and low-risk 
patients were attributable to differences in 
immune cell infiltration and interactions among 
a variety of signaling pathways. Overall, this study 
provides a foundation for future research regard-
ing the pathogenesis and treatment of CRBC.

Conclusions

In conclusion, we successfully established and con-
ducted the internal validation of a novel prognos-
tic biosignature associated with CRBC patient 
survival outcomes. The use of this model has the 
potential to aid in the more accurate risk stratifi-
cation of CRBC patients and may offer insight into 
the overall intensity of immune responses within 
the CRBC-associated tumor microenvironment.

Highlights

● This study was formulated to identify 
a reliable prognostic biosignature capable of 
improving prognosis prediction in chemore-
sistant breast cancer patients

● Multi-gene biosignature was able to predict 
chemoresistant breast cancer patient 
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outcomes in a manner independent of other 
patient clinicopathological variables.

● The prognostic biosignature was associated 
with the infiltration of the tumor microenvir-
onment by multiple immune cell types.
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