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There is growing evidence that long-chain polyunsaturated fatty acids (LCPUFAs) are

of importance for normal brain development. Adequate supply of LCPUFAs may be

particularly important for preterm infants, because the third trimester is an important

period of brain growth and accumulation of arachidonic acid (n-6 LCPUFA) and

docosahexaenoic acid (n-3 LCPUFA). Fatty acids from the n-6 and n-3 series, particularly,

have important functions in the brain as well as in the immune system, and their absolute

and relative intakes may alter both the risk of impaired neurodevelopment and response

to injury. This narrative review focuses on the potential importance of the n-6:n-3

fatty acid ratio in preterm brain development. Randomized trials of post-natal LCPUFA

supplementation in preterm infants are presented. Pre-clinical evidence, results from

observational studies in preterm infants as well as studies in term infants and evidence

related to maternal diet during pregnancy, focusing on the n-6:n-3 fatty acid ratio, are

also summarized. Two randomized trials in preterm infants have compared different

ratios of arachidonic acid and docosahexaenoic acid intakes. Most of the other studies

in preterm infants have compared formula supplemented with arachidonic acid and

docosahexaenoic acid to un-supplemented formula. No trial has had a comprehensive

approach to differences in total intake of both n-6 and n-3 fatty acids during a longer

period of neurodevelopment. The results from preclinical and clinical studies indicate

that intake of LCPUFAs during pregnancy and post-natal development is of importance

for neurodevelopment and neuroprotection in preterm infants, but the interplay between

fatty acids and their metabolites is complex. The best clinical approach to LCPUFA

supplementation and n-6 to n-3 fatty acid ratio is still far from evident, and requires

in-depth future studies that investigate specific fatty acid supplementation in the context

of other fatty acids in the diet.
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INTRODUCTION

Infants born preterm are at a high risk of neurodevelopmental
disabilities (1–3), with cognitive impairment ranging from 20%
in late preterm infants to 64% in extremely preterm infants, of
which 34% have moderate or severe impairment (3, 4). The last
trimester of pregnancy is an important period of rapid brain
growth, during which there is a high susceptibility to brain
injury (5–8). It is also a period when the availability of sufficient
amounts of long chain polyunsaturated fatty acids (LCPUFAs)
is essential to brain development (9). The LCPUFAs in the n-
6 and n-3 series have different properties and functions, and
to some extent can be synthesized from shorter PUFAs in the
diet. For instance, delta 6 desaturase is a key regulatory enzyme
needed for the conversion of the n-6 PUFA linoleic acid (LA) to
arachidonic acid (AA), and is employed twice for the conversion
of the n-3 PUFA α-linolenic acid (ALA) to docosahexaenoic
acid (DHA) (10, 11). However, in general LCPUFAs cannot be
synthesized de novo in sufficient quantities for the developing
brain (12, 13). Figure 1 demonstrates the metabolism of the n-6
and n-3 fatty acids.

AA and DHA are the most abundant LCPUFAs in the brain.
During the last trimester of pregnancy the absolute content of AA
and both the absolute and relative content of DHA in the brain
increases rapidly (Figure 2). Accumulation continues the first
years of post-natal life although the accretion rate slows down
(14–17). When preterm birth occurs the supply of LCPUFAs
across the placenta is interrupted during a critical period of
brain development, which may increase the susceptibility of the
brain to both injury and developmental abnormalities. AA and
DHA have important functions as components of phospholipids
in the plasma membranes of neural cells, including influencing
membrane fluidity, which modulates the function of receptors,
transporters and membrane-bound enzymes. For instance, both
DHA and AA are important for the development of synaptic
processes (18, 19). Studies in rats have demonstrated that n-
3 fatty acid intake and n-6:n-3 ratio affect expression of genes
controlling synaptic plasticity, signal transduction and energy
metabolism (20, 21). AA also has specific importance for the
structure and function of the endothelial cell, which might
be important in vascular regulation, affecting the severity and
pattern of preterm brain injury (22). LCPUFAs can also alter
membrane and neuronal function, particularly in response to
injury. For instance, when the n-6 LA is incorporated into the cell
membrane, it becomes highly-susceptible to peroxidation and
subsequent ferroptotic cell death (23, 24). AA is also susceptible
to peroxidation, and increased concentrations of both LA andAA
have been demonstrated to accelerate cell death (25).

The relative availability of different LCPUFAs in the
face of premature birth or brain injury is likely to alter
subsequent responses and may explain epidemiological and

Abbreviations: AA, arachidonic acid; ALA, α-linolenic acid; BSID, Bayley

scales of infant development; CA, corrected age; DHA, docosahexaenoic; EPA,

eicosapentaenoic acid; GA, gestational age; IQ, intelligence quotient; LA, linoleic

acid; LCPUFA, long-chain polyunsaturated fatty acid; MDI, mental development

index; RCT, randomized controlled trial; SES, socioeconomic status.

preclinical evidence suggesting that n-3 LCPUFAs, such as
DHA are neuroprotective (26–28). Inflammation appears to
play an important causal role in preterm birth, with ongoing
inflammatory responses evident in the post-natal period (29).
Inflammatory mechanisms also play a role in altered cerebral
development (30). After an initial inflammatory exposure, acute
inflammation is intended to be a protective process in two
stages—initiation and resolution—and much of the signaling
is undertaken by lipid mediators that are the products of
LCPUFAs (Figure 3).

Leukotrienes and prostaglandins are produced from AA and
play a critical role in initiation of an acute inflammatory response.
These pathways are tightly linked to the process of preterm birth
and neonatal inflammatory or hypoxic-ischemic brain injury. For
instance, increased prostaglandin E2mediates premature cervical
ripening in both lipopolysaccharide-induced murine premature
birth and estradiol-induced premature birth in sheep (32, 33).
Prostaglandin E2 in the cerebrospinal fluid is associated with the
degree of brain injury in asphyxiated term newborns (34), and
elevated prostaglandin E2 is seen in the amniotic fluid of infants
born preterm (35).

The switch to resolution after the acute inflammatory response
is signaled by specialized pro-resolving mediators, lipoxins,
resolvins, (neuro)protectins, and maresins. Lipoxins, such as
lipoxin A4 are derived from AA, but the majority of the
pro-resolving mediators are produced using the n-3 LCPUFAs
eicosapentaenoic acid (EPA) and DHA as precursors (31). The n-
6 LA can also form pro-inflammatory bioactive oxidized linoleic
acid metabolites (36). The production of lipid mediators is
catalyzed by a specific set of lipoxygenases (LO-5, LO-12, and LO-
15), as well as cyclo-oxygenase-2. Therefore, the relative levels of
each mediator may be influenced by the availability of each fatty
acid precursor (37–39).

Human milk is the most important source of post-
natal fatty acid intake for preterm infants. Human milk
contains ∼12–26% n-6 fatty acids and 0.8–3.6% n-3 fatty
acids depending on the maternal diet (40). Preterm formulas
historically did not contain AA and DHA, and assumed
that the infant would endogenously synthesize AA (from
LA), and EPA and DHA (from ALA). However, additional
exogenous LCPUFAs may be required due to inadequate
capacity to synthesize these fatty acids endogenously (41).
A number of trials have examined the effects of additional
AA and DHA both for the mother and in formula of
infants born prematurely. As the availability of both n-6
and n-3 LCPUFAs is critical to brain development, and may
influence how the brain responds to injury, the objective
of this narrative review was to provide an overview of the
preventive as well as interventional role of LCPUFAs for
brain development in preterm infants, focusing on the balance
between n-6 and n-3 fatty acids, including their context within
the overall maternal diet. Randomized trials of post-natal
LCPUFA supplementation in preterm infants are presented in
detail. Results from observational studies, trials of post-natal
supplementation in term infants and studies of maternal diet
during pregnancy, focused on the n-6:n-3 fatty acid ratio, are
also summarized.
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FIGURE 1 | Metabolism and major food sources of important n-6 and n-3 fatty acids. Linoleic acid (LA, 18:2 n-6) is primarily obtained from vegetable oils (soy, corn,

and sunflower oils). α-linolenic acid (ALA, 18:3 n-3) is also derived from plant-based oils, such as canola (rapeseed) and flaxseed. Arachidonic acid (AA, 20:4 n-6)

derives from animal fats, particularly poultry. Eicosapentaenoic acid (EPA, 20:5 n-3) and docosahexaenoic acid (DHA, 22:6 n-3) are largely obtained from fish, shellfish,

and algae.

RANDOMIZED TRIALS OF POST-NATAL
SUPPLEMENTATION IN PRETERM
INFANTS

ACochrane review from 2016 compared LCPUFA-supplemented
formula with unsupplemented formula in preterm infants.
Meta-analyses of mental development index (MDI) and
psychomotor development index assessed with Bayley Scales
of Infant Development at 12 months (four trials) and 18
months (three trials) showed no evidence of effect with
low quality of evidence (42). In our review, results from 13
randomized controlled trials (RCTs) of LCPUFA intervention
for preterm infants that have reported neurodevelopmental
outcomes are presented (Table 1). We discuss the trials
included in the Cochrane review (52–62), as well as two

trials that compared formulas with different ratios of
LCPUFA (43–46), one trial of an LCPUFA supplement
added in human milk (47–51), and two trials with subgroups
of preterm infants at higher risk of neurodevelopmental
impairment (63, 64).

Two RCTs evaluated the effect of different AA to DHA ratios

on neurodevelopment. A study by Alshweki et al. randomized
60 newborns <1,500 g and/or <32 weeks gestational age (GA)

to two formulas with different AA contents and a fixed DHA

content (around 0.3%), for 1 year. The study demonstrated

higher mean scores of psychomotor-development at 24 months

corrected age (CA) with an AA: DHA ratio of 2:1 compared
to 1:1. The formulas contained no other n-6 or n-3 fatty acids
and results might be related to the low content of AA in the 1:1
group. The scores in the 2:1 group were similar to the scores
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FIGURE 2 | Total n-3 (A) and n-6 (B) fatty acid forebrain (FB) content, and relative content of docosahexenoic acid (DHA) and arachidonic acid (AA) (C). Fatty acid

content measured in post-mortem samples from infants who died soon after birth due to causes not related to the central nervous system. Relative percentages of

DHA (22:6 n-3, black circles) and AA (20:4 n-6) in the brain over the final 20 weeks of gestation shows a relative increase in DHA such that the two exist in a ratio of

roughly 1:1 at 40 weeks. Reproduced with permission from Martinez (14).

FIGURE 3 | Pathways of lipid mediator production. In peripheral or systemic injuries or infections, phospholipases act on membrane phospholipids to release these

PUFAs, whereupon they are metabolized by lipoxygenases (LO) LO-5, LO-12, and LO-15, as well as cyclo-oxygenase-2 (COX-2) into the various lipid mediators.

Initially, release of pro-inflammatory mediators, such as prostaglandins (PGs) and leukotrienes (LTs) derived from AA promote the recruitment of neutrophils and initiate

the inflammatory process. These pathways are tightly-linked to the process of preterm birth and neonatal inflammatory or hypoxic-ischemic brain injury. Hours to days

after an initial inflammatory insult, resolution and healing occurs. Specialized pro-resolving mediators signal this switch, which includes lipoxins (LXs), resolvins (Rvs),

(neuro)protectins (NPD/PDs), and maresins (MaRs). Lipoxins, such as LXA4 are derived from AA, but the majority of specialized pro-resolving mediators are produced

using EPA and DHA as precursors. Conversely, LA is able to compete with AA, EPA, and DHA for certain COX-2, 12-LO, and 15-LO, resulting in oxidized linoleic acid

metabolites (OxLAMs), such as 9- and 13-hydroxy-octadecadienoic acid (9- and 13-HODE) and 9- and 13-oxo-octadecadienoic acid (9- and 13-oxoODE). Adapted

from Serhan and Petasis (31).

of exclusively breastfed infants (43). Conversely, the DINO trial
randomized infants born <33 weeks’ gestation to formula with
a high DHA content (1%) to normal DHA content (0.3%), with
a fixed content of AA (0.4%). The intervention was provided
as tuna oil or soy oil given to breastfeeding mothers, and as
LCPUFA-enriched formulas, until the infants reached term CA.
The groups did not differ in overall Bayley scales of infant
development (BSID)-II score at 18 months, but in the high DHA
group mean MDI was higher in girls (mean MDI 99.1 vs. 94.4)
and in lower BW infants (meanMDI 94.8 vs. 90.0) (44). However,
no differences were demonstrated in behavior or attention at

3–5 years of age or intelligence quotient (IQ) at the age of
7 (45, 46).

The other trials we identified compared supplementation with
DHA (and AA in most studies) to supplementation with only
LA and ALA and no DHA or AA. A Norwegian trial added
soy/MCT oil to all enteral intake (mothers’ milk or donor human
milk) given to very low birth weight infants until discharge, and
compared addition of DHA and AA (ratio 1:1) to no addition of
DHA and AA. They demonstrated higher problem-solving scores
at 6 months, but no structural changes on MRI or differences
on cognitive tests at 8 years of age (47–51). A higher DHA in
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TABLE 1 | Randomized trials of post-natal supplementation with LCPUFA to preterm infants (43–64).

References Study subjects Intervention Ratio n6:n3 Ratio AA:DHA Number of infants Primary Outcome Comment

Alshweki et al. (43) GA 25–32 weeks and/or

BW <1,500 g

Mean/median GA not

known-−30% of infants

GA <30 weeks

Formula with DHA+AA

(no other LCPUFAs) from

first week to 6 months

corrected age

Group A 2:1

Group B 1:1

Group A 2:1

Group B 1:1

60 randomized,

24 vs. 21 evaluated at

24 months CA.

Psychomotor-

development evaluated

with Brunet Lézine

Scale at 24 months

CA. Higher mean

scores in group A

compared to B.

Scores in group B but

not group A were lower

compared to breast fed

infants.

DINO trial (44–46) GA <33 weeks

Median GA 30 weeks

High DHA (vs. standard

DHA). Mothers

supplemented with DHA,

or DHA-supplemented

formula was given from

start of enteral feeds until

term age

High DHA

7.7:1 formula

4.4:1 breast milk

Standard DHA

9.5:1 formula

7.4:1 breast milk

High DHA 0.4:1

Standard DHA 1.5:1

657 randomized,

322 vs. 335 analyzed

at 18 months

BSID-II at 18 months

CA. No differences

between groups.

Mental development

index interacted with

sex and BW.

Higher mean MDI in

girls and in lower BW

infants at 18 months.

No differences at 2,

3–5 or 7 years.

Henriksen et al.

(47–51)

VLBW <1.5 kg

Median GA 28.4 weeks

DHA+AA in soy/MCT oil

vs. soy/MCT oil added in

human milk from enteral

intake of >100 ml/kg/d to

discharge

Intervention 5.6:1

Placebo 6.5:1

(calculated)*

Supplementation:

Intervention 2.8:1

Placebo 8:1

1:1 141 randomized, 50 vs.

55 analyzed at 6

months

Cognitive development

at 6 months CA.

Higher problem solving

scores (Ages and

Stages Questionnaire)

in intervention group.

No difference between

groups at 22 months or

8 years. Higher DHA at

discharge associated

with higher MDI and

sustained attention at

22 months CA.

Clandinin et al. (52) GA ≤35 weeks

Mean GA 29.4/28.8 vs.

29.6 weeks

DHA + AA (Algal/Fish

DHA) in formula from

within 10 days of starting

enteral feeds until 12

months CA

Intervention: preterm

7/6.8

Post-discharge 7.4/7.1

Term 9.1/8.6

Control:

preterm 7.8

Post-discharge 8.1

Term 10.4

2:1 361 randomized, 46/59

vs. 54 evaluated at 18

months CA.

Safety and efficacy in

growth and

development.

BSID-II at 18 months

CA demonstrated

higher MDI and PDI in

supplemented groups

compared to control.

Ross preterm lipid

study (53)

GA <33 weeks

Median GA 30 weeks

DHA + AA from fish/fungi

and egg/fish in formula

from start of enteral feeds

until 12 months CA

Intervention:

Preterm 5.8/6.5:1,

post-discharge

7.8/8.1:1

Control:

Preterm 6.7:1

Post-discharge 8:1

Preterm 1.6:1

post-discharge

2.7:1

470 included, 43 breast

feeding, Still on diet at

12 months:

Intervention, fish/fungal

89/140 egg/fish 91/143

Control: 91/144

BSID at 12 months,

Fagan intelligence test

at 6 and 9 months,

vocabulary checklist at

9 and 14 months. No

general effect between

groups.

Improved motor index

in lower BW group that

followed study

protocol.

Fewtrell et al. (54) BW <1,750 g and GA

<37 weeks

Median GA 30.3 vs.

30.4 weeks

DHA, EPA + AA

in formula from 10 days to

discharge

Intervention 11.8:1

Control 15.3:1

1.8:1 195 randomized,

84 vs. 74 evaluated at

18 months

BSID-II at 18 months

CA. No sig differences

between groups.

Non-significant higher

MDI in intervention

group in infants <30

weeks GA.

Fewtrell et al.

(55, 56)

BW ≤2,000 g

and GA <35 weeks

Mean GA 31.2 vs.

31.1 weeks

DHA + GLA

in formula from

randomization (mean 14

days, range 1–50 days)

until 9 months CA

Intervention 6.3:1

Control 7.2:1

(GLA + AA):DHA

Approx 2:1

236 randomized, 106

vs. 93 evaluated at 18

months.

BSID-II at 18 months

CA. No sig differences

between groups.

Higher MDI among

boys in the intervention

group. No general

differences at 10 years

follow up.

(Continued)
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TABLE 1 | Continued

References Study subjects Intervention Ratio n6:n3 Ratio AA:DHA Number of infants Primary Outcome Comment

van Wezel-Meijler

et al. (57)

BW <1,750 g

and GA <34 weeks

Mean GA 30.4 weeks

DHA + AA

in formula from post-natal

day 3–7 until 6 months CA

Not known from

publication

2:1 55 randomized,

22 vs. 20 evaluated.

Myelination on MRI at 3

and 12 months CA. No

sig differences between

groups.

No difference in MDI or

PDI on BSID-III at 3, 6,

12, or 24 months CA.

Fang et al.

(58)

GA 30–37 weeks

Mean GA 30.3 vs.

30.0 weeks

DHA + AA

in formula from full feeds

(+ weight >2,000 g +

PMA >32 weeks)

until 6 months CA

Total content not

known from

publication.

Ratio LA:ALA in both

intervention and

control 10:1

2:1 27 randomized 15 vs. 9

evaluated at 12 months

CA.

Visual acuity at 4 and 6

months, BSID at 6 and

12 months CA. Higher

MDI and PDI in

intervention group.

Small study.

Significance by

repeated measures

ANOVA stated, CI not

reported.

DHA only 0.05% of

total fatty acids.

Carlsson et al.

(59–61)

GA <33 weeks

Mean GA 28.1 weeks.

DHA + EPA in formula.

Enrolled at mean 25 days

post-natal age,

supplementation until 9

months CA

Intervention: preterm

5.2:1

Post-discharge 6.0:1

Control:

Preterm 6.4:1

Post-discharge 6.9:1

No AA 79 randomized, Fagan:

33 vs. 34 evaluated at

12 months.

BSID: 27 vs. 27

evaluated.

Fagan test of infant

development at 6.5, 9

and 12 months CA

demonstrated that the

intervention group had

increased number of

looks and decreased

look duration.

Only n-3 fatty acids in

supplementation.

Term formula used from

term.

No difference in BSID

at 12 months CA.

Carlsson et al.

(60, 62)

GA <33 weeks

Mean GA 28.1 weeks.

DHA + EPA in formula

from post-natal day 2–5

until 2 months CA

Intervention: 8.0:1

Control: 8.8:1

No AA 59 recruited,

Fagan: 15 vs. 12

evaluated.

BSID: 21 vs. 22

evaluated.

Fagan test of infant

development at 12

months CA

demonstrated that the

intervention group had

increased number of

looks and decreased

look duration.

Only n-3 fatty acids

in supplementation.

Higher MDI in

supplemented group at

12 months CA.

Premie Tots Trial

(63)

GA <30 weeks

Selected infants with early

symptoms of autism

spectrum disorder (ASD).

Mean GA 27 weeks

Omega 3-6-9

vs. canola oil

Included at 18–38 months

CA

Duration of intervention

90 days

Intervention 0.4:1

Control

2.3:1 (supplementation)

GLA:DHA

Approx

0.4:1 (supplementation)

31 randomized,

all evaluated in ITT

analyzes. Three infants

missing outcome data

handled using

maximum likelihood

estimation.

Parent reported ratings

of behavior and

development before

and after intervention.

Greater improvement in

ratings of BITSEA

sub-scale ASD in the

intervention group.

Later intervention in

select at-risk group.

Dolphin trial (64)
GA <31 weeks: (SGA or

IVH >1)

GA >30 weeks: HIE 2–3,

or IVH >1, or

neuroimaging abnormalities

DHA, EPA, AA, choline,

uridine, cytidine, B12,

iodine and zinc added in

all enteral feeds from full

feeds until 2 years CA

Approx 0.1:1

(supplementation)

Approx 0.1:1

(supplementation)

59 randomized, 24 +

19 evaluated

BSID-III at 24 months

CA. No sig differences

between groups.

Preterm and term

infants at risk.

Multiple interventions.

Non-significant higher

language and cognitive

scores in the

intervention group.

*Calculated n-6:n-3 ratio, addition of 0.5mL study oil per 100mL breast milk using the mean fatty acid compositions of human milk and the study oils presented in Henriksen et al. (47).

ALA, α-linolenic acid; AA, arachidonic acid; ASD, BSID, Bayley scales of infant development; CA, corrected age; DHA, docosahexaenoic; EPA, eicosapentaenoic acid; GA, gestational age; GLA, γ-linolenic acid; LA, linoleic acid; LCPUFA,

long-chain polyunsaturated fatty acid; MDI, mental development index; PDI, psychomotor development index.
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plasma after the intervention was associated with higher MDI
and sustained attention at 22 months (48). Results from that
study also showed that higher blood levels of DHA at 8 years of
age were associated with higher IQ at that age (51).

Two studies continued intervention with AA/DHA
supplemented formula until 12 months CA (52, 53). Clandinin
et al. randomized infants born before 36 weeks of GA. Low birth
weight infants who had received >80% formula intake before
term and >100% formula intake after term were evaluated. The
results showed that infants who had received supplemented
formula had higher MDI and psychomotor development
index (52) at 18 months CA. Mean MDI was 87 in a group
supplemented with fish-DHA, 83 in a group supplemented
with algal-DHA and 77 in the unsupplemented group. The
Ross preterm lipid study included infants born before 33
weeks GA. The study did not demonstrate any general effect of
supplementation (DHA + AA in formula) from start of enteral
feeds until 12 months CA on BSID evaluated at 12 months CA
(53). Fewtrell et al. have published results from two trials. The
first study included preterm infants born before 37 weeks of GA
with a birth weight of <1,750 g and evaluated an intervention
of AA, EPA, and DHA until discharge (54). The second study
included infants born before 35 weeks of GA with a birth weight
≤2,000 g and evaluated an intervention of γ-linolenic acid and
DHA to 9 months CA (55). Neither of the trials demonstrated
any statistically significant differences on BSID-II at 18 months
CA compared to control formula. Two additional smaller trials
presented conflicting results of supplementation with AA and
DHA to 6 months CA (57, 58). Fang et al. reported higher MDI
and psychomotor development index in the intervention group
at 6 and 12 months CA (58), whereas no differences were shown
in the study by van Wezel-Meijler et al. at 3, 6, 12, or 24 months
CA (57). In most studies a combination of DHA and AA have
been used as intervention. Two older trials studied addition of
only n-3 LCPUFAs (DHA + EPA) to infants born before 33
weeks GA (59, 62). In the first trial the intervention period was
until 9 months CA. No differences in cognitive development
at 12 months CA were demonstrated (60). In a later trial, the
duration of the intervention was shorter, until 2 months CA,
and the supplemented infants had higher MDI at 12 months CA
(60). Both trials demonstrated a more mature pattern of visual
attention in the intervention group at 12 months CA, and the
authors speculated this was related to more rapid information
processing (61, 62).

Two studies have evaluated the effects of LCPUFA
supplementation on specific preterm populations at higher
risk of neurodevelopmental impairment. One study initiated
intervention at 18–38 months CA in a selected group of preterm
infants born before 30 weeks’ gestation who demonstrated
early symptoms of autism spectrum disorder (ASD). They
demonstrated an effect on parent-reported autism symptoms
after 90 days of intervention that included γ-linolenic acid,
EPA and DHA (63). Another study provided a combination of
DHA, uridine and choline (components of phosphatidylcholine),
and micronutrients to preterm and term infants who fulfilled
brain injury inclusion criteria that indicated a higher risk of
neurodevelopmental impairment. Treatment was given from

start of full enteral feeding to 24 months CA (64), and included
a dose of DHA equivalent to recommended total daily intake,
as well as a very low dose of AA. Of the 59 randomized infants,
66% completed full dose supplementation for 24 months. The
results did not achieve significance, although higher cognitive
and language scores in the supplemented group at 24 months
indicated a possible effect.

CONTEXT OF FATTY ACID
SUPPLEMENTATION IN PRETERM INFANT
TRIALS

Across all the studies found, the total n-6:n-3 ratio was higher
in the control formula compared to the intervention formula
in the majority of the studies, but the differences were small.
Ratios around 7:1 have been most commonly used, but preterm
control formulas had n-6:n-3 ratios ranging between 5:1 and 15:1.
The contribution of DHA was 0.2–0.3% of total fatty acids in
most of the studies, as high as 1% in two of the studies (44, 47),
and 0.5% in one study (54). LA content varied from 0% of total
fatty acids in a study by Alshweki et al. that only added AA and
DHA in control and intervention formula (43), to around 11%
in the studies by Fewtrell et al. (54, 55), and around 20% in the
studies by Carlson et al. (59) and Carlson and Werkman (62).
As LA is highly-susceptible to peroxidation and mechanistically
competes for the same enzymes involved in the metabolism of
AA and DHA, variability in LA (and other fatty acid) content in
the formula or breast milk of the intervention studies completed
so far may provide a significant confounding factor.

Epidemiological studies have also demonstrated associations
between LCPUFAs, brain structure and neurodevelopment in
preterm infants. In a cohort study of 51 infants born before
36 weeks of GA, AA:DHA ratio was negatively associated with
mental, motor development and orientation on BSID-II at 18
months in adjusted analyses (65). Tam et al. showed that higher
levels of DHA in erythrocytes in an early post-natal age was
associated with reduced risk of IVH and improved language
scores at 30–36 months CA among 60 infants born before 32
weeks of GA. They also demonstrated associations between levels
of both DHA and LA and diffusivity in specific brain regions (26).

During the initial post-natal days, preterm infants, particularly
those born extremely preterm, often rely exclusively on
parenteral nutrition. Parenteral lipid composition might
therefore be important to reduce post-natal deficiencies of
LCPUFAs. No published studies of newer lipid emulsions
containing DHA have reported neurodevelopmental outcome
(66, 67). Solely parenteral intervention is unlikely to be sufficient
to provide preterm infants LCPUFAs at intrauterine rates, but
might be important in a select group of infants with a long period
without enteral nutrition.

FATTY ACID RATIO AND
NEURODEVELOPMENT IN TERM INFANTS

Studies of term infants have demonstrated some benefit of
LCPUFA supplementation, as well as the importance of finding
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a proper ratio. In the DIAMOND study, term infants were
given post-natal supplementation with three different doses of
DHA, at a AA:DHA ratio of 2:1, 1:1, and 0.7:1 compared to
unsupplemented control formula. The trial was conducted in
two different centers (68). One of the centers, with study infants
from a population with a low socioeconomic status, performed
cognitive testing every 6months, and demonstrated higher scores
in the intervention groups on several tests (69). Positive effects
were seen primarily with ratio 2:1 and 1:1. At 6 years verbal
IQ was higher when all supplemented groups were compared
to the control group. Follow-up at 9 years demonstrated effects
on brain structure, function, and neurochemical concentrations.
The group with 1:1 supplementation had greater connectivity
between pre-frontal and parietal regions, and groups with 2:1 and
1:1 supplementation had greater white matter volume in regions
associated with attention and inhibition (70). Results from the
other center in the DIAMOND study demonstrated higher MDI,
higher emotional regulation scores and higher language scores
when all supplemented groups were compared to the control
group (71).

MATERNAL DIET

Maternal LCPUFA status is affected by dietary intake and
fatty acid metabolism related to variability in desaturase genes
(40). Polymorphisms in the FADS gene of the mother have
been associated with IQ of the child (72), and have also
been shown to modify the association between breast milk
and IQ (73). In the last century there has been a shift in
dietary fatty acid intakes, with a 20-fold increase in intake of
vegetable oils without any significant changes in our genes (74–
77). The shift in diet is illustrated in a study of US women
demonstrating an increase in the LA:ALA ratio in breast milk
samples from the 70s and onwards (78). Higher n-6:n-3 ratio is
also associated with increased risk of obesity (79), and obesity
is related to increased risk of preterm birth (80). One recent
study also demonstrated association between low maternal DHA
and EPA levels and increased risk of preterm birth (81). The
most recent Cochrane review concluded that there is high
quality evidence from multiple clinical trials that n-3 LCPUFA
supplementation reduces the risk of preterm birth and low
birth weight (82). Some differences in neurodevelopment were
noted in this review, but the evidence was graded as low
to very low quality (82). Trials of LCPUFA supplementation
during pregnancy have also not specifically presented results
of neurodevelopment in infants born preterm (83–90). Two
big cohort studies have demonstrated a negative association
between n-6:n-3 ratio of maternal intake during pregnancy
and neurodevelopment in term infants (91, 92). Significant
interaction between socioeconomic factors, DHA intervention
and cognitive outcome have been demonstrated (88, 89). For
instance, in the recent KUDOS trial (Kansas University DHA
Outcomes Study), DHA supplementation during pregnancy was
associated with a number of improved cognitive outcomes, but
this effect was lost after adjusting for socioeconomic status (SES)
(93). We speculate that diets in low resource settings are more

likely to be higher in LA relative to DHA intake, and dietary
interventions could have a greater effect in these populations.
However, little high-quality evidence exists to examine n-6 and
n-3 intakes at the population level. Two studies using data
from the National Health and Nutrition Examination Survey
(NHANES) found that both EPA/DHA and LA intake increase
with increasing education and income-to-poverty ratio (94, 95).
However, this data is notoriously inaccurate, with almost two-
thirds of female participants reporting dietary intakes that are
not physiologically plausible (96, 97). This is particularly relevant
considering that the accuracy of dietary reporting decreases with
increasing body mass index, and lower SES is associated with
higher body mass index, particularly in women (98). As LA
intake has steadily increased in recent decades, the baseline intake
across all levels of SES may be such that n-6 reduction strategies
need to be implemented alongside DHA supplementation in
order to reduce oxidized linoleic acid metabolites (39). As higher
maternal SES may protect against some of the negative effects
of suboptimal n-6:n-3 intake ratios, it is of particular interest
to examine whether levels of LA intake and supplementation
with DHA have a more pronounced effect in populations with
lower SES.

DISCUSSION

No single LCPUFA acts in isolation, and the associations between
brain development, inflammation and injury are complex. Much
of the research to date, including many interventional trials,
has targeted the addition of supplemental DHA. Many trials
have also included the n-6 AA, and a few clinical trials have
examined the effect of AA:DHA ratio on neurodevelopment.
The RCTs in this review utilized different LCPUFAs, different
doses, different durations, and a variety of outcome measures.
Difference in cognitive outcome evaluated with some version
of BSID at 18 months CA was the most common primary
outcome. To achieve 80% power and 95% confidence to detect
a 6 point difference in BSID mental developmental index (MDI)
between groups with an effect size (ES) of 0.4, ∼100 would
be needed in each group. Four of the trials evaluated ∼100
infants (44, 53–55). In the DINO trial the power calculation
was based on a power of 85%, and also included sub group
analyses. However, with a more conservative estimate of 85%
power to detect a 4 point difference in MDI between controls
and infants treated with DHA, 253 infants would be required
in each group. The DINO trial and the Norwegian trial
investigated effects on attention and behavior using the Strengths
and Difficulties Questionnaire (SDQ) and did not demonstrate
differences between the groups. In a subset of the DINO trial,
61 infants given a high DHA supplement were compared to
64 infants who had received a standard DHA supplement at
the age of 3–5 years (45). In the Norwegian trial 45 infants
in the intervention group were compared to 53 infants in the
control group at 8 years of age (50). Based on the available data,
an intervention including DHA would expect an ES of 0.3 in
total SDQ score as well as its subscales (emotional symptoms,
conduct problems, hyperactivity-inattention, peer relationship

Frontiers in Pediatrics | www.frontiersin.org 8 January 2020 | Volume 7 | Article 533

https://www.frontiersin.org/journals/pediatrics
https://www.frontiersin.org
https://www.frontiersin.org/journals/pediatrics#articles


Klevebro et al. Fatty Acids and Preterm Neuroprotection

problems, and prosocial behaviors). To detect a meaningful 1.5
point difference in total SDQ score with a standard deviation
of 4.5 with 85% power, 235 per group to include comparisons
of subscales. This suggests that, with the exception of the
DINO trial, the majority of studies have been significantly
underpowered to detect differences in developmental outcomes
after DHA and/or AA supplementation. So while a lot of both
preclinical and clinical evidence indicates the importance of
LCPUFAs in neurodevelopment and neuroprotection, the best
clinical approach is far from evident.

The timing and duration of the intervention are of
importance. None of the studies in this review targeted maternal
diet during pregnancy and lactation as well as infant diet during
both the neonatal and post-term period. Preclinically, mice
fed a diet deficient in n-3 fatty acids during pregnancy and 6
months thereafter had altered synaptic protein expression in the
hippocampus and impaired memory at 6 months compared to
mice fed and diet adequate in n-3 fatty acids. If the diet was
changed at 3 weeks post-natally the results were normalized, but
if the diet was changed at 2 or 4 months the content of fatty acids
in the brain was normalized but the effect on synaptic protein
expression, learning and memory were not (99). Results from the
trials in preterm infants as well as the fact that the brain continue
to accumulate DHA the first 2 years of life indicate that continued
intervention past term age might increase the probability of long
term effect.

The selection of infants in the included studies also
varied. Some trials examined the effect on brain development
in a population that excluded infants with moderate to
severe neonatal complications, who are at the greatest risk
of developmental impairments. One of the trials targeted a
population at high risk of neonatal brain injury (64). Three of
the trials indicated greater benefit of LCPUFA supplementation
on neurodevelopment in more immature infants (44, 53, 54).
Importantly, the studies in this review were conducted in settings
with good access to neonatal care, which leaves the possibility that
interventionwith LCPUFAsmight prove to bemore beneficial for
moderate preterm infants in a low resource setting.

Ensuring consistent and sensitive outcome assessments will be
important when determining the effects of additional LCPUFAs.
The intervention might also affect different regions of the brain
during different periods, which is why the dosing and the
timing of the intervention matter to the expected outcome.
In the trial by Henriksen et al., a positive result on free-play
sessions at 20 months CA in the intervention group suggested
that supplementation with AA and DHA might be related to
improved attention (48). Better sustained attention at 22 months
CAwas also associated with DHA status at discharge in that study
(48). Studies in term infants have demonstrated better sustained
attention at 5 years of age in term infants whose mothers were
given DHA supplementation during pregnancy (90) or the first
months after birth (100). A population-based cohort study in
Spain demonstrated that higher AA:DHA ratio in cord blood was
associated with higher risk of subclinical ADHD symptoms at
7 years of age (101). Reviews and meta-analyses of intervention
studies typically focus on a global outcomemeasure, such as BSID
at 18 months CA. However, LCPUFA intervention might lead to

more subtle effects, and therefore specific cognitive assessment
measures, such as attentional capacity, may be more relevant.

Different types of supplementation may specifically benefit
different brain regions. For instance, classes of phosphoglycerides
in white and gray matter have unique profiles of LCPUFAs
(102). Higher levels of DHA in erythrocytes after birth have been
associated with increased gray matter volume in preterm infants
(103). DHA is highly prevalent in serine phosphoglycerides
in the cerebral gray matter, which is important for long-
term potentiation, critical to memory formation (104, 105).
Similarly, spatial learning and memory was improved in rats
given post-natal DHA supplementation, but excess DHA had
an adverse effect (106). Unfortunately, however, few studies
included specific tests of memory function. In a 10 years follow-
up, Fewtrell et al. performed several specific tests of learning
and memory. They did not demonstrate any general differences
between the randomized groups, but among 39 infants who
were fed exclusively formula and no breast milk, infants fed trial
formula containing γ-linolenic acid and DHA had better results
on some of the cognitive subtests and higher word-pair learning
scores (56). Both control and supplemented formula in the DINO
trial had a higher content of LA and a higher total n-6:n-3
ratio compared to breast milk from both mothers who received
placebo capsules with soy oil and DHA enriched capsules with
tuna oil (45). Therefore, it is worth considering the composition
of fatty acids in background feeding and what proportion of trial
formula and supplement that has been given. For instance, in rats,
a maternal diet with similar DHA intake but 10-fold higher LA
intake decreased DHA levels in the brain and worsened motor
deficits after hypoxic-ischemic brain injury in the late-preterm
equivalent rat (107).

Asmetabolites of primarily n-3 LCPUFAs, the specialized pro-
resolving mediators display a wide-range of anti-inflammatory
and cytoprotective functions including decreased cytokine and
PG/LT release, decreased recruitment of peripheral neutrophils,
and class-switching of activated macrophages and microglia (31,
108). All LCPUFAs utilize the same enzymes for conversion
to biologically active eicosanoids (36, 109), and the availability
of LA, AA, EPA and DHA as substrates affect the formation
of pro-inflammatory and pro-resolving mediators (37–39, 110).
Neuroprotective effects of exogenous administration of pro-
resolving mediators have been demonstrated in vitro and in
animal studies (111–113). In a mouse model, increased n-3
fatty acids reduced preterm birth, and were also associated with
reduced gene expression of pro-inflammatory cytokines as well as
increased levels of pro-resolving mediators (114). Increased LA
availability might both decrease the production of pro-resolving
mediators, and increase the production of oxidized linoleic
acid metabolites. Pro-resolving lipid mediators may shorten the
times required for cessation of inflammation, possible leading
to decreased tissue injury. Experimentally, deficiencies in pro-
resolving mediators as well as high levels of oxidized linoleic
acid metabolites have been associated with chronic inflammation
and acceleration of associated disease processes (115–119). A low
n-6:n-3 fatty acid ratio, both in the diet and in the blood, is also
associated with an increased risk of adult neurological diseases,
including stroke and dementia (120–122).
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AA and DHA seem to have antagonistic and synergistic effects
in terms of response to injury, and both are crucial for normal
brain development. In baboons the levels of AA in the brain were
not affected by dietary intake, whereas the levels of DHA were
(123). Studies in rats have also shown that the most important
determinant of membrane fatty acid composition in the brain
was the dietary n-6:n-3 ratio (124). However, the optimal intake
of DHA during the neonatal period in humans has not been
determined. At high levels of DHA and EPA, AA becomes
suppressed (125), and correlation between low levels of AA and
poor growth have been demonstrated (126). Rodent models of
neonatal brain injury have demonstrated neuroprotective effects
of DHA through several potential mechanisms (27, 127, 128).
Labrousse et al. demonstrated association between n-3 fatty acid
deficiency and increased levels of cytokines (127). Suganuma
et al. showed that DHA supplementation during pregnancy
reduced oxidative injury and apoptosis in neurons in a model
of neonatal hypoxic ischemic encephalopathy (128). Substrate
competition and enzyme inhibition might limit the conversion of
ALA and EPA to DHA, especially if there is an abundance of LA
(129, 130). Makrides et al. demonstrated that infant formula with
the same content of LA but lower ratio of LA:ALA resulted in
higher levels of n-3 fatty acids (131). Importantly, the capacity for
enzymatic conversion of ALA to DHA is likely to be insufficient
relative to the needs in preterm infants (13, 132).

Though DHA is essential for normal neurodevelopment, there
is likely to be an upper of limit of benefit, depending on the
specific context. In the DIAMOND study of term infants, the
highest DHA intake—relative to the intake of AA (AA to DHA
ratio of 1:2)—was not associated with positive effects on several
of the outcome measures whereas the groups with AA to DHA
ratios of 2:1 or 1:1 demonstrated positive results (69). In the
DINO trial, however, preterm infants with high DHA intake
showed better results in some sub-groups. This illustrates the
need for a comprehensive approach to LCPUFA supplementation
considering both the levels and ratios of multiple fatty acids and
the period of supplementation. As a rapid relative accumulation
of AA in the brain is not seen until term-equivalent age
(Figure 2C), the need for DHA supplementation would appear
to be higher during the preterm period, with an increase in AA to
DHA ratio being more appropriate after term-equivalent age.

Although the most recent Cochrane review did not show
any significant effect of LCPUFA supplementation (42), two
other recent systematic reviews, Shulkin et al. (133) and Wang
et al. (134) concluded that LCPUFA supplementation in preterm

infants has short term neurodevelopmental benefits. Lapillone
and Moltu also concluded that there is evidence of short term
benefit with a high dose DHA supplement and their review
focused on several areas of benefit in preterm development
(135). Smith and Rouse published a narrative review in 2017
focused on the role of DHA in preterm infants (136), and
Laurizen et al. have written an interesting commentary on
AA (137). A comprehensive overview of several fatty acids in
infant development was published by Delplanque et al. (40).
Our focus has been on the roles of n-6 and n-3 fatty acids in
neurodevelopment of preterm infants, combining a discussion
focused on the n-6:n-3 fatty acid ratio with a summary of RCTs
of post-natal LCPUFA supplementation to preterm infants with
neurodevelopmental outcomes.

SUMMARY

The complex interplay between LCPUFAs, their metabolites,
preterm brain development and mechanisms of brain injury
is not fully understood. Future research should have a more
comprehensive approach to the LCPUFAs and especially examine
the potential harm of unbalanced n6:n3 and AA:DHA ratios,
including those in the maternal diet. Comparisons of different
LCPUFA compositions, resulting in differing n-6 to n-3 ratios
by for example limited or high intakes of LA is an area of
priority in our view. Maternal diet and genetic activity need be
considered in future studies. Other reviews have also concluded
that there is a need for studies with large sample sizes that
enable subgroup analyses (42). Outcome measures of LCPUFA
supplementation to preterm infants need to target cognitive
development, attention and behavioral disorders. Given that
there is some evidence of effect on attention from previous
studies in preterm infants as well from studies of other groups
at risk of attention problems, outcome measures focused on
attention would be an interesting priority. The neuroprotective
potential of LCPUFAs to specific groups who have already
suffered intra cerebral insults also needs further evaluation.
Utilized correctly, LCPUFAs could prove to be a cost effective and
health promoting part of neonatal care.
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