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Tuberculosis is killing millions of lives every year and on the blacklist of the most appalling public health problems. Recent findings
suggest that secretory protein of Mycobacterium tuberculosis may serve the purpose of developing specific vaccines and drugs due to
their antigenicity. Responding to global infectious disease, we focused on the identification of secretory proteins in Mycobacterium
tuberculosis. A novel method called MycoSec was designed by incorporating g-gap dipeptide compositions into pseudo amino acid
composition. Analysis of variance-based technique was applied in the process of feature selection and a total of 374 optimal features
were obtained and used for constructing the final predicting model. In the jackknife test, MycoSec yielded a good performance with
the area under the receiver operating characteristic curve of 0.93, demonstrating that the proposed system is powerful and robust.
For user’s convenience, the web server MycoSec was established and an obliging manual on how to use it was provided for getting

around any trouble unnecessary.

1. Introduction

Mycobacterium tuberculosis (M. tuberculosis or MTB), also
known as acid-fast bacilli, is the causative pathogen of the
contagious disease tuberculosis (TB). Over the two decades,
despite booming development of molecular technologies and
diagnostic platforms, TB remains a disastrous global health
threat ranking alongside the human immunodeficiency virus
(HIV) as the second killer worldwide [1]. There were an
estimated 9.6 million new TB cases in 2014, and China is
bearing 10 percentage of the global total according to the latest
World Health Organization (WTO) report [2]. To reverse
the severe situation, constant efforts on developing effective
vaccines as well as controlling the spread of MTB are in
long term needed. Since delayed or incorrect diagnosis of
TB markedly aggravates the epidemic of M. tuberculosis, it is

urgent to develop method for credible early-stage diagnosis
of TB and comprehensive understanding of the intrinsic
pathogenesis of M. tuberculosis, especially the multidrug-
resistant strains of M. tuberculosis (MDR-TB).

Recent researches suggest that secretory protein antigens
can be used to detect antibodies in infected specimens [3].
And it is a well-established fact that effector proteins are
mostly secretory proteins that stimulate infection by manip-
ulating the host response [4]. In line with nonsecretory pro-
teins, M. tuberculosis secretory proteins are also assembled
in ribosomes but transported to extracellular milieu through
certain specific secretion system to attack host cells for sur-
vival and reproduction, thus changing the host cell microen-
vironment and causing grievous tubercular symptoms in
infected individuals. Hence, distinguishing secretory proteins
from nonsecretory proteins is a matter of grave concern for
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tracing the real pathogenic factors and developing vaccines
or drugs against TB.

Benefited from the next-generation sequencing technol-
ogy, the amount of protein sequences is exploding with an
exponential growth, which is far beyond the capacity of
classical biochemical analysis through advances in experi-
mental facilities and molecular biotechnologies. Faced with
such an embarrassment, appropriate and fast computational
methods exploit a fresh avenue to investigate the properties
of M. tuberculosis proteins. However, to the best of our
knowledge, few computational works focused on secretory
proteins in M. tuberculosis. Since a majority of secretory
proteins have a signal peptide by which they were exported
via the signal peptidase pathway, in 2009, Leversen et al.
evaluated the performance of nine signal peptide prediction
algorithms for identification of mycobacterial signal peptides
using sequence data from proteomic methods [5]. Sequential
and structural characteristics of secretory proteins also help
to address the problem. In 2010, Vizcaino et al. identified
potential secretory proteins from Mycobacterium tuberculosis
H37Rv by screening its genomes using machine-learning
tools [6]. The prediction of subcellular locations of M.
tuberculosis proteins also provides vital clue for identifying
secretory proteins. Recently, Zhu et al. used a support vector
machine- (SVM-) based model to predict the subcellular
localization of mycobacterium proteins [7]. The success on
mycobacterium proteins as mentioned above suggested that
bioinformatics approaches are effective strategy for mining
useful information and providing insights into both basic
research and drug design.

Thus, the current study was devoted to develop a bioin-
formatics approach to identify secretory proteins in M.
tuberculosis. The work will describe how to construct a valid
benchmark dataset, how to develop an effective mathematical
expression to formulate the proteins, and what kinds of
machine-learning method and cross-validation tests were
used in the prediction model. Finally, based on the proposed
method, a web server called MycoSec was established.

2. Material and Methods

2.1. Benchmark Datasets. The original datasets used in this
study were extracted from the Universal Protein Resource
(UniProt) [8]. To guarantee a good quality of data, pro-
teins in UniProt were collected confidently according to
the following criteria: (I) only those from M. tuberculosis
were considered; (II) only those reviewed and annotated
by experts were chosen; (III) sequences with ambiguous
residues, such as “B,” “X,” and “Z,” were discarded; (IV)
sequences that were inferred from homologous proteins
were eliminated; (V) sequences that were fragments of
other proteins were excluded; (VI) sequences that have less
than 16 amino acids were removed to meet the parameter
(A) requirement (see Section 3.1); (VII) sequences with the
keyword “secreted” or “secretory vesicle” in the “subcellular
location” column were regarded as secretory proteins (posi-
tive samples), while sequences without these keywords were
considered as nonsecretory proteins (negative samples or
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control samples). After going through the above processes, a
total of 420 samples were reserved, including 63 positives and
357 negatives. To exclude any homologous bias which may
cause overestimation problem of final prediction results, we
clustered these protein sequences with the CD-HIT program
[9] by setting 30%, a rigorous value of this parameter, as the
cutoft threshold of sequence identity to remove the redundant
part. As a result, the benchmark dataset S containing 35
secretory proteins and 266 nonsecretory proteins can be
expressed as

S=S"us’, )

where S* represented the positive subset, S~ represented the
negative subset, and the symbol “U” represents “union” in the
set theory. More detailed information of the datasets can be
downloaded from http://lin.uestc.edu.cn/server/MycoSec/
data.html/.

2.2. The Representation of Protein Samples. Translating con-
ventional biological problems into computable mathematical
models is usually adopted as an accommodation to the
requirement of bioinformatics analysis. A protein sequence
with total number of L amino acids is usually formulated as

P=RR,R; R}, (2)

where R; (i = 1,2,3,...,L) denotes the ith amino acid
residue in the query protein sample P, of which L is the
length of the protein. Almost all the existing machine-
learning methods, regardless of supervised and unsupervised
or semisupervised, such as SVM [10-13], Artificial Neural
Network (ANN) [14], K-Nearest Neighbor (KNN) [15], and
ensemble classifiers [16-18], can only handle vectors with
the same dimension rather than sequence samples [19].
Meanwhile, data discretization is also required by main-
stream feature selection strategies [20-22]. Accordingly, the
concept of discrete vector is proposed to realize more general
representations of sequence fragments.

The pseudo amino acid composition (PseAAC) is a
widely used method for representing protein sequences for
its annexation of long-range sequence-order information
and the correlation of physicochemical properties between
two residues, as well as its balance between representative
capability and computational expense. Inspired by PseAAC,
we made an improvement by substituting amino acid com-
position for g-gap dipeptide composition. Thus, each protein
sequence in our benchmark dataset can be denoted by a
400 + nA dimension vector; that is,

T
P = [x), %, -5 X400s X40041 - +» Xa004mr] > 3)
where the first 400 elements x;, x,, ..., X,q, are the g-gap
dipeptide composition and the next nA elements x4,
X40042> - - - » X004, are the first tire to Ath tire correlation fac-
tors of protein sequence, which are determined on the basis

of physiochemical properties. “I"” is a symbol of transpose
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operator.x,, (u=1,2,...,400,...,400+nA) can be calculated

as given in

Xu

Ju
400
Z fl+w211 Jj
wT,
ST (400 + 1 < u < 400 + 1),
= Jit@ 11]

where f, (u = 1,2,...,400) is the occurrence frequency of
the uth dipeptide in P, as formulated by

(1 <u <400) (4)

PR .
Ty T Ty ©)

nJ (u = 1,2,...,400) is how many times the uth g-gap
dipeptide appears in P. w is the weight coefficient. n is
the number of physicochemical properties selected. A is the
number of total counted ranks or tires of the correlations
along a protein sequence and T; (j = L,2,...,nA) is the
jth tire correlation factor that reflects the sequence-order
correlation between all the jth most contiguous dipeptides
along a protein sequence, as formulated by the following
formula:

1 L-1
Ty = H i+1
L _ 1 = 1,1
H
n+l +2
L _ 2 = 1,1
L-2 5
T2 = miZIHi,Hz (6)
L-2

1 L-)
n—1
Tur-1 = _/‘ZHI i+A
i1
1 L-A .
Tad = L1 Hija

where the correlation function Hj;, , is calculated by

11+/\ - h” (R ) hn (R1+)L) (7)

where h"(R;) denotes the constant value of the nth kind
physicochemical property for R; and h"(R;, ) denotes the nth
physiochemical property value for R;, . Due to the different
scales of values among various properties, the following
normalization process is necessary to attain nondimensional
data:

hy (R;) = X307 Fg (R,) /20

_ Jz R, -

20 hk

(R,) /20] (8)
(k=1,...,n),

where hlg(Ri) is the original value of the kth kind physico-
chemical property for R;, R, (v = 1,2,...,20) stands for the
vth category amino acid residue, and R, (u = 1,2,...,20)
is defined in the same manner as R,. The normalized values
obtained by (8) will have a zero mean value over the 20 kinds
of amino acids and will remain unchanged if going through
the same conversion procedure again.

It is widely accepted that physicochemical properties of
proteins have impacts upon not only a series of biological
processes [23], such as protein denaturation and renaturation,
cell signaling transduction, and change of solution conductiv-
ity, but also maintaining tertiary structures, further underly-
ing certain molecular functions. Among various properties,
hydrophilicity and hydrophobicity were chosen here on the
basis of a priori knowledge that water is the environment
for the survival of all biological molecules and promotes the
transportation of molecules by an intrinsic liquidity. In our
model, the tire correlation of hydrophilic and hydrophobic
amino acids was investigated by tuning the parameter A in
order to see the global placement in which amino acids were
linked to each other.

2.3. Support Vector Machine. SVM is a welcome and powerful
machine-learning algorithm which has been successfully
used in the realm of bioinformatics for pattern recognition
and classification. Established on the theories of Vapnik-
Chervonenkis Dimension [24] (VC Dimension) and struc-
tural risk minimization, SVM can solve binary nonlinear
classification problems among small samples and achieve
good generalization ability by mapping the input data into
higher dimensional feature space (Hibert space) by kernel
function transformation and then determining an optimal
hyperplane to separate a given set of labeled data. For
multiclass classification tasks, “one-versus-one (OVO)” and
“one-versus-rest (OVR)” are generally applied to extend the
traditional SVM. A brief description of formulation of SVM is
given in [25,26] and, for more details, please see a monograph
[27].

In this work, the toolbox LIBSVM 3.20 was employed to
implement the SVM classifier and perform the prediction,
which can be freely downloaded from http://www.csie.ntu
.edu.tw/~cjlin/libsvm/. The feature vectors of protein samples



formulated by (3) were used as inputs of the SVM. Radial
basis function (RBF) was adopted here on account of better
validity, less deviation, and faster speed in nonlinear training
process compared with other kernel functions. For pursuit
of the optimal model, the penalty constant C and the kernel
width parameter y were tuned in an optimization procedure
using a grid search method, of which the search spaces for
Cand y are [21°,27°] and [27°,27"°] with steps of 271 and 2,
respectively.

2.4. Performance Evaluation. Here we attempted to evaluate
the performance of a statistical predictor from two parts:
(a) evaluating its generalization ability with an impartial
cross-validation method; (b) employing appropriate metrics
to measure its success rate.

Independent dataset test, subsampling (or k-fold cross-
validation) test, and jackknife test are the three widely used
validation methods to evaluate the anticipated success rate
of a predictor [28]. Among the three methods, jackknife test
is deemed the least arbitrary due to its basic idea of leaving
out each sample as the testing set iteratively and then finding
the mean value of these calculations. However, compared to
the other two methods, jackknife test is so time-consuming
that it lags the overall computational efficiency. Thus, to
balance between correctness and efficiency, a trade-off was
made by applying fivefold cross-validation test in the stage
of parameter optimization and then switching to jackknife
test for evaluation of final model once the optimal model was
found.

Here, a set of straightforward methods was provided to
assess the prediction quality by using the following three
metrics: sensitivity (Sn) which is also known as recall,
specificity (Sp), and average accuracy (AA), which are defined
as follows:

TP
Sh=——— (0<Sn<1),
n=fprENy 0sSnsD

TN
Sp=——— (0<Sp<1), 9
P=inspp (0SSPsD) ©)
AA:@ 0<Ac<1).

In (9), TP, TN, FP, and FN are the number of true positives,
true negatives, false positives, and false negatives. Sn indicates
the ability of correctly judging positive samples, Sp suggests
the ability of correctly recognizing negative samples, and Ac
averages Sn and Sp.

The Receptor Operating Characteristic curves [29] (ROC
curves) were also plotted to describe the performance of
models by plotting the Sn (true positive rate (TPR)) against
the 1-Sp (false positive rate (FPR)) across the entire range of
SVM decision values, under which the area (AUC) can serve
as an objective indicator for quality assessments even when
the classes are of very different sizes. The value 0.5 of AUC is
equivalent to random prediction while 1 represents a perfect
one. Accordingly, the larger the AUC is, the more credibility
the predictions have.
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2.5. Feature Selection. Feature selection is very important in
view of dimension reduction for pinpointing distinguishing
features and then improving generalization ability [30]. In the
present study, we performed feature selection by using the
Analysis of Variance (ANOVA), which is known as a robust
and simple method to test the difference in means between
groups, even when the number of observations is uneven in
each group. Besides, it is easily generalized to more than two
groups without increasing the Type 1 error. According to the
basic idea of ANOVA, features can be ranked by their F-
values calculated as follows:

_ Spw)

C 82 (w)

F(u) (10)

where Sé(u) and S%V(u) denote the sample variance between
groups (also called Mean Square Between, MSB) and sample
variance within groups (also called Mean Square Within,
MSW) separately; the detailed formulae were given in

A
X m (X ) Iy = (X0, 27 %, () 1 2y i)
) 2-1 (1)
S‘ZN () = 21'2:1 2321 X, (i> ]2) - (2721 X, (i, ])) /mi )
Yimi =2

where x,,(7, j) is the value of the uth feature of the jth sample
in the ith group defined in (4) and m; is the sample size of each
group (here m; = 35 and m, = 266). For only two groups
were counted in the current study, the degree of freedom
(DOF) between and within groups was 1 and (1, + m, — 2),
respectively. Still, it is apparent that a larger value of F(u)
reflects a better discriminative capability of a feature.

Based on the features thus ranked, we used the incre-
mental feature selection [31] (IFS) to determine the optimal
number of features as described below. The first feature subset
was initialized by a feature with the highest F-value, and
the next subset was composed when the feature with the
second highest F-value was added. We repeated this process
by adding features sequentially from higher to lower F-values
until all candidate features were added. Thus, the N feature
sets thus formed would be composed of N ranked features.
The (th feature set can be formulated as

S =[Fu.Fy... . F] (1<({<N). (12)

For each of such N feature sets, an SVM prediction model
was constructed and examined by the jackknife test on the
benchmark data set. Afterwards, we obtained an IFS curve
in a 2D Cartesian coordinate system with index { as the
abscissa (or X-coordinate) and the AUC as the ordinate (or
Y-coordinate). The optimal feature set is expressed as

S, =|[Fi,E»....,F,| (1<y<N) (13)
with which the IFS curve reaches its peak. In other words,
in the 2D coordinate system, the AUC value reaches its
maximum when X = y.
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3. Results and Discussions

3.1. Parameter Optimization. As we can see from (3) to
(8), the results of the proposed method depended on three
parameters, that is, A, g, and w. A represents the tiers counted
for the global or long-range sequence-order effect and larger
A may contain more global sequence-order information;
g portrayed the local or short sequential tendencies by
measuring the gap between two amino acid residues; and w
is the weight factor imposed between local and global effects
which is usually within the limits of 0 to 1. To search for the
optimal values of the three parameters which can achieve
the highest accuracy, we performed a series of experiments
according to the following standard:

0<g<9 withstepA=1,
1<A<15 withstep A =1, (14)

0<w<1 withstep A=0.1.
Hence, a total of 10 x 15x 11 = 4950 individual combinations
(or points in the 3D parameter space) had to queue up to
be screened for finding the optimal one, which was actually
a routine but tedious process to optimize the model via a
3D grid search [32]. In view of computational efficiency,
fivefold cross-validation was firstly employed to cope with
the prioritization of parameters, and once the optimal values
were determined, the rigorous jackknife test was performed
to evaluate the success rates of the feature set according to the
four metrics defined in Performance Evaluation section. As a
result, the largest AUC of 0.845 was obtained when g = 9,
A=6andw = 1.

The dimension of the optimal feature set was 400 + 2 x
6 = 412, which means that 400 9-gap dipeptide compositions
and 12 additional hydrophilicity/hydrophobicity components
would be incorporated in a feature vector fed into the
predictor. Nevertheless, to evade from noise and overfitting
problems, ANOVA was employed to further optimize the
feature set. By calculating the F-value of each candidate
feature and ranking them in descending order, a series of
feature sets in various sizes were obtained based on IFS
strategy as illustrated in Feature Selection section. The IFS
curve reached its peak when the feature number was 374,
indicating that the feature subset was the least redundant
and the most discriminative one. Consequently, the AUC was
improved from 0.85 to 0.93 and the computational time and
expenses were acutely reduced.

3.2. Comparison with Other Classifiers. Subsequent to the
determination of optimum parameters and feature subset,
we further compared the performance between various
classifiers, namely, SVM, Bayes Net, Radial Basis Function
Network (RBF Network), and Random Forest, by apply-
ing the same sequence and feature data under the same
parameters. The software WEKA (version 3.8) (http://www.cs
.waikato.ac.nz/~ml/weka/downloading.html) was used to
implement the last three classifiers. Likewise, calculations
were made in line with the four metrics illustrated in

TaBLE 1: Comparing the performance between different classifiers.

Algorithm Sn (%) Sp (%) AA (%) AUC
SVM 94.29 80.08 87.18 0.93
Random Forest 45.71 84.59 65.15 0.69
Bayes Net 82.86 55.64 69.25 0.66
RBF Network 85.71 36.09 60.90 0.59
1.0
0,9—-
0.8—-
Iy
= 0.6—-
é 0.5—-
& 04
0.3—-
0.2—-
0.1 ]
o0 11—
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FIGURE 1: ROC curves achieved by SVM, Bayes Net, RBF Network,
and Random Forest in discriminating secretory proteins from
nonsecretory proteins of M. tuberculosis.

Performance Evaluation Section. The results are summarized
in Table 1. From Table 1, although relative similar Sns were
produced by SVM (94.29%), Bayes Net (82.86%), and RBF
Network (85.71%), the differences in other three metrics
among the four classifiers were conspicuous enough to pro-
nounce judgment. Nevertheless, Sn and Sp may lose objec-
tivity because of an imbalance in class sizes, and even when
all samples were misjudged as negative, the Sp and overall
accuracy (OA) would still hang in high levels. Therefore, we
attached more importance to Ac instead of Sn or Sp. As we can
see from Table 1, SVM also achieved the maximum Ac with
8718%, followed by Bayes Net (69.25%) and Random Forest
(65.15%).

In fact, all the metrics mentioned above are static
assessment indicators, except AUC, which emerges as a
dynamic measure depending on ROC and remains objective
under class imbalance conditions. Thus, AUC was chosen
as the foremost evaluation criteria to compare performance
disparities among the four algorithms. To visually view the
dynamic changing process of Sn (also known as true positive
rates or TPR) of a certain algorithm versus its Sp (also known
as true negative rates or TNR), four curves corresponding
to four classifiers were plotted in Figure 1 on the basis of
their confusion matrixes varying with a range of thresholds.
As shown in Figure 1, the SVM gave an AUC of 0.93 in the
discrimination between secretory proteins and nonsecretory



MycoSec: A sequence-based predictor for identifying
secretory protein of mycobacterial proteins

| Read Me | Data| Citation |

Enter the protein sequences in FASTA format (Example):

Or upload a file in FASTA : Browse. ..

Submit | Clear

FIGURE 2: Home page of MycoSec web server at http://lin.uestc.edu
.cn/server/MycoSec/.

proteins, which is higher than that of the other three classi-
fiers. Furthermore, the tendency of SVM curve was steeper
and ran much closer to the vertical axis than that of the others,
which signified a better performance in ROC curve. Thus,
compared with the other three state-of-the-art classifiers,
SVM is much more powerful and robust for classifying
secretory and nonsecretory proteins. Two main reasons may
lead to the result. SVM is insensitive to the number and
probability distribution of training samples, along with the
dimension of input space. Furthermore, SVM can gain the
global optimal solution of goal function on the basis of convex
optimization theory, while other classifiers based on greedy
learning strategies were usually trapped into locally optimal
solutions.

3.3. Web Server Construction. For the convenience of a
vast majority of experimental scientists, a user-friendly web
server, namely, MycoSec, was established, which is freely
accessible at http://lin.uestc.edu.cn/server/MycoSec/. Below
is a step-by-step guide on how to use the web server.

First, reasonable and clear as you can see in Figure 2, the
homepage provides several buttons and a textbox lying to the
center of the whole. A brief introduction of the predictor and
the caveat when using it would be present on clicking on the
Read Me button.

Second, either type/paste the query protein sequences
into the input box or select a FASTA file from a certain
directory, ensuring that each sequence is longer than 11
amino acid residues and without any ambiguous characters.
Example sequences in FASTA format can be seen by clicking
on the Example button right above the input box.

Third, click on the Submit button to see the predicted
results present in a new webpage. For a query sequence, the
first column of the results shows its actual label, the second
gives the probability that it belongs to secretory protein class,
and the third is the probability that it pertains to nonsecretory
protein class.

Fourth, the benchmark data used in our analysis can be
downloaded by clicking on the Data button for training and
testing our system or your own model.

Finally, click on the Citation button to find the relevant
papers that document the detailed development and algo-
rithm of MycoSec.
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4. Conclusions

Identification of secretory proteins in M. tuberculosis is of
paramount significance for targeting of antigens and vaccine
development, which may contribute to an early diagnose or
cure of the terrible disease tuberculosis. In this paper, we
proposed a SVM-based algorithm to identify secretory pro-
teins in M. tuberculosis. In this method, an improved pseudo
amino acid composition which integrates g-gap dipeptides
along with physicochemical properties was proposed and
used to encode the residue sequences. By parameters search
and feature optimization, we obtained the optimal model
with an AUC of 0.93 validated by jackknife test. Based on
this model, an online predictor MycoSec was established for
the convenience of researchers in relevant fields. We hope the
predictor will be a smart tool in M. tuberculosis research. In
the future, we will combine other features such as evolution
information to improve classification performance.
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