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The exact treatment of Markovian open quantum systems, when based on numerical diagonalization of the
Liouville super-operator or averaging over quantum trajectories, is severely limited by Hilbert space size.
Perturbation theory, standard in the investigation of closed quantum systems, has remained much less
developed for open quantum systems where a direct application to the Lindblad master equation is
desirable. We present such a perturbative treatment which will be useful for an analytical understanding of
open quantum systems and for numerical calculation of system observables which would otherwise be
impractical.

U
nderstanding open quantum systems is of fundamental importance in many contexts of physics, ranging
from traditional atomic and molecular physics1–3 to recent studies of circuit QED4–7 and optomechanical
systems8–10. However, the simulation of open quantum systems is even more demanding than that of

closed systems, and analytical and numerical approximation methods are less developed. This makes theoretical
studies of large open systems particularly challenging and has spurred immense interest in the development of
open-system quantum simulators11 which could also be used to study dissipative phase transitions12–14.

Markovian open quantum systems can be described by the Lindblad master equation15,

_r tð Þ~Lr tð Þ, ð1Þ

which governs the time evolution of the density matrix r in terms of the generalized Liouville super-operator L.
Equation (1) allows for the investigation of system dynamics and of the asymptotic steady state by exact
diagonalization of L or by simulating quantum trajectories16. However, the exponential growth of the Hilbert
space dimension N with system size and the even more dramatic growth of the dimension N2 of the associated
space of linear operators severely limit the possibility of obtaining numerically exact solutions. Approaches
alternative to the exact diagonalization of L include sophisticated numerics such as matrix product methods17–19

and self-consistent projection operator methods20. Although these techniques are suitable for larger systems, they
are only easily applicable to one-dimensional or highly symmetric systems.

For closed quantum systems of large size, perturbation theory is routinely employed as a useful approximation.
In the past, specialized perturbative methods have also been applied to open quantum systems in specific contexts
including full counting statistics21,22, finite-time evolution23 and critical behavior13,14. One example of an open-
system perturbative treatment is adiabatic elimination (generalized Schrieffer-Wolff formalism), which gives a
simplified Liouville super-operator24–27 whenever the spectrum separates into slow and fast degrees of freedom.
Another method consists of a perturbative expansion of dissipative terms23,28, which can yield the approximate
finite-time evolution of systems with small dissipation rates. Moreover, a perturbative treatment for open systems
can be formulated within the Keldysh Green’s function framework based on bosonic or fermionic field
propagators13,14,29.

Here, we present a canonical perturbative method that systematically determines the corrections to eigenstates
and eigenvalues of the Liouville super-operator L. Our treatment is not limited to a certain system or system type.
Rather, it is applicable to a wide range of perturbations and different open quantum systems. Perturbation theory
(PT) similar to the one presented here was previously studied30,31 but results were limited to the steady state and
the issue of non-positivity of density matrices due to truncation was not addressed by the authors.

The density-matrix PT we develop yields results both for the steady state as well as for all other eigenstates of L.
Further, we propose and derive a new PT based on the amplitude matrix. This amplitude-matrix PT guarantees a
properly positive steady-state density matrix. Both kinds of PT can be applied to large open systems with lattice
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structure. Understanding the properties of such open systems is of
immense interest and would otherwise be impractical due to the
system size. The study of such systems is an important motivation
for developing the PT presented here. Its application to open lattice
systems is beyond the scope of the present paper and will be pub-
lished elsewhere.

Results
Density-matrix PT. We propose a non-degenerate density-matrix
PT based on the quantum master equation (1). The Liouville super-
operator L, which serves as the generator of the quantum dynamical
semigroup15, is generally not Hermitian, i.e. the adjoint super-
operator L{ is not equal to L. The right and left eigenstates um and
wm of L associated with the eigenvalue lm[C are defined by

Lum~lmum, L{ wm~ lm

� ��
wm: ð2Þ

Here, m is a non-negative integer labeling the eigenstates. Suitably
normalized, the left and right eigenstates obey the bi-orthonormality
relation Æwm, unæ 5 dmn, where Æx, yæ ; Tr [x{y] is the Hilbert-Schmidt
inner product32 for linear operators x and y. Together, the
eigenvalues lm and the associated right eigenstates um contain all
information of the steady state (labeled by m 5 0) and the
dynamics of the system.

In analogy to closed-system PT, the density-matrix PT is based on
the series expansion of lm and um with respect to a small parameter a set
by the perturbation. Starting point is, thus, the separation of L into two
parts: an unperturbed super-operator L0 and a perturbation a L1, i.e.

L~L0zaL1: ð3Þ

Like the original Liouville operator, L0 must still be a proper gen-
erator of the quantum dynamical semigroup. In addition, L0 should
be solvable in the sense that its unperturbed spectrum {l 0ð Þ

m , w 0ð Þ
m ,

u 0ð Þ
m } is known, or, at least a subset of interest. As appropriate for

non-degenerate PT, we will assume that this part of the spectrum is
non-degenerate.

We next employ a general series expansion of eigenvalues and
eigenstates in a,

lm~
P?
j~0

ajl jð Þ
m , um~

P?
j~0

aju jð Þ
m : ð4Þ

Here, the index j counts orders of perturbation theory and l jð Þ
m and

u jð Þ
m are hence the j-th-order corrections to the eigenvalue and the

right eigenstate. We determine recursion relations for l jð Þ
m and u jð Þ

m by
plugging equations (3) and (4) into equation (2) and examining the
result order by order in a. For the j-th order in a, we obtain the
general recursive expression

L0{l 0ð Þ
m

� �
u jð Þ

m ~{L1u j{1ð Þ
m zD jð Þ

m ð5Þ

with D jð Þ
m ~

Xj

k~1
l kð Þ

m u j{kð Þ
m .

So far, our treatment directly mirrors the well-known derivation of
stationary PT for a closed system. Specifically, replace L0, L1, um and
lm by the unperturbed Hamiltonian H0, the perturbation V, the
eigenvectors jymæ and eigenenergies Em of H ; H0 1 aV. Then,
equation (5) takes exactly the form of the usual recursion equation
in closed-system PT, namely

H0{E 0ð Þ
m

� �
y jð Þ

m

��� E
~{V y j{1ð Þ

m

��� E
zd jð Þ

m , ð6Þ

with d jð Þ
m ~

Xj

k~1
E kð Þ

m jy j{kð Þ
m i. To obtain the recursive relation for

the eigenenergy correction E jð Þ
m , we multiply equation (6) with hy 0ð Þ

m j
from the left. This yields

E jð Þ
m ~ y 0ð Þ

m

D ���V y j{1ð Þ
m

��� E
{
Xj{1

k~1

E kð Þ
m y 0ð Þ

m

���y j{kð Þ
m

D E
: ð7Þ

Analogously, we take the inner product of equation (5) with the left
eigenstate w 0ð Þ

m . This yields the recursion relation for l jð Þ
m ,

l jð Þ
m ~ w 0ð Þ

m ,L1u j{1ð Þ
m

D E
{
Xj{1

k~1

l kð Þ
m w 0ð Þ

m ,u j{kð Þ
m

D E
: ð8Þ

Note that equation (7) is usually simplified further by demanding
hy 0ð Þ

m jy jð Þ
m i~0 for j ? 0. We will instead keep the corresponding term

Æw 0ð Þ
m , u j{kð Þ

m æ in equation (8) for reasons that will become clear
momentarily.

We next turn to the computation of the eigenstate corrections. The
Hamiltonian of any closed system is Hermitian. Hence, H0 provides a
complete orthonormal eigenbasis {jy 0ð Þ

m i}. As a result, jy jð Þ
m i in equa-

tion (6) can be expanded in this eigenbasis. Solving equation (6) is
then straightforward. By contrast, L is not Hermitian and may not
even be diagonalizable. As a result, the expansion of u jð Þ

m in terms of

u 0ð Þ
m will generally fail. We therefore adopt the different strategy of

applying an appropriate generalized inverse to the singular super-
operator (L0{l 0ð Þ

m ). Several options exist for such a generalized
inverse21,22,26,30; here, we choose the Moore-Penrose pseudoinverse
which is well-defined for non-invertible matrices A and which we
denote by AJ1. A brief review of the Moore-Penrose pseudoinverse
is provided in the Supplementary Note. Applying the pseudoinverse
to equation (5), we obtain

u jð Þ
m ~ L0{l 0ð Þ

m

� �J1
{L1u j{1ð Þ

m zD jð Þ
m

� �
: ð9Þ

Details of the derivation of equation (9) are given below in the
Methods section. We emphasize that this pseudoinverse does not
guarantee that hw 0ð Þ

m ,u jð Þ
m i~0, explaining our previous remark on

keeping this term intact.
The steady-state density matrix rs ; u0 defined by Lrs~0 is of

particular interest. As a special case of equations (8) and (9), we can

simplify the corrections l
jð Þ

0 and r jð Þ
s to

l
jð Þ

0 ~0, ð10Þ

r jð Þ
s ~{LJ1

0 L1r j{1ð Þ
s , ð11Þ

see Methods for details. Corrections to l0 and rs were previously
derived30 without using the Moore-Penrose pseudoinverse. The
result for the density-matrix corrections in ref. 30 differs from ours
[equation (11)] merely by a shift,

r jð Þ
s ?r jð Þ

s zcjr
0ð Þ

s , ð12Þ

where cj is a constant.
This shift can be interpreted as follows. Note that equation (5) does

not have a unique solution since (L0{l 0ð Þ
m ) is non-invertible. Indeed,

for any given solution r jð Þ
s of equation (5) its shifted counterpart from

equation (12) is also a solution. The choice of a particular generalized
inverse effectively selects a specific set of shift parameters cj. The
difference between the result in ref. 30 and ours merely reflects the
different choices of generalized inverses. Since shifts of the form of
equation (12) only affect the overall normalization of rs, our result
for the steady state corrections is equivalent to that given in ref. 30.
We properly normalize our result by defining

rs~N
X?

j~0
ajr jð Þ

s

h i
ð13Þ
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with N A½ �:A=Tr A½ � effecting normalization for any non-traceless
matrix A.

Finite-order PT truncates the series in equation (13) just as in
closed-system PT. Let us denote the approximate result up to M-th

order as ra;M
s :N

XM

j~0
ajr jð Þ

s

h i
. We next check whether ra;M

s

indeed represents a proper density matrix, i.e., whether it is normal-
ized, Hermitian and positive-semidefinite15. By virtue of N, the
finite-order result ra;M

s is explicitly normalized. Hermiticity can be
verified by noting that LJ1

0 and L1 map Hermitian operators to
Hermitian operators. However, omission of higher-order terms in
the truncation can render ra;M

s non-positive. In the examples pre-
sented later on, this issue indeed occurs for certain parameter
choices. Beyond mere conceptual concerns, non-positivity also pre-
vents direct calculation of quantities such as state fidelity and
von-Neumann entropy. This marks a key difference between
closed-system PT and density-matrix PT. In closed-system PT, the
approximate result is always a proper quantum state. By contrast, for
density-matrix PT the approximate result may, strictly speaking, not
be a proper density matrix.

Similar issues with non-positivity of approximate density matrices
are also encountered in quantum tomography, there caused by
measurement errors. In this case, a maximum-likelihood method is
typically used to reconstruct a physical density matrix from the non-
positive approximation33,34. However, this method is impractical to
apply to the large density matrices we are interested in. We next
discuss an alternative strategy which reinstates positivity for large
density matrices obtained within PT.

Amplitude-matrix PT. We propose an amplitude-matrix PT to
perturbatively construct an approximate steady-state density ma-
trix which is manifestly positive. For this, recall that any Hermitian
and positive-semidefinite matrix r can be decomposed in the
form35: r 5 ff{. Following ref. 36, we will refer to f as the
amplitude matrix. The decomposition r 5 ff{ is not unique:
there are many choices for f leading to the same matrix r. To
eliminate these extra degrees of freedom, we choose f to be lower
triangular with real, non-negative diagonal elements. Existence and
uniqueness of f are then guaranteed by the Cholesky decomposi-
tion. (In the case that r possesses a zero eigenvalue, the Cholesky
decomposition is not unique but this issue can be bypassed by
known strategies37,38.)

We start from the power series expansion of the steady-state

amplitude matrix in a: fs~
X?

j~0
ajf jð Þ

s . Here, all matrices f jð Þ
s are

again of lower triangular shape. Plugging this expansion into
rs~fsf

{
s and collecting terms of the same order in a, we obtain

f 0ð Þ
s f 0ð Þ

s

� �{
~r 0ð Þ

s , ð14Þ

Z0f jð Þ
s ~r jð Þ

s {
Xj{1

k~1

f kð Þ
s f j{kð Þ

s

� �{
: ð15Þ

Here, the super-operator Z0 is defined via Z0A~f 0ð Þ
s A{zA f 0ð Þ

s

� �{
.

The zero-order amplitude matrix f 0ð Þ
s is directly obtained from equa-

tion (14) by Cholesky decomposition and f jð Þ
s is determined recur-

sively from the system of linear equations in equation (15). We
determine r jð Þ

s in equation (15) by density-matrix PT; in this sense,
the amplitude-matrix PT is based on the density-matrix PT.

Once we truncate the amplitude matrix to M-th order,

fa;M
s :

XM

j~0
ajf jð Þ

s , we can compute the steady-state density matrix

ra;M
s,AM by

ra;M
s,AM~N fa;M

s fa;M
s

� �{h i
: ð16Þ

Now, ra;M
s,AM is manifestly a proper density matrix: it is normalized,

Hermitian and positive-semidefinite by construction. We note
already that expectation values for observables obtained from ampli-
tude-matrix PT, however, are not necessarily more accurate than
those obtained from density-matrix PT, even if ra;M

s is slightly
non-positive. The examples in the following section illustrate that
the respective accuracies of density-matrix versus amplitude-matrix
PT generally depend on the specific perturbation and system
parameters.

Amplitude-matrix PT is more involved if one or more eigenvalues
of r 0ð Þ

s vanish, e.g. when r 0ð Þ
s represents a pure state. In that case, Z0 in

equation (15) is non-invertible (see Methods) and thus a unique
solution for equation (15) does not exist. Depending on the specific
case, there may be infinitely many solutions or no solution. In the
case of infinitely many solutions, we add a small identity-matrix
component to r 0ð Þ

s , i.e., r 0ð Þ
s ?r 0ð Þ

s zc with 0vc=1. The identity
matrix then acts as a correction matrix which stabilizes the procedure
of solving the linear equation [equation (15)] to provide a unique f jð Þ

s .
We utilize this correction matrix strategy in the second example
discussed below. Whenever equation (15) has no solution, other
forms of series expansions would need to be applied. We will not
further consider that case in the present paper. The correction-
matrix method and the validity of the series expansion are further
discussed in the Methods section.

Comparing PT with exact results. To illustrate the use and assess the
accuracy of density-matrix and amplitude-matrix PT, we study two
example systems, see Fig. 1. These two examples are neither claimed
to be original nor of particular intrinsic interest. Our selection is
guided by the intention to discuss two systems that are non-trivial,
yet sufficiently small to still allow for a numerically exact treatment of
the master equation. This way, we can compare steady-state
expectation values from second-order PT with those obtained from
exact diagonalization of L. We note again that the steady-state result
obtained from finite-order density-matrix PT can be non-positive.
This is indeed the case for some choices of parameters in the two
following examples. Thus, we also apply the amplitude-matrix PT
and compare results from the two perturbative treatments.

Figure 1 | Schematic of the examples. (a) The system consists of a ring of

four coupled spins with nearest-neighbor flip-flop interaction of strength t

(dashed red lines). The spins are jointly driven with a coherent tone of

strength E and frequency vd (blue arrow). Each spin is further subjected to

local dissipation with spin relaxation rate c (green curly arrows). (b) The

second system is composed of a three-resonator ring (black rectangles)

coupled to a single qubit with Jaynes-Cummings interaction strength g

(blue dotted line). The resonators are coupled to each other through

photon hopping with rate k (red dashed lines). One of the resonators is

driven coherently (blue arrow). Resonators and qubit are subject to local

dissipation with photon decay rate ca and qubit relaxation rate cq (green

curly arrows).
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Ring of four coupled spins, driven and damped. We consider four
spins coupled in a ring as shown in Fig. 1(a). The spins are coupled by
flip-flop interaction with spin-spin coupling strength t. We assume
all spins are driven equally with strength E and drive frequency vd.
Within the Rotating Wave Approximation (RWA), the Hamiltonian
describing this system is given by

H~
X

n

dv sz
n s{

n zE sz
n zs{

n

� �� �

zt
X

n

sz
n s{

nz1zh:c:
� �

:
ð17Þ

Here, s+
n are the raising or lowering operators for the spin at site n,

and dv ; v0 2 vd is the detuning between the spin frequency v0

and the drive frequency vd. Note that in equation (17), the time
dependence of the drive has already been eliminated by working in
the rotating frame. All four spins are coupled to a zero-temperature
bath, leading to pure spin relaxation with relaxation rate c. Thus, the
Liouville super-operator L is given by

Lr~{i H,r½ �zc
X

n

D s{
n

� �
r, ð18Þ

where D s{
n

� �
r:s{

n rsz
n {

1
2

sz
n s{

n r{
1
2

rsz
n s{

n is the usual

dissipator for spin relaxation.
As the perturbation, we now choose the spin-spin coupling and,

thus, separate L into two parts, L~L0zt L1 where

L0r~
X

n

{i dv sz
n s{

n zE sz
n zs{

n

� �
,r

� �
zcD s{

n

� �
r

	 


describes the ‘‘atomic limit’’ in which the spin-spin coupling is
absent, and the perturbation

t L1r~t
X

n

{i sz
n s{

nz1zs{
n sz

nz1

� �
,r

� �
ð19Þ

captures the spin-spin coupling. Orders of perturbation theory are
counted with respect to t. Even though the system possesses a high

degree of symmetry, the steady states of the unperturbed and per-
turbed systems are unique. Hence, the zero-eigenvalues of L0 and L
are non-degenerate and our non-degenerate PT for the steady state is
applicable.

We can thus implement second-order PT to compute the
steady-state expectation values for several operators. We choose
s{

1 and the excitation number sz
1 s{

1 since they fully capture
the reduced density matrix of a single spin (which is the same
for all spins due to symmetry). In Fig. 2, we compare results from
density-matrix PT and amplitude-matrix PT to the exact and the
unperturbed results.

We first consider the case shown in Fig. 2(a) and (b) where the
coupling strength t represents the smallest energy scale. Consistent
with findings in ref. 4, we observe two symmetric resonance peaks in

s{
1

� ��� �� for the unperturbed result (separate spins). When the coup-
ling is present, the two peaks are shifted in position and become
asymmetric, in agreement with the results from ref. 39. For
sz

1 s{
1

� �
, we observe a similar shift and asymmetry in the resonance

peak due to the spin-spin coupling. Second-order PT nicely captures
the above features. Note that the amplitude-matrix-PT result is actu-
ally slightly less accurate than the density-matrix-PT result in this
particular case.

To illustrate the expected limitations of PT, we next increase the
coupling strength so much that it matches the drive strength. Results
for this parameter choice are shown in Fig. 2(c) and (d).
Qualitatively, the shape of the curves from the exact calculation is
still captured by the perturbative results. However, the results from
PT show significant deviations from the exact result. Large deviations
like this are not surprising since the ‘‘perturbation’’ parameter t now
matches both E and c and PT breaks down.

It is an interesting question whether a dimensionless parameter a
can be identified that governs the convergence of this PT. To invest-
igate this question, we recall that in simple cases of closed-system PT,
a may be inferred from the expression for second-order corrections.
a is then given by the ratio of the perturbation strength t and the
difference between the relevant unperturbed eigenenergies; for
instance, for the ground state we have:

Figure 2 | Results for four spins coupled in a ring. Shown are: the unperturbed result with respect to L0 (blue dotted line), the exact result with respect to

L (black solid line), the second-order density-matrix-PT result (red dashed line) and the second-order amplitude-matrix-PT result (green thin line).

(a) and (b): s{
1

� ��� �� and sz
1 s{

1

� �
are plotted as a function of dv=c for E=c~0:8 and t=c~0:4. The exact result is well approximated by the second-order

PT result. The amplitude-matrix PT is slightly less accurate in this particular case which is more visible in sz
1 s{

1

� �
. (c) and (d): The same is plotted except

for t=c~0:8. Although the deviation is relatively large, the shape of the exact result is still qualitatively captured by the second-order PT results.

www.nature.com/scientificreports
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a~
t

jE 0ð Þ
0 {E 0ð Þ

1 j
closed systemð Þ : ð20Þ

For open systems, the unperturbed eigenvalues of the Hamiltonian
are replaced by those of the super-operator L0. For the steady state,
the relevant eigenvalue difference is that between the steady-state
eigenvalue zero and that of the closest non-zero eigenvalue(s),

a~
t

minm=0jl 0ð Þ
m {l0j

~
t

minm=0jl 0ð Þ
m j

: ð21Þ

Even for a simple system like a driven-damped spin, the spectrum of
complex eigenvalues l 0ð Þ

m depends on the system parameters dv, E
and c in a rather non-trivial way, see Fig. 3. The tuning of system
parameters can even change the identity of the eigenvalue l 0ð Þ

m that is
closest to zero. Hence, it is in general difficult to write the small
parameter a in a simple form showing the dependence on the various
system parameters.

Qubit coupled to a driven and damped resonator ring. For our
second example, we choose a system composed of a single qubit
coupled to a three-resonator ring, see Fig. 1(b). The resonators are
coupled among each other by photon hopping with rate k. The first
resonator is driven with strength E and drive frequency vd. The qubit
is coupled to the second resonator with a coupling strength g. Within
RWA and in the frame co-rotating with the drive, the system
Hamiltonian H is given by

H~
X

n

dv a{nanzk a{nanz1zana{nz1

� �h i
zE a1za{1
� �

zdv szs{zg a2szza{2s{
� �

:

ð22Þ

Here, an a{n
� �

is the annihilation (creation) operator for photons in
the resonator at site n and dv ; v 2 vd is the detuning between the
bare resonator frequency v and the drive frequency vd. The qubit is
assumed in resonance with the bare resonator frequency. Qubit and
resonators are each coupled to a zero-temperature bath, inducing

qubit relaxation and photon decay with rates cq and ca, respectively.
The super-operator L is thus given by

Lr~{i H,r½ �zca

X
n

D an½ �rzcqD s{½ �r: ð23Þ

The qubit-resonator coupling mediates two effects: an indirect co-
herent drive on the qubit, and correlations between the resonator
ring and the qubit. We wish to treat the correlation effects
perturbatively. To do so, we separate the two effects by means of a
coherent displacement as follows. Note that in the absence of qubit-
resonator coupling, the drive places the eigenmodes m 5 1, 2, 3 of the

resonator ring in coherent states with amplitudes ~am

� � 0ð Þ:~am where

~am~{
Effiffiffi
3
p dvz2k cos

2pm

3
{i

ca

2

� �{1

exp i
2pm

3

� �
ð24Þ

and ~am:
1ffiffiffi
3
p
X

n
an exp i

2p

3
mn

� �
is the annihilation operator for

photons in mode m. We thus displace ~am according to

~a’m~~am{~am, ð25Þ

and rewrite the Liouville super-operator as

Lr~{i H0zgH1,r½ �zca

X
m

D ~a’m
� �

rzcqD s{½ �r:

Here, H0 is the unperturbed Hamiltonian

H0~
X

m

dvz2k cos
2pm

3

� �
~a’m
� �{

~a’m

zdv szs{z Eeff s
zzE�eff s

{
� � ð26Þ

in which the displaced eigenmodes ~a’m and the qubit remain
decoupled. One finds that the effective drive on the qubit is given

by Eeff:
gffiffiffi
3
p
X

m
~am exp {i

4pm

3

� �
. The perturbation gH1 describes

the remaining coupling between the displaced eigenmodes and the
qubit,

gH1~
gffiffiffi
3
p
X

m

exp {i
4pm

3

� �
~a’mszzh:c:

� �
: ð27Þ

The perturbative treatment at the level of the master equation simply
follows this separation and decomposes L~L0zgL1 into the
unperturbed super-operator

L0r~{i H0,r½ �zca

X
m

D ~a’m
� �

rzcqD s{½ �r, ð28Þ

and a perturbation which only captures the remaining coupling,

gL1r~{i gH1,r½ �: ð29Þ

The order of perturbation theory here is counted with respect to g.
The steady state of L0 is a product state composed of a density

matrix for the resonator ring and one for the qubit. The resonator
ring is in a pure state (all displaced eigenmodes in the vacuum state).
As a consequence, the unperturbed density matrix r 0ð Þ

s has multiple
eigenvalues zero. Therefore, when implementing amplitude-matrix
PT, we employ the correction matrix method mentioned above (with
parameter c 5 1029).

We will focus on expectation values at site 1, specifically Æa1æ and
hn1i:ha{1a1i, as a function of the drive frequency, expressed in terms
of the detuning dv. In the unperturbed, i.e., decoupled case (g 5 0),
we expect two resonances at dv 5 22k and dv 5 k corresponding
to the eigenmodes of the resonator ring. Once the qubit is coupled to

Figure 3 | Eigenvalue spectrum of a driven-damped spin. The diagram

shows the eigenvalue spectrum for system parameters chosen as

dv=c~0:2 and varying drive strength from E=c~0 (red circles) to

E=c~0:25 (purple squares). The fourth eigenvalue (black diamond)

corresponds to the steady state and is always zero. As illustrated by the blue

trajectories, the flow of the eigenvalues is non-trivial and the eigenvalue(s)

closest to zero switches from the complex pair to the purely real eigenvalue

as E increases.
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the resonator ring, we expect a resonance at dv 5 0 originating from
the qubit’s response to the drive. We monitor this response by cal-
culating the expectation value of s2.

As shown in Fig. 4, we confirm that the resonance at dv 5 0, a key
consequence of the coupling, is successfully captured by second-
order PT. Specifically, we consider the case of drive and coupling
strengths E and g small compared to the hopping rate k but large
compared to the relaxation and decay rates cq and ca. Note that
the perturbation parameter g is not the smallest energy scale in this
case; nonetheless, PT holds. The expectation values of a1, n1 and s2

are shown in Fig. 4(a), (b) and (c) respectively. The results from
second-order PT are in good agreement with the exact result.
Amplitude-matrix PT and density-matrix PT here give results with
nearly identical accuracy. The saturation effect visible in Fig. 4(c)
shows that the qubit is in the nonlinear regime. These results also
illustrate that the correction matrix method required for the ampli-
tude-matrix PT is reliable and yields results consistent with the exact
solution.

Discussion
We have detailed a perturbative approach to Markovian open
quantum systems and developed a non-degenerate PT based on
the Lindblad master equation. This density-matrix PT recursively
determines corrections to the eigenvalues and right eigenstates of
the Liouville super-operator L. As a result of finite-order truncation,
such a perturbative scheme may lead to non-positive steady-state
‘‘density matrices’’ which prevent direct calculation of quantities like
the state fidelity. The issue of non-physical states, which does not
occur in closed-system PT, can be tackled by a modified perturbative
scheme based on the amplitude matrix. With two example systems,
we have illustrated that the approximate results are in excellent
agreement with exact results for representative parameter choices.
The expectation values obtained from density-matrix PT showed
good agreement in the two examples even if the truncated density
matrix was slightly non-positive.

The perturbative treatment presented here is suitable for systems
of sizes that cannot be handled by exact solution of the quantum
master equation. An interesting future application of this PT thus
consists of the study of open quantum systems with lattice structure,
such as the open Jaynes-Cummings lattice. Promising experimental
progress5 indicates that such open lattices can indeed be realized in
the circuit QED architecture, and may serve as valuable open-system
quantum simulators11. Openness and relatively large size of such
systems make the theoretical investigation challenging. We believe
that the developed open-system PT will provide a useful tool in
exploring the physics of open lattice systems.

Methods
Perturbative corrections. We wish to prove that the expression of u jð Þ

m in equation
(9), rewritten as

u jð Þ
m ~ L0{l 0ð Þ

m

� �J1
fjm, ð30Þ

is indeed a solution to equation (5), i.e., it satisfies

L0{l 0ð Þ
m

� �
u jð Þ

m ~fjm, ð31Þ

where the operators fjm are defined as fjm~{L1u j{1ð Þ
m zD jð Þ

m . Solving equation (31) for

u jð Þ
m is a standard linear algebra problem. The necessity for working with a

pseudoinverse lies in the fact that ðL0{l 0ð Þ
m Þ is singular and non-Hermitian. This

prevents us from using the ordinary inverse to solve for u jð Þ
m . Here, we employ the

Moore-Penrose pseudoinverse denoted by J1. (A brief review of the pseudoinverse is
given in the accompanying Supplementary Note.) While this choice is not unique, it is
convenient since the Moore-Penrose pseudoinverse can be computed efficiently via
singular value decomposition.

After plugging u jð Þ
m from equation (30) into equation (31), it is clear that the proof

amounts to verifying that

L0{l 0ð Þ
m

� �
L0{l 0ð Þ

m

� �J1
fjm~fjm: ð32Þ

Employing the defining properties of the Moore-Penrose pseudoinverse, one finds
that the claim of equation (32) can be written in the equivalent form

P
L0{l

0ð Þ
m

fjm~fjm: ð33Þ

where P
L0{l

0ð Þ
m

is the orthogonal projector onto the range of ðL0{l 0ð Þ
m Þ. Since every

projector acts as the identity on vectors from its range, equation (33) holds if fjm

belongs to the range <m of P
L0{l

0ð Þ
m

. Furthermore, since P
L0{l

0ð Þ
m

is an orthogonal

projector, the range <m and the null space m of P
L0{l

0ð Þ
m

are orthogonal subspaces.

This implies that fjm belongs to <m if and only if fjm is orthogonal to m. To see that

fjm\ m , note that hw 0ð Þ
m ,fjmi~0 as a direct consequence of equation (5). To prove that

fjm\ m we now simply make use of the fact that m is spanned by the left eigenstate,

i.e., m~spanfw 0ð Þ
m g.

We verify the last statement as follows. Since w 0ð Þ
m is the left eigenstate of L0 with

eigenvalue l 0ð Þ
m , it is clear that hw 0ð Þ

m ,ðL0{l 0ð Þ
m ÞAi~0 for any matrix A. Thus, w 0ð Þ

m is

orthogonal to the range of ðL0{l 0ð Þ
m Þ. Since ðL0{l 0ð Þ

m Þ and P
L0{l

0ð Þ
m

share the same

range, w 0ð Þ
m is also orthogonal to the range <m of P

L0{l
0ð Þ

m
. Thus, w 0ð Þ

m is an element of

the null space m of P
L0{l

0ð Þ
m

. Assuming that l 0ð Þ
m is a non-degenerate eigenvalue of L0,

we thus find that m is spanned by w 0ð Þ
m , as stated.

Steady-state corrections. For the steady state rs defined by Lrs~0, i.e. rs ; u0, the
recursion relations (8) and (9) can be simplified significantly. To see this, recall that L
and L0 are proper generators of the quantum dynamical semigroup. In order to be
trace preserving (a necessary condition for a proper generator), the identity must be

the left eigenstate of L and L0 with eigenvalue zero, i.e. w0~w 0ð Þ
0 ~ . It follows that

is also the left eigenstate of L1 with eigenvalue zero since L1~L{L0 and thus
Tr L1x½ �~0 for any operator x. It is straightforward to show from Tr L1x½ �~0 and
equations (8) and (9) that Vj[N,

l
jð Þ

0 ~0, ð34Þ

r jð Þ
s ~{LJ1

0 L1r j{1ð Þ
s : ð35Þ

Series expansion of amplitude matrices. The series expansion of fs is valid if all f jð Þ
s

can be determined according to

Figure 4 | Results for single qubit coupled to a resonator ring. The color scheme of Fig. 2 is used. To apply the amplitude-matrix PT, the correction

matrix is employed with the parameter c 5 1029. We plot | Æa1æ | , Æn1æ and | Æs2æ | as a function of dv=E for k=E~10, g=E~0:5 and cq=E~ca=E~0:05. The

resonance at dv 5 0 is well captured by second-order PT. The amplitude-matrix PT and density-matrix PT perform with nearly identical accuracy.
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Z0f jð Þ
s ~r jð Þ

s {
Xj{1

k~1

f kð Þ
s f j{kð Þ

s

� �{
, ð36Þ

which is equation (15). Here Z0 was defined via Z0A~f 0ð Þ
s A{zAðf 0ð Þ

s Þ
{ and f 0ð Þ

s is

determined through Cholesky decomposition: r 0ð Þ
s ~f 0ð Þ

s ðf 0ð Þ
s Þ

{ . Equation (36) is a
system of linear equations and thus has a unique solution if and only if Z0 is invertible.

Whether Z0 is invertible depends on the form of f 0ð Þ
s , which in turn depends on

the Hermitian and positive-semidefinite r 0ð Þ
s . If one of the eigenvalues of r 0ð Þ

s is

zero, there is a corresponding eigenvector jyæ such that r 0ð Þ
s yj i~0. Consider the

decomposition: r 0ð Þ
s ~hh where h is a Hermitian matrix. The existence of this

decomposition can be simply proven by writing r 0ð Þ
s in its eigen-decomposition

form. Since jyæ is the eigenvector of r 0ð Þ
s with eigenvalue zero, jyæ is also the

eigenvector of h with eigenvalue zero, i.e. h jyæ 5 0. Moreover, due to the fact that
f 0ð Þ

s ðf 0ð Þ
s Þ

{
~r 0ð Þ

s ~hh, f 0ð Þ
s and h are unitarily right equivalent40, i.e. f 0ð Þ

s ~hS where

S is a unitary matrix. Thus, jyæ is also the left eigenvector of f 0ð Þ
s with eigenvalue

zero, i.e. ðf 0ð Þ
s Þ

{ yj i~S{h yj i~0. Now, there must be a right eigenvector of f 0ð Þ
s ,

denoted by jwæ, that corresponds to the same eigenvalue (which is zero), i.e.
f 0ð Þ

s wj i~0. We can show by directly substitution that Z0 T wj i wh jð Þ~0 where T is
the matrix corresponding to Gaussian elimination which transforms (jwæ Æwj) to a
lower triangular matrix. Therefore, Z0 is not invertible if r 0ð Þ

s contains at least one
eigenvalue zero.

If Z0 is not invertible, equation (36) either has infinitely many solutions or no
solution. The former case, in which there are infinitely many solutions, can be
bypassed if we shift the eigenvalues of r 0ð Þ

s away from zero. To do so, we consider a
shift by an identity-matrix component according to

r 0ð Þ
s ?r 0ð Þ

s zc : ð37Þ

We choose the auxiliary parameter c as close to zero as possible while maintaining
numerical stability. In this way, we obtain a procedure to obtain a unique solution to
equation (36). This method is similar to the correction matrix method37,38 for the
Cholesky decomposition of matrices with eigenvalue(s) zero. There, a small
diagonal correction matrix is also added to the original matrix to avoid the
eigenvalue(s) zero.

If we encounter the case in which there is no solution, we cannot determine f jð Þ
s .

In fact, a two-level system coupled to finite temperature bath with D sz½ � term treated
as the perturbation belongs to this case. The failure to determine f jð Þ

s indicates that the
series expansion of fs is invalid. This originates from the fact that if r 0ð Þ

s contains
any zero eigenvalues, the leading order term of some elements of fs may be of the
order of a1/2 (or a3/2, etc.) instead of a0. For real functions, an analogy would be the case
y(a) 5 x2(a) where y can be written as a power series in a. If the leading order term of y
is of the order of a, x is a series that only contains half-integer orders of a and thus is
not a proper Taylor series. Different expansion types would be needed in this case
which we do not discuss further in the present paper.
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