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Abstract: Presented here is a slotted-quad-beam structure sensor for the measurement of 

friction in micro bearings. Stress concentration slots are incorporated into a conventional 

quad-beam structure to improve the sensitivity of force measurements. The performance 

comparison between the quad-beam structure sensor and the slotted-quad-beam structure 

sensor are performed by theoretical modeling and finite element (FE) analysis. A hollow 

stainless steel probe is attached to the mesa of the sensor chip by a tailor-made organic 

glass fixture. Concerning the overload protection of the fragile beams, a glass wafer is 

bonded onto the bottom of sensor chip to limit the displacement of the mesa. The 

calibration of the packaged device is experimentally performed by a tri-dimensional 

positioning stage, a precision piezoelectric ceramic and an electronic analytical balance, 

which indicates its favorable sensitivity and overload protection. To verify the potential of 

the proposed sensor being applied in micro friction measurement, a measurement platform 

is established. The output of the sensor reflects the friction of bearing resulting from dry 

friction and solid lubrication. The results accord with the theoretical modeling and 

demonstrate that the sensor has the potential application in measuring the micro friction 

force under stable stage in MEMS machines. 
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1. Introduction 

Micro bearings are very important components for rotating micro-electro-mechanical system (MEMS) 

devices like turbines, generators, and engines [1]. Compared with macro rotating machines, the MEMS 

bearings operate at a much higher speed to obtain enough peripheral speed for the rotor blades, which 

requires a much lower friction. Current research is mainly focused on the fabrication [2,3], slip  

effect [4,5] or load capacity of MEMS bearings, and barely on the friction. However, investigating the 

friction of bearings helps to optimize the bearing design and promote the speed of MEMS rotors. 

Accurate calculation of friction has been a challenge [6–8], while experimental characterization is a  

cost-effective alternative to the investigation of micro-friction in MEMS bearings. 

Due to the small magnitude of the to-be-measured component size and its parameters in the  

MEMS bearing, conventional methods cannot provide enough accuracy either in installation and  

measurement [9–11]. For the tests proposed here, a high precision measurement platform is established 

based on torque balance principle. In this system the friction is transformed into an easily detected 

force parameter by a force arm, and the sensor to measure the force signal becomes the key device in the 

system. The requirements defining a desirable force sensor include a high sensitivity to accurately detect 

the small target forces, a wide measurement range to satisfy different requirements under different 

lubrication states and an overload protection to avoid unexpected breakage during unsuitable operations. 

Many different MEMS force sensors have been developed in relevant literatures, and several 

configurations have been adopted in force sensing. The membrane structure sensor features a relative 

large measurement range, but its big supporting stiffness inevitably decreases the measurement 

sensitivity which limits the sensor’s applications. Jordan and Büttgenbach [12] utilized SU-8 resist to 

develop a membrane force sensor with low bending stiffness, but it is difficult to attach a probe and the 

low admissible stress of resistance may also limit the available force measurement range. Compared 

with membrane structures, beam-based structures are more effective. Kulkarni et al. reported a force 

sensor with an optical fiber beam, which is very suitable for monitoring in some harsh environments, but 

the sensor measurement range is too large and a more flexible beam material is needed when being used 

in micro friction monitoring [13]. Lu et al. reported a piezoresistive-sensor-based micro-force-sensing 

probe that features good sensitivity and large measurement range [14,15]. Moreover, the sensor can be 

used in micromanipulation systems if integrated with a micropipette [16]. Beam-based sensors have a 

greater range of applications, and different target characteristics can be achieved by adjusting the beam 

dimensions. However, it is a difficult task to make an optimal tradeoff between the measurement range 

and sensitivity by only changing the beam size, so an improved scheme is needed. 

This paper aims at providing a sensing configuration to promote the sensor performance in 

measurement sensitivity, measurement range and overload protection for MEMS bearing friction 

measurement systems. The requirements for the sensors are a measurement range of 10 mN and a 

sensitivity above 0.5 mV/(V·mN), considering the to-be-measured force and experimental conditions in our 

laboratory. Focused on the target performances, a piezoresistive force sensor with slotted-quad-beam 
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structure is proposed. The sensing structure design, probe choosing and overload protection are 

described in the design section. Finite element models for the conventional quad-beam structure and 

proposed structure are established to gain insight into the influence of configuration for the sensor 

performances. The sensor prototypes are fabricated, packaged and calibrated. A practical friction 

measurement is also performed to verify the feasibility of utilizing the developed sensor in the 

measurement system. 

2. Sensor Design 

The schematic diagram of the friction measurement system for MEMS bearings is illustrated in 

Figure 1. The friction usually happens between the rotor and stator in micro bearings, and more details 

can be found in [17,18]. The to-be-measured friction is transmitted by the lever arm that is attached 

onto the shaft of bearings. The force is subsequently sensed by the piezoresistive sensor, which should 

be connected with the lever arm. The oscillograph acquires the output voltage of sensor to build up the 

variation curve of friction during the rotation of the bearings. For an effective measurement system, the 

sensor design should meet the following guidelines: 

(1) High sensitivity to sensing the micro-force signal. 

(2) Good accuracy and linearity. 

(3) Overload protection. The silicon-based sensor is fragile, and unpredictable impulsive force during 

sensor packaging, system assembling or practical measuring may break the sensing structure. 

(4) Proper configuration. The sensor will be connected to the lever arm to measure the target force, 

and a well-designed structure can make the connection more easy and precise. 

Figure 1. The schematic diagram of the measurement system for friction measurement. 

 

The first two points are mainly determined by the sensing geometry and structural dimensions, and 

the latter two are related to the design of sensor components. The probe is often used to transmit the 

force from a measurement target to the sensing mechanism and overload protection is implemented by 

bonding a glass or silicon wafer to limit the displacement range of the central mesa. The probe and 

bonded glass are here selected as the elements in the proposed sensor. In the following part of this 

section, the investigation of reformative sensing structure will be performed, and the design of force 

sensor based on the analysis results will be presented with the specific probe and overload protection. 

The proposed slotted-quad-beam (SQB) structure is schematically shown in Figure 2. The new 

scheme incorporates slots for stress concentration into the conventional quad-beam structure and the 
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central mesa is suspended by the slotted beams. Four beams are arranged at the corner of the mesa and 

the slots are symmetrically settled in the center of beams. The beams are chosen to be relatively short 

and wide to enlarge the structure stiffness and improve the measurement range. The glass wafer 

bonded onto the chip bottom is used to provide the overload protection. As Figure 2c shows, when a 

force F is applied to the structure, the slotted beams will be involved in a bending movement together 

with the vertical motion of central mesa; then the accompanying stress will appear in the beam surface, 

which changes the resistance of piezoresistors; these changes can be turned into a voltage signal by the 

Wheatstone bridge, which realizes the transformation from force to voltage. 

Figure 2. The SQB structure force sensor: (a) 3D view; (b) cross-sectional view;  

(c) deformation view of the structure under the applied force F. 

 

According to the basic principle of mechanics and under the assumption of small deflection, the 

following equation for a single beam can be derived when a force F is applied to the sensor: 

0 0''( ) (0 )EIw x F x m x l      (1) 

where E is the Young’s modulus of silicon, I is the cross-sectional moment, F0 = F/4, and m0 for the 

resultant moment at the fixed end of beam, w(x) for the beam displacement. Considering the boundary 

conditions and the denotations of beam and slot dimensions shown in Figure 3, m0 can be expressed as: 
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where l1 = l3 because the slots are located in the middle of the beams. Substituting Equation (2) into 

Equation (1), the bending moment of the slotted beam can be written as: 
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Figure 3. The force analysis and dimensions for SQB structure. 

 

The stress σx=0 equals to the maximum stress in normal quad-beam sensor. Figure 4 shows the 

variation of σx=l1/σx=0 versus l2 for b2 = 50, 60, 70, 80, and 90 µm when l = 260 µm, b = 160 µm and  

h = 22 µm. The ratio value is a monotone function of l2, and the rate of slope changes with the 

variation of b2. It can be seen that the stress at the end of slot is increased by enlarging the width and 

length of slots, and σx=0 is not always smaller than σx=l1. The surface value is determined not only by 

the cross section of the beam but also the location. When the size of slots is relatively small, the 

enhancing effect is not enough to compensate the location effect, and σx=l1 < σx=0; meanwhile, the 

enhancing effect is increased along the enlargement of slots, and the situation will turn into σx=l1 > σx=0, 

which means the incorporation of slots gives the sensor a better sensitivity. The sensitivity keeps on 

increasing if the length and width of slots maintain the increase trend. The value of σx=l1/σx=0 can be 

increased by 157% when the slot width varies from 50 µm to 90 µm, and increased by 500% when the 

length increases from 50 µm to 250 µm. Meanwhile, only evaluating the sensitivity is not a very 

appropriate approach in the sensor design. Space for piezoresistors and wires should also be 

considered. Limited by the fabrication conditions in our lab, the width of wires in the sensor chip 

should be 20 µm at least, and there should be a 5 µm gap between the wires and beam edges. Also, the 

overlarge slots may also diminish the structural stiffness, influencing the measurement range. Taking 

all these factors into account, the final size of the slots is determined as: l2 = 195 µm, b2 = 70 µm with 

σx=l1/σx=0 = 1.33. 

Figure 4. The σx=l1/σx=0 value versus length of slots l2. 

 

Finite element simulation is also utilized to verify the proposed structure. Finite elements models 

for the SQB structure and quad-beam structure are established. The FE simulations are performed by 

the ANSYS software (version 14.0). The applied forces are symmetrically loaded at the tip of the 

probe, and the outer frames of sensor are fixed. The material parameters of the silicon are set as 
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Young’s modulus E = 166 GPa, density ρ2331 kg/m
3
 and Poisson’s ratio= 0.278. Figure 5 shows 

the simulated x-axis stress in the beams of the two structures under the force of 10 mN. The maximum 

stress in the beam of SQB structure is 31.09 MPa, while the value in the beam of quad-beam structure 

is 21.27 MPa. Therefore, the simulated σx=l1/σx=0 is calculated to be 1.44 with a deviation of 8.50% 

when compared with the analytical result. The simulated relationships between these maximum  

von Mises stresses and applied force are also illustrated in Figure 6. The line slopes indicate that the 

stress increases linearly with the applied force and the SQB structure has a much larger slope than the 

conventional quad-beam structure. The ratio of the two slopes is 1.46, which gets a difference of 

9.54% when compared with the analytical result (namely the value of σx=l1/σx=0). The large deviation 

between the analytical and simulated results may be caused by the nonlinearity stress distribution near 

the beam ends [19]. 

Figure 5. The x-axis stress distribution along the defined paths in two structures. 

 

Figure 6. The maximum von Mises stress in SQB and quad-beam structures under different forces. 

 

Consideration is taken of the piezoresistor arrangement to fully sense the force-induced stress on 

the beam. In this paper, the piezoresistors are located on both sides of the slots along the [110] crystal 

direction and their dimensions are all shown in Figure 7. The variation of the resistance can be 

expressed as [20]: 
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where R, ΔR are the original and variation resistance of the piezoresistor, σl, σt are the stresses in the 

longitudinal and transverse directions at the central point of the resistors, π44 is the shearing 

piezoresistance coefficient [21]. For a full Wheatstone bridge-based sensor with an excitation voltage 

of Vin, the output voltage Vout can be obtained as: 

 44 l t

1

2
out inV V     (8) 

Figure 7. The piezoresistors in the sensor chip: (a) the configuration; (b) the dimensions; 

(c) the connection of piezoresistors in full Wheatstone bridge circuit. 

 

The ion concentration is set as 3 × 10
14

 cm
−3

, thus π44 is 138 × 10
−11

 m
2
 /N [22]. The longitudinal 

and transverse stresses under different applied force are obtained by FE analysis and Vin is set as 5 V DC. 

Therefore, the relationship between applied force F (mN) and output voltage Vout is derived as 

33.92 10outV F   (9) 

Therefore the calculated measurement sensitivity for SQB structure sensor is 0.784 mV/(V·mN), 

while the value for quad-beam structure is about 0.541 mV/(V·mN). By incorporating the slots into the 

conventional quad-beam structure, the sensitivity is enhanced by 45%. Another component for the 

force sensor is the probe. The probe is required to be inflexible and lightweight to eliminate the 

influence on the sensor. A tubular shape, stainless steel-made probe is chosen here. The inner and outer 

diameters of the probe are 0.3 mm and 0.45 mm with a length of 10 mm. Moreover, a sleeve is used to 

enhance the installation precision which is marked red in Figure 2. According to the FE analyses, the 

acceptable displacement of the central mesa is about 2.6 µm before the sensing structure is broken and 

the limited force is about 100 mN. Therefore, a Pyrex glass wafer is attached on the bottom of the chip 

with a gap of 2.6 µm from the bottom of central mesa. 

3. Sensor Fabrication and Package 

3.1. Sensor Fabrication 

The main fabrication process of the sensor chip is shown in Figure 8. A double-side polished, N-type, 

[100]-oriented silicon wafer was used as the start material and a total of eight masks were needed. The 

fabrication began with the thermal oxidization Figure 8a, and the light and heavy boron ion diffusion 

were conducted after the piezoresistors were patterned at the front side Figure 8b,c; then the 

interconnections of piezoresistors were realized by Al sputtering and the electrodes were formed at the 



Sensors 2013, 13 13185 

 

 

same time Figure 8d; the inductively coupled plasma (ICP) etching at the back side forms the 

protection gap between the bottom of central mesa and bonded glass Figure 8e; the deposited Si3N4 

and SiO2 were utilized as the protection layer for the following KOH etchant based anisotropic wet 

etching Figure 8f,g, and the central mesa was shaped by wet etching at the back side; the SQB 

structure was releaseded by the ICP etching in the front side Figure 8h; a Pyrex glass wafer was 

bonded onto the bottom of silicon wafer by anodic bonding Figure 8i. A Ti/Pt bi-layer was deposited 

on the glass wafer to avoid electrostatic adhesion between the mesa and glass during overload 

protection process. Figure 9 shows the finished sensor chip. 

Figure 8. Main fabrication process of the sensor chip. 

 

Figure 9. The fabricated sensor chip: (a) the sensor chip compared with a coin; (b) a photo 

of the whole chip; (c) a detailed SEM photo of one piezoresistor; (d) a detailed SEM photo 

of one slotted beam. 

 

3.2. Sensor Package 

To guarantee the precision of sensor packaging, a tailor-made organic glass fixture is designed. The 

fixture has two grooves for the positioning of sensor and a hole for the probe and printed circuit  

board (PCB). The packaging process is illustrated in Figure 10. The sensor chip and PCB were aligned 

by the grooves in the organic glass fixture and bonded by adhesive; after that, the probe was put into 
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the hole and adhered onto the central mesa of the sensor chip; finally, the electrical connection 

between the sensor and instruments was conducted with the golden leads by the wire bonder after 

necessary thermal solidification. 

Figure 10. Package of the force sensor. 

 

4. Sensor Testing 

The calibration system, shown in Figure 11, uses an analytical balance and a high-precision 

positioning stage to generate and display the input force for the sensor; the force can be obtained by 

multiplying the recorded weight and gravity acceleration (10 m/s
2
). The positioning stage consists of a 

tri-dimensional positioning stage and a piezoelectric ceramics with the resolution up to nm scale. The 

tri-dimensional positioning stage adjusts the sensor location, making the tip of sensor probe very close 

to the sensing plate of balance; then, the piezoelectric ceramics moves the sensor with a nm 

displacement, vertically pressuring the sensor probe to the balance plate, and the generated 

force/weight can be read from the balance. The excitation voltage for the Wheatstone bridge in the 

sensor is provided by the power supply (IT6322, ITECH, Yorba Linda, CA, USA), and the output 

voltage can be measured by the digital multimeter (8845A, FLUKE, Everett, WA, USA). 

Figure 11. The setup for sensor calibration. 

 

The static characteristics of the force sensor were tested by the abovementioned calibration system. 

The excitation voltage for the Wheatstone bridge was 5V DC and the applied force rose from 0 mN to 

about 10 mN and decreased to 0 mN in one test. The experimental results are shown in Figure 12. In 

the range of 0–10 mN, the results were fitted with the least square method and the relationship between 

the applied force F (mN) and output voltage V (mV) could be expressed as: 

4.064 4.874V F   (10) 
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Figure 12. The calibration results. 

 

The measured sensitivity was 0.813 mV/(V mN) with a little deviation to the analytical value which 

might be caused by the fabrication error. The calculated maximum non-linearity was 1.57% FS (full 

scale) and total measurement accuracy was 2.03% FS. The overload protection was also checked and 

the results were shown in Figure 13. It could be found that the sensor had a good linearity in the range 

of 0–10 mN, and the glass began to play the protection role when the applied force was above 100 mN. 

Figure 13. The results of overload protection. 

 

Table 1 shows the comparison between the proposed device and previously published designs. It 

can be seen that the sensitivity decreases when the measurement range is enlarged. The sensor in [23] 

has the best sensitivity, but the measurement range is too small. The ones presented in [14,24] have a 

better comprehensive property, but the missing of overload protection restricts the sensor application. 

Therefore, the proposed sensor obtains a favorable comprehensive property compared to the previous 

works if considering the sensitivity, measurement range and overload protection. 

Table 1. Comparison with the existing devices. 

 This work Ref. [23] Ref. [25] Ref. [14] Ref. [24] 

Sensitivity (mV/V·mN) 0.813 4.1 0.11 0.1327 0.79 

Measurement range (mN) 10 0.06 1 × 104 120 25 

Overload protection Yes Yes Yes No No 
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5. Sensor Application 

The practical measurement system is sketched in Figure 14. The ultra-precision computer-controlled 

rotary table generates the original rotation by its step motor which is transmitted to the shaft of the 

bearings by the force sensor and a silicon-based lever arm. The lever arm is fabricated by laser scribing 

apparatus, and the final length is 50 mm, width is 1 mm and thickness is 400 µm. The lever arm is 

adhered into the groove of bearing shaft; the sensor probe is vertically pressured to the lever arm with 

a certain force arm length, and there is no adhesive between the probe tip and lever arm. 

Figure 14. The system for friction measurement in MEMS bearings. 

 

The MEMS bearing is installed in the central hole of the rotary table by a stationary platform. The 

force sensor is adhered to an off-center settled fixture with an adjustable distance from the table center. 

The whole platform is fixed on a horizontal stand. The length of force arm is set as 20 mm which can 

be changed by moving the connection point between the lever arm and sensor probe. The sensor output 

is recorded by oscillograph when rotating the bearings. The assembled system is shown in Figure 15. 

The output voltage of the sensor was recorded by the oscillograph when the rotation was stable. In the 

measured curve, as shown in Figure 16, the black line is the result without any lubrication and the red 

line result was obtained after the graphene sheets were assembled onto the shaft surface by LB 

(Langmuir-Blodgett) technique [26,27]. The results indicate that the measured friction in the graphene 

sheets-assembled bearing is much lower than the one without any lubrication. We can collect the 

useful information of friction status by further processing the output signal of force sensors. 

Figure 15. Photo of the assembled system (left) and the measurement platform (right). 
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Figure 16. Curve obtained from the practical measurement. 

 

6. Conclusions 

A force sensor with slotted-quad-beam structure has been designed, fabricated and tested for 

application in a friction measurement system. The proposed sensor structure uses stress concentration 

slots to enlarge the localized stress when the force is applied. A hollow stainless steel probe is bonded 

to the fabricated sensor chip by a tailor-made organic glass fixture. According to the results of sensor 

calibration, the sensitivity, maximum non-linearity error and measurement accuracy of the developed 

sensor are 0.813 mV/(V·mN), 1.57% FS and 2.03% FS, respectively. Compared with some force 

sensors described in the previous literature, the devised device exhibits a favorable performance in 

sensitivity, measurement range and overload protection. The bonded glass wafer gives the sensor a ten-fold 

overload protection over the allowed range. Practical experiments for the estimation of friction state in 

the bearings are conducted, and the results show the variation of friction in the bearings under different 

lubrication states, confirming the feasibility of utilizing the proposed force sensor to investigate the 

bearing friction. Our future work will be a follow-up study to develop a systematized sensor design 

process and further analyze the friction results. 
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