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Abstract

Background: Comorbidity is the phenomenon of two or more diseases occurring simultaneously not by random
chance and presents great challenges to accurate diagnosis and treatment. As an effort toward better
understanding the genetic causes of comorbidity, in this work, we have developed a computational method to
predict comorbid diseases. Two diseases sharing common genes tend to increase their comorbidity. Previous work
shows that after mapping the associated genes onto the human interactome the distance between the two
disease modules (subgraphs) is correlated with comorbidity.

Methods: To fully incorporate structural characteristics of interactome as features into prediction of comorbidity,
our method embeds the human interactome into a high dimensional geometric space with weights assigned to
the network edges and uses the projection onto different dimension to “fingerprint” disease modules. A supervised
machine learning classifier is then trained to discriminate comorbid diseases versus non-comorbid diseases.

Results: In cross-validation using a benchmark dataset of more than 10,000 disease pairs, we report that our model
achieves remarkable performance of ROC score = 0.90 for comorbidity threshold at relative risk RR = 0 and 0.76 for
comorbidity threshold at RR = 1, and significantly outperforms the previous method and the interactome generated
by annotated data. To further incorporate prior knowledge pathways association with diseases, we weight the
protein-protein interaction network edges according to their frequency of occurring in those pathways in such a
way that edges with higher frequency will more likely be selected in the minimum spanning tree for geometric
embedding. Such weighted embedding is shown to lead to further improvement of comorbid disease prediction.

Conclusion: The work demonstrates that embedding the two-dimension planar graph of human interactome into
a high dimensional geometric space allows for characterizing and capturing disease modules (subgraphs formed by
the disease associated genes) from multiple perspectives, and hence provides enriched features for a supervised
classifier to discriminate comorbid disease pairs from non-comorbid disease pairs more accurately than based on
simply the module separation.
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Background
Malfunction of a gene and its products can lead to dis-
eases. It is well studied that one gene can play multiple
functions resulting in multiple diseases to a person sim-
ultaneously [1, 2]. The phenomenon of having two or
more diseases in one person at a time not by random
chance is known as disease comorbidity [3–5]. Disease
comorbidity has adverse prognosis and intense conse-
quences, like frequent visits and longer stays at hospitals
and high mortality rate [6, 7]. For instance, it is studied
that sleep apnea is the secondary cause of hypertension
[8]. It is shown with a small dataset that 56% of people
having sleep apnea are suffering with hypertension at
the same time. Another study presented that the people
with both cardiovascular disorders (CVD) and chronic
kidney disease (CKD) were 35% more likely to have re-
current cardiovascular events or die than those with
CVD alone [5]. Drug toxicity and intolerance is also a
major problem while treating such patients as multiple
drugs are incorporated to treat several disorders, where
these drugs might have possible negative interaction
with one another [9].
The Human Disease Network (HDN) suggest common

mutant genes is the cause of disease comorbidity [10].
Disease comorbidity is also possible due to enzymes cat-
alyzation during metabolic reactions in the metabolic
network [11, 12], or disease associated rewired protein-
protein-interaction (PPI) [13–15]. There are a few com-
putational approaches that have been proposed to pre-
dict disease comorbidity. In a study PPI networks was
used to locate PPIs associated with co-occurrences of
diseases [16], it was found that protein localization attri-
butes to identify comorbidity in genetic diseases [17].
Another study provided the association of phenotypically
similar diseases might have connection through evolu-
tionary associated genes [18]. Recently, comoR an effect-
ive tool has been developed to predict disease
comorbidity by incorporating several existing tools into
one package [3]. This package is a useful tool with a
limitation that each tool work independently. For in-
stance, one tool, ComorbidityPath, predicts disease co-
morbidity based on disease associated pathways only and
the other tool ComorbidityOMIM only consider disease
gene associated from OMIM database under certain
threshold only.
More recently, another study considered each disease

and its associated genes as a module, i.e., a subgraph of
all the genes associated with that particular disease on
the human interactome [19]. In [19], an algorithm was
developed to compute so-called module separation for
comorbid diseases. Module separation is the average of
all pair shortest distance of genes within the diseaseA
and diseaseB. And it is found that the module separation
is negatively correlated with comorbidity, in other words,

high comorbid diseases tend to have closer module sep-
aration. Module separation was also demonstrated to be
a useful quantity in detecting missing common genes for
comorbid disease pairs [20]. Most recently, an algorithm
PCID has been developed for comorbidity prediction
based on integration of multi-scale data [21], which uses
heterogeneous information to describe diseases, includ-
ing genes, protein interactions, pathways and pheno-
types. The study is focused on predicting only those
diseases which co-occur with some primary disease,
where the primary disease should be a well-studied and
tend to be comorbid, which limit the study to a small
dataset of only 73 disease pairs [21].
In this paper, we present a new method to predict co-

morbid diseases for large datasets. Our dataset com-
prises of 10,743 disease pair with known gene-disease
association and comorbidity values. Inspired by correl-
ation between the disease module separation SAB and
comorbidity in [19], our method exploits the idea of em-
bedding the PPI network into a high dimensional geo-
metric space in order to better characterize and
incorporate interactome structural information for dis-
tinguish comorbid diseases from non-comorbid diseases.
Figure 1 explains the formation of network for two dis-
eases and formulation to calculate module separation
[20]. Instead of using module separation as a means to
predict comorbidity, our method first projects disease
module into various dimensions to “fingerprint” the
module and then trains a classifier to discriminate co-
morbid disease pairs from non-comorbid pairs. In 10-
fold cross validation on our dataset, our method achieves
a remarkable performance of ROC score = 0.9 for pre-
dicting disease pairs with relative risk RR ≥ 0 and ROC
score = 0.76 for disease pairs with RR ≥ 1, which signifi-
cantly outperform the performance (ROC = 0.37) from
the baseline method of using the correlation between
SAB and RR. We also report that using a special version
of weighted minimum spanning tree by assigning
weights to the genes associated with a similar pathway
can provide 1% improvement on the current method
even on the smaller dimension then the original un-
weighted method. The pathway correlation is also em-
phasized by providing few case studies as well.

Methods
Overview
We considered PPI network as a graph G = (V,E) where
V is a set of nodes and E is a set of edges. The graph is
called connected if for all pairs of nodes x, yϵ V there is
a path between them comprised of edges from . In gen-
eral PPI networks are comprised of several subgraphs
with usually one large connected component, which in-
cludes more than 90% of the information in term of
proteins and their interactions. For example, we used
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human interactome in this study provided by [19]
which has 13,460 proteins in total and the largest
connected component has 13,329 proteins which
comprise 99% of the total proteins in the network. In
this study, we use only the largest connected compo-
nent, due to the limitation of embedding in geometric
space where disconnected components of a graph
converted into high dimensional space may result in
undefined spatial overlap.

The embedding algorithm
The embedding algorithm used in this work is based on
Multi-Dimensional Scaling (MDS) [22]. MDS is a spec-
tral method based on eigenvalues and eigenvectors for
nonlinear dimensionality reduction and uses Euclidean
distance. Since human interactome is represented as a
graph where coordinates of nodes are unknown, there-
fore an extension called isometric feature mapping based
on geodesic distance is applied [23].
The basic idea of Isomap is described as follows: Given

a set of n nodes and a distance matrix whose elements
are shortest paths between all node pairs, find coordi-
nates in a geometric space for all the nodes such that
the distance matrix derived from these coordinates ap-
proximates the original geodesic distance matrix to its
possible extent.
Detailed procedure for embedding task is given below:

1. Construct PPI interaction network (graph), and
choose the largest connected component G.

2. Compute the shortest paths of all node pairs in G
to get matrix D.

3. Apply the double centering to D and get the
symmetric, positive semi-define matrix: A ¼ − 1

2 JD
2

J , J = I − n−111′, where I is the identity matrix that
has the same size as D; and 1 is a column vector
with all one, and 1′ is the transpose of 1.

4. Extract the m largest eigenvalues λ1 … λm of A and
the corresponding m eigenvectors e1 … em, where
m is the dimensions of target geometric space.

5. Then, a m-dimensional spatial configuration of the
n nodes is derived from the coordinate matrix X

¼ EmΛ1=2
m , where Em is the matrix with m

eigenvectors and Λm is the diagonal matrix with m
eigenvalues of A.

There are several embedding algorithms, such as
Stochastic Neighbourhood Embedding (SNE) [24] and
tSNE [25], Minimum Curvilinearity Embedding
(MCE), non-centered MCE (ncMCE) proposed by
Cannistraci et al. [26, 27]. We used the most recent
MCE [27], ncMCE [26] and the method proposed by
Kuchaiev et al. [28]. The Kuchaiev et al. study uses a

subspace iteration to compute eigenvalues to mitigate
the issue of considerable time complexity especially
for larger datasets. The positive and negative exam-
ples of the comorbid disease pairs are shown in Fig. 2
from five different angles at dimension 1,5, 10, 15
and 20. The x axis of each plot is the value of the
angle and the y-axis is the frequency of the angle
value in the dataset.
It should be noted that the methods aforementioned

are essentially based on matrix factorization. There
are graph embedding algorithms that are based on
other techniques, including random walks and deep
learning [29, 30]. Random walk based methods ap-
proximate the graph partially using node proximity
from random walks of preset length, such as Deep-
Walk [31] and nodd2vec [32]. Deep learning based
methods use autoencoders to generate node embed-
ding that can capture non-linearity in graphs, such as
SDNE [33] and DNGR [34]. The computational com-
plexity of these methods varies O(|V|d) for DeepWalk
and node2vec, to O(|V|2) for ncMCE and DNGR, and
to O(|V||E|) for SDNE, where |V| is the number of
nodes, |E| the number of edges and d the dimension
of the embedded space, see [30] for detailed compari-
son. The comparison of these algorithms for their
pros and cons is beyond the scope of this paper. Ra-
ther, the focus of this paper is to investigate whether
embedding PPI networks can help with comorbidity
prediction, as compared to the existing method based
on module separation.

Disease comorbidity prediction
Our comorbidity prediction method exploits the key
idea that a high dimensional geometric space provides
multi facets (or angles) to capture and characterize the
proteins’ relative positions in the interactome and hence
makes it easier to distinguish the comorbid diseases
from non- comorbid diseases by the distribution of the
associated proteins on the interactome. The steps devel-
oped to implement this idea are given as follows:

1. Embed the human interactome network into a
geometric space of dimension m, and extract
feature vectors.

2. Choose a threshold for comorbidity
3. Train the data using a supervised learning classifier

such as Support Vector Machine (SVM) or
Random Forest

4. Test the model for disease comorbidity prediction.
5. Evaluate the model using several evaluation metrics

The schematic view of the work-flow is shown is Fig. 3.
The most time complex task in the pipeline is geometric
embedding. We performed this task separately using a
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cluster Biomix at University of Delaware. It took 29.8
mins to compute geometric embedding for 20 space di-
mensions using the 8-core processor. The rest part was
done using i7 machine with 2.56 GHz processors and 16
GB RAM. it took 10.67 mins to complete the classifica-
tion after geometric embedding.

Classification
As mentioned above, we formalize the prediction of co-
morbid disease as a classification problem and adopt

supervised learning approach. Specifically, this is a binary
classification problem where either a disease pair is co-
morbid or non-comorbid, corresponding to the output y
of the binary classifier, namely, y = 1 for comorbid disease
pair and 0 for non-comorbid disease. The classifier is to
learn the actual mapping from input vector x to output:
y = F(x), with a hypothesis function G (x, ), where
collectively represents the parameters of the classifier, for
example the degree d of a polynomial kernel for SVM.
The classifier is trained to minimize the empirical error.

Fig. 2 Histogram representation of PPI networks from five different angles

Fig. 1 Toy example to represent two diseases as network and to calculate their module separation SAB
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min Σi¼1 to n‖F xið Þ−G xi; θð Þjf g ð1Þ

for a set of n training examples xi, i = 1 to n, whose co-
morbid property yi = F (xi) is known. Once the classifier
is trained, it is used to make prediction / classification
on unseen data, i.e., disease pair whose comorbid prop-
erty is not known a priori. In this study, two powerful
classifiers, Random Forest [35] and Support Vector Ma-
chines [36], are selected for this study. For SVM, 3 ker-
nel functions were adopted and assessed: Linear, Radial
Basis Function,

KG x; x
0

� �
¼ expð−γ x−x

0�� ���� ��� �2
=c ð2Þ

where the parameter C = 3.5 and = 1.06 and
Polynomial

KP x; x
0

� �
¼ x; x

0
D E� �

þ 1Þd ð3Þ

where the degree d = 4. These values of C, and d
were optimized by using Opunity 1.1.1, a python
package.

Data and feature characterization
The dataset used in this study was adopted from [19],
which consists of 10,743 disease pairs with comorbidity
measured as relative risk RR based on clinical data; RR >
1 for a disease pair indicates that the diseases are diag-
nosed more often in the same patients that expected by
chance given their individual prevalence. This comorbid-
ity value is considered as ground truth to determine dis-
ease pair and their association in terms of comorbidity.
The subset comprised of these 6270 comorbid disease
pairs (PP > 1) are considered as positive examples and

Table 1 Prediction evaluation of various methods at comorbidity threshold values RR = 0 and RR = 1
Precision Recall F1-measure Accuracy ROC

Comorbidity_0

SVM_linear 0.68 0.83 0.75 0.83 0.56

SVM_RBF 0.90 0.90 0.89 0.90 0.90

SVM_Polynomial 0.87 0.88 0.86 0.88 0.88

Random Forest 0.86 0.86 0.83 0.86 0.89

Module Separation Sab 0.65 0.47 0.37 0.47 0.34

Comorbidity_1

SVM_linear 0.59 0.60 0.56 0.60 0.62

SVM_RBF 0.70 0.70 0.69 0.70 0.76

SVM_Polynomial 0.68 0.68 0.67 0.68 0.72

Random Forest 0.69 0.70 0.69 0.70 0.74

Module Separation Sab 0.65 0.47 0.37 0.47 0.34

Fig. 3 Schematic form of algorithm to predict a disease pair as comorbid or non-comorbid disease
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Fig. 5 ROC Score of comorbidity prediction at RR = 1 compared with baseline

Fig. 4 ROC Score of comorbidity prediction at RR = 0 compared with baseline
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the rest is considered as negative non-comorbid disease
pairs.
We used various values of geometric space of m for this

study. Therefore, the feature vector for this study is com-
prised of m + 3 features in total. The feature vector for any
disease pair module includes m features from the geomet-
ric space <f1, …, fi, …, fm>, where fi is the projection of the
disease module onto the i-th dimension, i.e., the sum of i-
th coordinate z for all genes in the given disease module.

f i ¼ Σg∈fall genes in the disease modulegziðgÞ ð4Þ

where zi (g) is the i-th coordinate z of gene g. And the
rest three features are:

1. Average degree of nodes by calculating number of
edges connecting to each node. We calculated average
of all the proteins associated with a disease pair.

2. Second feature is the average centrality used to
measure how often each graph node appears on a
shortest path between two nodes in the graph.
Since there can be several shortest paths between
two graph nodes s and t, the centrality of node u is:

c uð Þ ¼ Σs;t≠u nst uð Þ=Nst ð5Þ
where nst(u) is the number of shortest paths from s to t

that pass-through node u, and Nst is the total number of
shortest paths from s to t. We computed the average of
all the nodes associated with both diseases taking part in
disease pair under consideration.

3. The last feature is the average number of pathways
associated with genes of associated disease pair.
This pathway count is collected from Reactome
database [37, 38]. Reactome is an open source
database and contains information of about 2080
human pathways which incorporates 10374
proteins.

Cross-validation and evaluation
To assess the prediction performance, we adopt the
widely accepted cross-validation scheme. Specifically,
we used 10-fold cross-validation. Given the threshold
(RR = 0 or RR = 1, see the Results and discussion sec-
tion), the data is split to a positive set and a negative
set correspondingly, namely, with disease pairs with
RR score above the threshold as positive and other-
wise as negative. The positive set is then randomly
split to 10 equal-sized subsets, where one set is re-
served as positive test set and the rest 9 subsets are
combined into a positive training set. The negative
set is prepared similarly. Then, a positive train set
and a negative train set are combined to form a train
set to train the classifier, and a positive test set is

Fig. 6 ROC Score of comorbidity prediction at RR = 0 and RR = 1 compared with random data and baseline using SVM_RBF

Akram and Liao BMC Medical Genomics 2019, 12(Suppl 7):161 Page 7 of 15



combined with a negative test set to form a test set
to evaluate the trained classifier This process is re-
peated 10 times, with each subset being used as test
set once and the average performance from 10 runs
is reported. We used some commonly used measure-
ments to report the performance, which includes ac-
curacy, precision, recall, F1 score, and ROC score,
defined as follows.

Recall ¼ TP
TP þ FN

ð6Þ

Precision ¼ TP
TP þ FP

ð7Þ

Accuracy ¼ TP þ TN
TP þ TN þ FN þ FP

ð8Þ

F1 ¼ 2� Precision� Recall
Precisionþ Recall

ð9Þ

where TP stands for true positive when a disease pair
correctly predicted as comorbid, TN for true negative
when a disease pair correctly predicted as non-
comorbid, FP for false positive when a non-comorbid
disease pair incorrectly predicted as comorbid disease
pair; and FN for false negative when a comorbid dis-
ease pair is incorrectly predicted as non-comorbid
disease pair.

We also evaluate the performance using receiver oper-
ating characteristic (ROC) curve and Receiver operating
characteristic (ROC) score. ROC is a graphical represen-
tation that illustrates the performance of a binary classi-
fier system. The plot is created by plotting the true
positive rate (TPR) against the false positive rate (FPR)
as the threshold moves down the ranked list of testing
examples in descending order of the prediction score.
The true-positive rate is also known as sensitivity or re-
call while false-positive rate is also known as (1-specifi-
city) [39].

Results and discussion
Dataset
The data used for this study including the human inter-
actome, disease gene association and comorbidity values
RR is adopted from [19]. The dataset contains 10,743
disease pairs. We used comorbidity values computed
and reported in [19] for the classification purpose. Co-
morbidity RR value ranges from 0 to < 9000 for our data.
There are 6269 disease pairs with comorbidity value
RR > =1, which is more than 50% of our dataset.
Among these disease pairs there are 1868 disease pairs

with comorbidity value RR = 0, comprising 17% of the
dataset. The other disease pairs are spread out to the
max RR = 8861.6 and there are only 854 disease pair
with comorbidity value > 4. In addition to setting RR = 1

Fig. 7 Common gene association with number of biological pathways for original and random common genes for comorbid diseases
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as the comorbidity threshold like in Ref [19], in this
study we also tested with a relaxed threshold at RR = 0,
namely, any disease pairs with non-zero RR value are
considered comorbid disease pairs and only these pairs
with zero RR value are considered non-comorbid. So
correspondingly we prepare two sets of training and
testing data (Comorbidity_0 and Comorbidity_1) to
evaluate the performance of our method.

Geometric space
The first crucial task of our method is to embed the in-
teractome into a geometric space of dimension m. We
tested with different dimension space values from m= 2
to m = 50, using Kuchaiev et al. [28], MCE [27], ncMCE
[26] and MDS [22] and noticed that as the dimension in-
creases, the prediction performance ROC score roughly
increases as well. The increase diminishes as m goes be-
yond 13 for method Kuchaiev et al. while the computa-
tional time increases drastically. For ncMCE [26] and
MDS [22] the relative performance was poor. Perform-
ance of centered MCE and Kuchaiev et al. was similar
and the time complexity of centered MCE is much

lower. Therefore, we selected the centered MCE for
finding geometric embedding for our task.
We performed evaluation comorbidity threshold RR =

1, i.e., disease pairs with RR ≥ 1 are considered as posi-
tive examples and other pairs as negative examples. We
used this threshold as it was shown in [19] that comor-
bidity 1 is the best threshold for the classification of dis-
ease pairs into comorbid and non-comorbid diseases. In
this study we considered the threshold value for comor-
bidity value RR = 0 and 1. The average Precision, Recall,
F-measure and ROC score for each threshold is listed in
Table 1.
Our method significantly outperforms the baseline

method, which is based on the module separation SAB to
predict whether a pair of disease are comorbid [19]. We
compared our results with [19] since it is to our best
knowledge the only study which used large amount of
data for their analysis. For these variants of our method,
SVM_RBF is the best performer in both datasets Comor-
bidity_0 (with ROC score = 0.90) and Comorbidity_1
(with ROC score = 0.76), which correspond 165% im-
provement and 124% improvement respectively from the
baseline method. It is also noticed that, on average,

Fig. 8 Subgraph of leprosy and lymphoma diseases
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better performance is achieved for the dataset Comor-
bidity_0, which has a more relaxed RR threshold. The
ROC curve for comorbidity 0 and comorbidity 1 are
shown Figs. 4 and 5 respectively. One plausible reason
for SVM RBF outperforming the other selected classi-
fiers is that SVM RBF uses a more powerful kernel
function, which is capable of learning highly complex
nonlinear boundary between positive data points and
negative data points. Similarly, random forest strikes a
good balance in discriminating positive examples from
negative examples with individual decision trees and not
overfitting the data with as ensemble of decision trees.
We also compared our results by randomizing the

genes associated with a disease pair. We retained the
gene count associated with each disease and the number
of common genes related to a disease pair to maintain
the overall topology of a disease pair sub-graph. This

experiment shows that even the random data performs
better than module separation method but has poor
performance when compared with our approach as
shown in Fig. 6. This better performance of our
method is due to the spatial arrangement of proteins,
which in low dimensional space captures the precise
localization of proteins and its association with other
proteins in a way that was not achievable by two-
dimensional PPI network.
We also performed a t-test to reject the null hypoth-

esis that performance differences are due to random
fluctuation by using 10-fold-cross validation data of ori-
ginal data and the random data. The p-value of 0.0176
validates the statistical significance of our results.
Given that genes are not randomly associated with dis-

eases and there is an underlying rewiring which connects
these genes with one another to perform the proper

Fig. 9 Pathway relation to genes associated with leprosy and lymphoma
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concerned function, disruption of any gene is not dam-
age restricted to itself but related to all the connections
it made. These observations supported us to construct a
network where we can observe gene related disruption
easily. We created a weighted graph using the pathway
information from Reactome database [37, 38]. Reactome
is an open source database, and it has information of
about 2080 human pathways which incorporates 10,374
proteins. We assign a weight to an edge if both the genes
connected are involved in a pathway. Further, we used
this weighted network to obtain the matrix D of shortest
paths of all node pairs for step two of our protocol.
With the use of the weighted network, we were able to

improve the prediction performance with 1% increase
for 20 dimensions with p-value 0.93 using ROC score of
10-fold cross-validation. We suspected that might be 10-
fold cross validation does not provide enough data to
produce substantial results for such a small increase.
Therefore, we also increased the number of cross-
validation as 20, 30 and 100, the p-values were 0.311 and
0.29 and 0.15 respectively.
We also attempted to reduce the dimensions and ob-

served the performance would be affected. We found
that at dimension m = 13 the prediction improvement
was even 1%, but the p-value was 0.009. This outcome
provides a statistically significant improvement over the

unweighted graph. The behavior that the performance
peaks at some dimension rather than keeps going up as
the dimension increases is conceivably due to the possi-
bility that noise is also introduced. We also looked at the
minimum spanning tree to see the difference in the edge
selection and found that 78% of the edges are similar be-
tween the two minimum spanning tree and thus only
22% of the edges made an improvement of 1% in the
performance.

Case studies
To shed more light on how the proposed method works,
case studies were conducted. We first mapped the com-
mon genes of comorbid diseases to biological pathways.
We used Reactome database for this purpose. Mapping
the common genes of comorbid diseases onto biological
pathways shows that, as expected intuitively, as the num-
ber of common genes for comorbid disease pair in-
creases the number of pathways associated with the
disease pair also increases. To understand this relation-
ship more quantitatively, we compared it to randomized
data as a baseline. Specifically, we randomly associated
common genes to disease pairs, and then observed the
ratio of pathway associated with disease in the original
and randomized data. Figure 7 shows the comparison
histogram, displaying the frequency of pathways for

Fig. 10 Pathway association with leprosy and lymphoma
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common genes in the randomized vs. original data. This
comparison shows that there are fewer pathways in-
volved in comorbid diseases by real common gene asso-
ciation than by randomized common genes, suggesting
that common genes associated with comorbid disease
pair may take effect in causing both diseases simultan-
eously, possibly in some “coordinated” way, via disrupt-
ing fewer pathways than by random hit.
Next, we identified several disease pairs to showcase

the significance and better performance ability of our
protocol. We are showing two cases where module sep-
aration SAB was unable to establish an association in dis-
ease pair despite a higher comorbidity value, but by
projecting genes onto the higher dimension the comor-
bid pair was detected. It might be that these pathways
associated with the disease pairs as a cause for the co-
morbid behavior of disease pair were properly weighted
and thus resulted in an adequate embedding to the
higher dimension space where the comorbid disease
pairs were more easily separated from non-comorbid
disease pairs. Specifically, the first disease pair shows the
overlap in genes related to the two diseases. Module sep-
aration method was unable to predict this disease pair

close enough to be considered as comorbid, but our
method not only predict this disease pair as comorbid
but also it can be seen through the case study how the
pathways associated with one disease are important for
the normal functioning of the other disease. The third
disease pair illustrates the importance of weighted graph.
In this case, both module separation and unweighted
graph failed to capture comorbidity, but the weighted
graph succeeded in finding a comorbid association in
the disease pair, which is validated in the literature.

Leprosy and lymphoma
Leprosy has affected human health for decades. It is a
chronic infectious disorder caused by a bacterium,
Mycobacterium leprae, that affects the skin and periph-
eral nerves [40]. Lymphoma is a group of blood cancer
developed from lymphocytes [41]. In our dataset, there
are 13 genes associated with Leprosy and 24 genes re-
lated to Lymphoma. This disease pair shares three com-
mon genes HLA-DQA2, HLA-DQB1, and HLA-DRB5,
and has comorbidity value RR = 1.43. while its module
separation SAB = 0.105 in the baseline method leads to a
prediction of non-comorbidity, our method correctly

Fig. 11 Gene Disease relation of Epilepsy and Glioma
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classifies this disease pair as a comorbid disease pair.
The common genes of the disease pair are associated
with several pathways as shown in Fig. 8.
With data collection from Reactome database, we

found that there are eight different pathways associated
with these genes. Specifically, R-HSA-202424 has eight
genes from leprosy and three genes from lymphoma tak-
ing part together. Among these genes, there are three
common genes. This pathway of downstream TCR sig-
naling has a crucial role in gene expression changes that
is required for the T cell to gain full proliferative compe-
tence and to produce effector cytokines. There are three
transcription factors found to play a vital role in TCR-
stimulated changes in gene expression, namely NF-kB,
NFAT, and AP-1.
We found that among these three transcription fac-

tors, NF-kB is associated with lymphoma. Interestingly,
this transcription factor with two more genes related to
leprosy is part of another pathway R-HSA-445989. This

pathway is responsible for NFkB activation by TAK1 by
phosphorylation and foractivation of IkB kinase (IKK)
complex. Phosphorylation of IkB results in dissociation
of NF-kappaB from the complex allowing translocation
of NF-kappaB to the nucleus where it regulates gene ex-
pression. The genes associated with leprosy and pathway
R-HSA-445989 have a significant role in NFkB activation
which is the precursor of the TCR signaling pathway R-
HSA-202424 as shown in Fig. 9.
Two more pathways: R-HSA-6785807 and R-HSA-

5689880 have a common gene MYC from lymphoma
and two separate genes IL23R and CYLD from leprosy
associated with pathways respectively. R-HSA-6785807
also has genes BCL6, CCND1 associated with lymph-
oma, taking their part in the process.
R-HSA-5689880 is a pathway associated with Ub-

specific processing proteases (USPs). They recognize
their substrates by interactions of the variable regions
with the substrate protein directly, or via scaffolds or

Fig. 12 Pathways relationship with specific genes of Epilepsy and Glioma
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adapters in multiprotein complexes. Whereas R-HSA-
6785807 is Interleukin-4 and 13 signaling pathway,
where Interleukin-4 (IL4) is a principal regulatory cyto-
kine during the immune response [42]. Another interest-
ing fact about these two pathways is that both have a
direct link with gene associated with disease pair and
pathway associated gene as shown in Fig. 10.

Epilepsy and glioma
Epilepsy is a group of neurological disorders character-
ized by episodes that can vary from brief to long periods
of vigorous shaking. These episodes can result in phys-
ical injuries, including broken bones [43]. Glioma is a
type of tumor that starts in the glial cells of the brain
and spine causing 30% of all brain tumors and 80% of
malignant brain tumors [44]. In our dataset, there are 25
genes associated with epilepsy and 17 genes associated
with glioma. Even though both diseases are associated
with the brain, there is no single common gene associ-
ated with the disease pair as shown in Fig. 11, besides
having high comorbidity RR = 10.69.
Interestingly, the module separation for this disease

pair is SAB = 0.29, which leads to a non-comorbid predic-
tion in the baseline method. It was also observed that
our unweighted minimum spanning tree method was
unable to predict it as a comorbid disease. But when we
applied the weights to the genes due to their pathway as-
sociation, as prescribed in the Methods section, we
found that this disease pair was predicted as a comorbid
disease pair. Further incorporation of pathway analysis
also shows that there is a link which might cause co-
occurrence of these diseases.
We found that there are two pathways R-HSA-

6798695 and R-HSA-8943724 associated with disease
pair. R-HSA-6798695 is related to neutrophil degranula-
tion while R-HSA-8943724 is related to regulation of
PTEN gene transcription as shown in Fig. 12. PTEN
gene helps in regulating cell division by keeping cells
from growing and dividing too rapidly or in an uncon-
trolled way. On top of that, if there is any disruption in
Neutrophil degranulation, it also affects the defense
mechanism of the body. Literature also supports this
claim that genes involved in the immune response might
play a role in the pathogenesis of tumor growth as well
as epileptic symptoms in patients with gliomas [45].

Conclusion
In this work, we developed a computational method to
effectively predict comorbid diseases in a large scale.
While intuitively the chance for two diseases to be co-
morbid should go up as they have more associated genes
in common, previous studies show that module separ-
ation -- how these associated genes of two diseases are
distributed on the interactome plays a more important

role in determining the comorbidity than does the num-
ber of common genes alone. Our key idea in this work is
to embed the two-dimension planar graph of human in-
teractome into a high dimensional geometric space so
that we can characterize and capture disease modules
(subgraphs formed by the disease associated genes) from
multiple perspectives, and hence provide enriched fea-
tures for a supervised classifier to discriminate comorbid
disease pairs from non-comorbid disease pairs more ac-
curately than based on simply the module separation.
The results from cross-validation on a benchmark data-
set of more 10,000 disease pairs show that our method
significantly outperforms the method of using module
separation for comorbidity prediction.
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