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ABSTRACT We developed a method of simultaneous vaccination with DNA and
protein resulting in robust and durable cellular and humoral immune responses with
efficient dissemination to mucosal sites and protection against simian immunodefi-
ciency virus (SIV) infection. To further optimize the DNA-protein coimmunization reg-
imen, we tested a SIVmac251-based vaccine formulated with either of two Toll-like re-
ceptor 4 (TLR4) ligand-based liposomal adjuvant formulations (TLR4 plus TLR7
[TLR4�7] or TLR4 plus QS21 [TLR4�QS21]) in macaques. Although both vaccines in-
duced humoral responses of similar magnitudes, they differed in their functional
quality, including broader neutralizing activity and effector functions in the TLR4�7
group. Upon repeated heterologous SIVsmE660 challenge, a trend of delayed viral ac-
quisition was found in vaccinees compared to controls, which reached statistical
significance in animals with the TRIM-5�-resistant (TRIM-5� R) allele. Vaccinees were
preferentially infected by an SIVsmE660 transmitted/founder virus carrying neutralization-
resistant A/K mutations at residues 45 and 47 in Env, demonstrating a strong vaccine-
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induced sieve effect. In addition, the delay in virus acquisition directly correlated
with SIVsmE660-specific neutralizing antibodies. The presence of mucosal V1V2 IgG
binding antibodies correlated with a significantly decreased risk of virus acquisition
in both TRIM-5� R and TRIM-5�-moderate/sensitive (TRIM-5� M/S) animals, although
this vaccine effect was more prominent in animals with the TRIM-5� R allele. These
data support the combined contribution of immune responses and genetic back-
ground to vaccine efficacy. Humoral responses targeting V2 and SIV-specific T cell
responses correlated with viremia control. In conclusion, the combination of DNA
and gp120 Env protein vaccine regimens using two different adjuvants induced du-
rable and potent cellular and humoral responses contributing to a lower risk of in-
fection by heterologous SIV challenge.

IMPORTANCE An effective AIDS vaccine continues to be of paramount importance
for the control of the pandemic, and it has been proven to be an elusive target.
Vaccine efficacy trials and macaque challenge studies indicate that protection may
be the result of combinations of many parameters. We show that a combination of
DNA and protein vaccinations applied at the same time provides rapid and robust
cellular and humoral immune responses and evidence for a reduced risk of infection.
Vaccine-induced neutralizing antibodies and Env V2-specific antibodies at mucosal
sites contribute to the delay of SIVsmE660 acquisition, and genetic makeup (TRIM-5�)
affects the effectiveness of the vaccine. These data are important for the design of
better vaccines and may also affect other vaccine platforms.

KEYWORDS DNA, protein, TLR4, TLR7, QS21, adjuvant, rhesus macaque, vaccination,
vaccine, immunization, SIVmac251, SIVsmE660, HIV, SIVsmE660 T/F, A/K variant, TRIM-5�,
humoral responses, binding antibody, neutralizing antibody, linear peptide, cyclic V2,
scaffolded gp70-V1V2, ADCC, ADCD, ADNP, Ab glycosylation structures, T cell
responses, mucosal responses, repeated low-dose rectal challenge, reduced risk of
infection, viremia control, correlate of viremia control, V2 responses, acquisition
delay, systems serology

The development of a vaccine against human immunodeficiency virus (HIV) remains
an important research aim since only the RV144 trial showed marginal protection

against infection. The prime-boost vaccine used in the RV144 trial is comprised of
recombinant ALVAC-expressing genes coding for Gag/protease and membrane-bound
gp120 Env and AIDSVAX gp120 protein subtypes CRF01_AE and clade B (MN) adju-
vanted in alum (1). Importantly, analysis of the RV144 data suggested that the devel-
opment of nonneutralizing antibody (Ab) responses, including responses to variable
region 2 (V2) of HIV Env, and antibody-dependent cellular cytotoxicity (ADCC) were
associated with a lower risk of infection (1–4). This vaccine failed to induce durable
responses and had marginal efficacy.

We have developed candidate DNA vaccines against HIV/simian immunodeficiency
virus (SIV) that induce immune responses able to efficiently reduce viremia in different
SIV challenge models for prevention (5–8) and therapy (9, 10). DNA as a vaccine
platform has several advantages, including simplicity, scalability, and the possibility for
repeated boosts due to the lack of immunity against the vector. The combination of
intramuscular (i.m.) DNA delivery followed by in vivo electroporation (EP) has been
shown to be a more effective vaccine delivery method, inducing higher immune
responses in macaques and in humans (reviewed in references 11 and 12). To improve
antibody development, we had previously included protein as a boost in classical
prime-boost vaccination or employed a coimmunization regimen of DNA and protein,
termed DNA-protein coimmunization, delivered simultaneously at the same anatomical
site (7, 13–16). The coimmunization vaccine regimen resulted in higher and more
durable antibody responses with improved mucosal dissemination and robust systemic
and mucosal T cell responses (7, 13–17). In a previous DNA-protein coimmunization
study, we used aldrithiol-2 (AT-2)-inactivated SIVmac239 viral particles as a protein
component and reported a significant delay in the acquisition of the heterologous
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SIVsmE660 (7). The DNA-protein coimmunization vaccine regimen has also been used by
other groups and resulted in improved antibody responses in rabbits and macaques
(18–21).

The design of an efficient vaccine regimen requires optimization of the immunogens
and additional components, including adjuvants. The inclusion of adjuvants like QS21
(22–25), agonists of specific Toll-like receptors (TLRs) (13, 14, 26–42), or combinations
thereof (43–46) has generated strong interest due to their ability to enhance immune
responses. Recent studies have indicated that such adjuvants can act as strong en-
hancers of immune responses, resulting in various degrees of protection from SIV
infection (31, 42, 46). We have previously shown that Env protein adjuvanted with the
TLR4 agonist formulated in a stable oil-in-water emulsion (GLA-SE) and coimmunized
with DNA provided higher titers of durable antibody responses against HIV and SIV Env
(13, 14). In the present study, we expanded the use of TLR4-based adjuvants in
combination with SIV DNA-protein coimmunization regimens by comparing two
liposomal adjuvant formulations, TLR4 plus TLR7 (TLR4�7) and TLR4 plus QS21
(TLR4�QS21). We tested vaccine efficacy upon repeated low-dose rectal heterologous
SIVsmE660 challenge. Tripartite-motif-containing protein 5 alpha (TRIM-5�) (47–49) is a
potent innate restriction factor which affects SIVsmE660 infection (50–53), exerting its
function via interaction with the incoming virus particles, in particular with the viral
capsid protein, a proteolytic Gag-processing product, and it was shown that muta-
tions in two sites (P37S and R98S) in the capsid protein could alleviate this antiviral
effect (52). The TRIM-5�-resistant (TRIM-5� R) allele as an innate protective immune
mechanism can assist vaccine-induced immune responses in controlling infection (31,
54–56). Balancing the groups, we also addressed the contribution of the TRIM-5�

genotype in our study.

RESULTS
DNA-protein vaccination regimens using different protein adjuvants in rhesus

macaques. Indian rhesus macaques (n � 12/vaccine group; 12 controls) were balanced
for age (median, 2.9 years) and weight (median, 3.6 kg) and comprised 5 females per
vaccine group and 6 females in the control group. The groups were balanced for
TRIM-5� alleles: either resistant (referred to as R here) (TFP/TFP; TFP/CYPA) or moderate
(TFP/Q; Q/CYPA)/sensitive (Q/Q) (referred to as M/S here), with respect to permissive-
ness for SIVsmE660 infection (50–53) (see Table S1 in the supplemental material). Two
groups received SIV DNA-protein coimmunization vaccine regimens (Fig. 1A) differing
only by the adjuvants used for protein formulations. Both groups received a DNA
vaccine comprising a mixture of SIVmac251 Env sequences from the transmitted/founder
(T/F) SIVmac251 M766 and the infectious molecular clone SIVmac239, which differ by 5%
of amino acids over the complete gp160 sequence. The DNA plasmids expressed two
forms of Env (Fig. 1B): (i) soluble trimeric gp140 and (ii) membrane-bound gp120e-TM,
a fusion of gp120 to the transmembrane (TM) region. In contrast to the HIV gp120-TM
env insert in rALVAC used in the RV144 trial (1), gp120e-TM consists of gp120 with an
additional 54 C-terminal amino acids spanning the fusion peptide and part of the
heptad region. Upon transient transfection, the gp120e-TM protein was found to be
mainly cell associated, whereas the Env protein produced from gp120-TM Env was
efficiently secreted (Fig. 1C). Flow cytometry analysis confirmed that mac239 and M766
gp120e-TM proteins are exposed at the cell surface (Fig. 1D). The DNA vaccine mixture
also contained plasmids expressing SIV Gag and rhesus macaque interleukin-12 (rmIL-
12), as a molecular adjuvant, which we and others previously showed to increase
vaccine-induced immunity in macaques (16, 57–63). The DNA vaccine was coadminis-
tered with HEK293 cell-produced the soluble monomeric SIV M766 (64, 65) gp120 Env
protein, adjuvanted with liposomal formulations containing a combination of TLR4 and
TLR7 agonists (referred to as TLR4�7 here) or with a combination of a TLR4 agonist and
QS21, a saponin derivative (referred to as TLR4�QS21 here). Six animals from the
control group received 3 sham DNA and IL-12 DNA vaccinations, which included the
respective adjuvants at the last vaccination (n � 3 each). Six treatment-naive animals
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were included in the control group. Vaccinations were performed at 0, 2, and 6 months
(Fig. 1A). The DNA-protein coimmunization vaccine was administered via the intramus-
cular route by in vivo EP of the DNA, followed immediately by the administration of the
protein vaccine into the same muscle.

The health of the animals was regularly monitored by physical examination, com-
plete blood count (CBC), and serum chemistry. No adverse effects were observed in

FIG 1 Vaccination of macaques with SIVmac251 DNA-protein coimmunization vaccine regimens. (A) Indian rhesus macaques were vaccinated three times (0, 2,
and 6 months) with SIVmac251-derived env plasmids (SIVmac239 and T/F M766) coadministered with monomeric M766 gp120 protein adjuvanted with TLR4�7
(n � 12) or TLR4�QS21 (n � 12). The DNA mixtures also contained SIVmac239 gag DNA and rmIL-12 DNA. Five months after the 3rd vaccination, the animals
were subjected to weekly intrarectal exposures using a titrated dose of the heterologous SIVsmE660 virus, and the infected animals were monitored for 6 months.
(B) Schematic representation of the DNA-protein vaccine comprising RNA/DNA-optimized expression vectors producing SIVmac251-derived membrane-bound
gp120e-TM and the soluble trimeric gp140 Env proteins. The vaccine contained monomeric M766 gp120 Env. Amino acid positions follow SIVmac239 numbering.
(C) HEK293T cells were transfected with SIV M766 env plasmid DNAs (pDNAs) expressing gp150 (lane 1), gp140 (lane 2), gp120e-TM (lane 3), and gp120-TM
(lane 4). Proteins from the cell-associated and extracellular (1/200 of each sample) fractions were analyzed by Western immunoblotting and detected using a
mouse anti-gp120 Ab. Equal loading of the blot with the cell-associated fractions was controlled by probing the membrane with an antiactin antibody. (D)
Histogram overlay showing the membrane localization of mac239 and M766 gp120e-TM proteins on transfected HEK293 cells using a mouse anti-gp120 Ab
followed by an APC-conjugated goat anti-mouse Ab. The mock-transfected cells are shown (gray histogram).
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either adjuvant-treated or control animals over the course of the study. In addition,
changes in lymphocyte activation related to the different adjuvants used in the vaccine
were monitored in blood CD4� and CD8� T cells. These analyses included determining
the expression of granzyme B (GrzB) (cytotoxicity), Ki67 (cell cycling), CXCR3 (effector T
cell trafficking and function), �4�7 (gut-homing receptor associated with HIV infection)
(66–68), and major histocompatibility complex class II (MHC-II) (T cell activation) and
showed no differences among animals in the vaccine or control groups (Fig. S1).

DNA-protein vaccines induce robust systemic and mucosal humoral immune
responses, including V2-specific bAb. Both DNA-protein vaccines induced binding
antibody (bAb) recognizing vaccine-matched SIVmac251 and heterologous SIVsmE660

(Fig. 2A), and those IgG antibodies efficiently disseminated into rectal and vaginal
mucosa (Fig. 2B) in animals from both vaccine groups. We tested the ability of the
vaccine-induced bAb to recognize the V2 region, since V2-specific Ab were associated
with a delay in virus acquisition in the RV144 clinical trial (1–3) and in an analogous SIV
vaccine study performed in macaques (69, 70). Of note, amino acid alignment of the
vaccine-matched SIVmac251 Env sequences mac239/M766 and the heterologous
SIVsmE660 sequence shows 62% identity of the V1V2 regions, with 90% identity of the
V2 regions (see Fig. S2A in the supplemental material). Plasma samples collected 2
weeks after the 3rd vaccination were analyzed for reactivity against (i) linear peptides
covering amino acids (aa) 16 to 717 (amino acid numbering according to SIVmac239) of
Env (Fig. S2B and S3) and (ii) cyclic V2 (Fig. 2C and Fig. S2C) to identify interactions with
constrained peptides mimicking some of the conformations of the V2 region. In
addition, the presence of antibodies recognizing scaffolded gp70-V1V2 (Fig. 2D and E
and Fig. S2D and S2E) was also analyzed in both plasma and mucosal secretions to
detect interactions with V1V2 in a structural context. The plasma bAb in the animals
from both vaccine groups recognized primarily V1 (maximum response to peptides 16
and 17) and V2 (maximum response to peptides 26, 27, and 28) and, to a lesser extent,
C3 (maximum response to peptides 57 and 58), V4 (maximum response to peptides 67
and 68), and C5 (maximum response to peptides 82 and 83) (Fig. S3). Low responses to
V3 were found, in agreement with our previous observation that SIV DNA-protein-
vaccinated macaques develop stronger antibody responses to V1 and V2 (14, 71), a
finding also reported for other SIV vaccine platforms (54, 71). To allow direct compar-
ison among the animals, the antibody responses targeting the different Env regions
were estimated as percentages of the total anti-Env response for each animal (Fig. S2B).
This analysis showed significantly higher responses targeting V2 (P � 0.0077) and lower
responses to C3 (P � 0.0001) in the animals from the TLR4�7 group.

To further explore the recognition of the V2 region, plasma samples were tested for
their reactivity to cyclic V2 peptides. Both vaccine groups showed robust binding to
cyclic V2 from SIVmac251 (Fig. S2C) and SIVsmE543 (Fig. 2C). No difference was found
between responses to cyclic peptides spanning aa 151 to 206 full length (F) and aa 168
to 206 short length (S), indicating that the recognized epitope(s) lies within the shorter
peptide spanning aa 168 to 206, a region overlapping the sequence covered by linear
peptides 26 to 28 (aa 168 to 194) (Fig. S2A). We also found robust recognition of both
scaffolded vaccine-matched gp70-SIVmac251 V1V2 (Fig. S2D) and heterologous gp70-
SIVsmE660 V1V2 (Fig. 2D). Importantly, analysis of rectal and vaginal secretion samples
showed the presence of antibodies binding to V1V2, demonstrating efficient mucosal
dissemination of the vaccine-induced humoral responses in both groups of vaccinees
(Fig. 2E and Fig. S2E). We also measured mucosal SIVmac251-specific IgA and found
responses in only two animals (T093 and T094) from the TLR4�7 group. Macaque T094
was also positive for IgA antibodies targeting V1V2. Taken together, these data dem-
onstrate that the humoral responses induced by our vaccine regimen efficiently
disseminate to mucosa rather than local antibody production, in accord with our
previous report (14).

In summary, the two DNA-protein vaccine formulations induced robust humoral
responses recognizing the vaccine-matched and heterologous V2 regions, both in the
context of linear peptides and conformational epitopes (cyclic V2 and the gp70
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FIG 2 Systemic and mucosal humoral immune responses induced by the DNA-protein coimmunization vaccine. Humoral responses were
measured 2 weeks after the 3rd vaccination (bars indicate median values). (A) bAb to SIVmac251 and SIVsmE660 in plasma determined by SIV-BAMA
are shown as the area under the curve of the binding magnitude (AUC). (B) gp140smE660-specific binding activity measured by SIV-BAMA in rectal
and vaginal (samples from 4 of the 5 females could be analyzed) mucosal samples are shown as Env-specific binding antibody (MFI �
dilution/total IgG). (C) Responses in plasma to cyclic V2 were measured to SIVsmE543 V2 peptide (aa 168 to 206) by a SPR assay. (D and E) bAb
recognizing gp70-scaffolded SIVsmE660-specific V1V2 measured in plasma (D) and in mucosal (rectal and vaginal) samples (E) using SIV-BAMA. (F)
NAb to SIVmac251.6, SIVsmE660 (BR-CG7G.IR1 and 2A5-VTRN), and SIVmac251 M766 in plasma. Titers are calculated as 50% infectious doses (ID50)
(dilution) in TZM-bl cells with a threshold of 300. (G) Serially diluted serum samples were used to determine the ADCC titers (left) and peak
granzyme B activity (right) using SIVmac251 gp120-coated CEM-NKR target cells. (H to K) Systems serology shows distinct function and Ab

(Continued on next page)
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scaffold), and, specifically, recognizing the N-terminal portion of V2, which shares the
highest homology between SIVmac251 and SIVsmE660 (Fig. S2A).

Distinct antibody functions between the vaccine groups. Vaccinees were eval-
uated for their ability to mount neutralizing antibody (NAb) to the vaccine-matched
SIVmac251 and the heterologous SIVsmE660 (Fig. 2F). Macaques in both vaccine groups
developed robust levels of NAb to tier 1 SIVmac251.6, tier 1A SIVsmE660-CG7G, as well as
neutralization-sensitive tier 1 SIVsmE660/2A5-VTRN (Fig. 2F). Of note, 4 of the 12 animals
in the TLR4�7 group (animals T065, T092, T093, and T094) showed NAb to tier 1B
SIVmac251 M766 (Fig. 2F, right), indicating the induction of broader NAb responses using
this adjuvant formulation. No neutralizing activity was found against tier 2 SIVmac251.41

and neutralization-resistant tier 2 SIVsmE660 CR54-PK-2A5. Monitoring the persistence of
neutralizing activity after the 3rd vaccination showed that NAb, like bAb (see Fig. S4A
in the supplemental material), had similar durabilities among the two groups, with an
�1-log decline over 5 months (Fig. S4B).

We also evaluated whether the antibodies induced by the two vaccine formulations
were able to induce cell-mediated cytotoxicity (ADCC) using (i) SIVmac251 gp120-coated
target cells and (ii) SIVmac251- and SIVsmE660-infected target cells. Figure 2G shows (i)
ADCC endpoint titers (defined as the reciprocal of the highest dilution indicating a
positive response) (left) and (ii) maximum percent GrzB activity (defined as the maxi-
mum percent frequency of GrzB-positive [GrzB�] cells observed at any plasma dilution)
(right). Both assays measure ADCC by different final readouts, and the similar results
obtained by both assays support the conclusion that more animals were positive for
ADCC in the TLR4�7 vaccine group (10 of 12) than in the TLR4�QS21 group (4 of 12).
Finally, we detected ADCC activity against the SIVmac251-infected cells in only one
immunized animal (macaque T065 from the TLR4�7 group).

Taken together, these data showed that, despite the similar magnitudes of the
humoral responses induced by the two vaccines, macaques in the TLR4�7 group
developed more functional responses mediated by antibodies, including ADCC and
broader neutralizing activity.

System serology approaches to interrogate group-specific differences in vac-
cinated animals. We used a comprehensive systems approach to survey an array of
antibody features and functions (72–75), as an additional way to interrogate differences
between the two vaccine groups (Fig. 2H, I, and K). We profiled seven Fc effector
functions, three IgG-mediated functions pertaining to the activation of natural killer
(NK) cells (CD107a/degranulation, interferon gamma [IFN-�], and macrophage inflam-
matory protein 1� [MIP-1�] secretion), ADCD (antibody-dependent complement depo-
sition), ADCC, ADCP (antibody-dependent cellular phagocytosis) (i.e., mediated by
monocytes), and ADNP (antibody-dependent neutrophil phagocytosis), and compre-
hensively characterized the associated IgG glycosylation profile of the M766-specific Ab
(see Table S2 in the supplemental material).

We employed a composite multivariate model based on the least absolute shrinkage
and selection operator (LASSO) and partial least-squares (PLS) discriminant analysis
(PLSDA) (Fig. 2H) to dissect differences between the vaccine groups (Fig. 2I and K). The
adjuvants induced functional and glycan differences across the two groups: while
higher ADNP was associated with the TLR4�7 group, ADCD and the G2S1 (digalacto-
sylated [G2], sialylated [S1]) glycoforms were associated with the TLR4�QS21 group
(Fig. 2K). Thus, the same SIV DNA-protein vaccine, which differs only in the included
adjuvant, led to distinct profiles of antibody effector functions and antibody glyco-
forms.

FIG 2 Legend (Continued)
glycoforms. (H) Violin plot illustrating the performance of the actual model and 2 negative-control null models (random features and permuted
data) for comparison of the two vaccine groups. The violin plot illustrates the distribution of the classification accuracies of the actual and null
models, as measured across 100 independent 5-fold cross-validation replicates. (I) Scores plot of a LASSO/PLS model illustrating separation
between animals from the 2 vaccine groups. (K) Variable importance in projection (VIP) plot showing the variables that were identified by the
model distinguishing the animals in each vaccine groups. The length of the bar corresponds to the relative importance of the variable, and the
color of the bar corresponds to which arm the variable is higher.
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Vaccinees with a TRIM-5�-resistant genotype show a delay in SIVsmE660 acqui-
sition. Five months after the 3rd vaccination, the animals were challenged by weekly
intrarectal low-dose exposures using the same well-characterized stock of the heterol-
ogous SIVsmE660 used in previous studies (7, 76–78). The SIVsmE660 stock, grown in
macaque lymphocytes, comprises an uncloned virus swarm and differs by 20% in the
Env amino acid sequence from the SIVmac251 Env used in the vaccine, reflecting the
cross-clade breadth of HIV strains.

After an initial delay compared to the control group, all vaccinees became infected
by the 6th exposure (Fig. 3A). The delay in virus acquisition of the two vaccine groups
did not reach statistical significance compared to macaques in the control group. To
examine the contribution of host genetics to the vaccine-induced protective responses,
we evaluated the role of the TRIM-5� genotype, reported to influence the permissive-
ness for SIVsmE660 acquisition and replication (50–54). Comparing only animals with the
TRIM-5� R allele (combined vaccine groups [n � 10] versus controls [n � 5]), we found
a significant delay in virus acquisition in the TRIM-5� R vaccinees (Fig. 3B) (P � 0.0326
by a Gehan-Breslow-Wilcoxon test). No difference in the acquisition rate was found

FIG 3 Delay in SIVsmE660 acquisition in vaccinees. (A and B) Kaplan-Meier curves of the number of
SIVsmE660 challenges for infection of the two vaccine groups (n � 12 each) and the control (n � 12) (A)
and the combined group of animals with the TRIM-5� R genotype (vaccinees, n � 10) and controls (n �
5) and of animals with the TRIM-5� M/S genotype (vaccinees, n � 14) and controls (n � 7) (B). P values
comparing vaccinees and controls with the TRIM-5� R genotype are from a Gehan-Breslow-Wilcoxon test.
(C) Vaccinees with positive rectal V1V2 responses and carrying the TRIM-5� R or TRIM-5� M/S allele are
compared to V1V2-negative animals. P values are from an exact log rank test.
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comparing the animals carrying the TRIM-5� M/S genotype. Comparison of TRIM-5� R
animals of the individual vaccine groups with TRIM-5� R controls showed delays in
acquisition in both groups, and the TLR4�QS21 group reached significance (P � 0.0468
by a Gehan-Breslow-Wilcoxon test) (see Fig. S5 in the supplemental material).

Examining the contribution of humoral responses to the delay of virus acquisition,
we found that animals having rectal V1V2-specific responses to SIVsmE660, but not
SIVmac251, showed a significant delay in infection (Fig. 3C). Animals with positive rectal
V1V2 responses and having the TRIM-5� M/S genotype have a significant delay in virus
acquisition compared to the animals with no V1V2-specific responses (P � 0.028 by an
exact log rank test), indicating a vaccine effect in the TRIM-5� M/S animals. In addition,
among animals with positive rectal V1V2 responses, there is a significant delay com-
paring animals having the TRIM-5� R genotype versus animals having the TRIM-5� M/S
genotype (P � 0.045 by an exact log rank test). Thus, a combination of vaccine-induced
immune responses and genetic background contributed to the delay in SIVsmE660

infection in both vaccine groups.
Vaccine-induced sieve effect selects for neutralization-resistant SIVsmE660 T/F

variants. We next interrogated the number and genetic makeup of distinct T/F variants
using single-genome amplification (SGA) and direct sequencing of the T/F env genes
from each plasma sample collected at the peak of primary viremia (2 to 3 weeks
postinfection). The inferred amino acid sequences of individual lineages representing
the infecting T/F genome were determined. Phylogenetic analysis of the Env sequences
from T/F variants did not show any clustering and showed a distribution of sequences
similar to that of the swarm (79) found in a previous infection study (7).

Enumeration of the T/F viruses in the control group showed a range of 1 to 7 T/F
variants (median of 3 T/F variants), indicating that the challenge virus inoculum
contained more than one animal infectious dose (AID) (Fig. 4A; detailed in Table 1).
Interestingly, measurements in the vaccine groups showed a lower number of T/F
variants, with medians of 1 T/F variant for the macaques in the TLR4�7 group and 2 T/F
variants for the macaques in the TLR4�QS21 group. Although the difference compared
to the control group (median of 3) did not reach statistical significance, the TLR4�7
group showed a trend toward a lower number of T/F variants, with 7 of the 12 animals
being infected with a single T/F variant compared to the control group, where only 3
of 12 animals were infected with a single T/F variant. These data suggest a sieve effect
in the vaccinees, especially in the TLR4�7 group.

Analysis of the 457 Env amino acid sequences from the infected animals revealed
changes in 54 informative positions (see Fig. S6 in the supplemental material; an
excerpt of these data is shown in Fig. 4B), with more than one T/F Env having changes
at each site. Comparison of sequences from the T/F variants in vaccinees to those in
controls revealed several amino acid changes, with the most prominent changes at
residue 23 (V), residue 45 (T), and residue 47 (R) in conserved region 1 (C1), with a 6-
to 7-fold enrichment of such sequences in the vaccinees. Changes in the SIVsmE660

consensus VTRS motif (residue 23 [V], residue 45 [T], residue 47 [R], and residue 70 [S])
to IAKN was previously reported as a hallmark characterizing the transmission of
neutralization-resistant SIVsmE660 variants (54). Of the 4 residues, changes in residues 45
and 47 from T/R to A/K were most strongly associated with the neutralization-resistant
phenotype (54). This prompted a comparison of the virus variants in our challenge
stock and the T/F variants in the infected animals (vaccinees and controls). We
interrogated changes of the neutralization-sensitive T/R variant to the those of
neutralization-resistant A/K variants, including A/R and T/K intermediates (Fig. 4C). This
analysis showed that the SIVsmE660 challenge stock used in this study contained �92%
consensus T/R sequences, �3% intermediate A/R sequences, and 5% nonconsensus
A/K sequences (Fig. 4C). The residue 23 V-to-I change was mostly found together with
the T/R-to-A/K changes, while the residue 23 V-to-N change existed independent of A/K
changes (Fig. 4B and Fig. S6). The T/F viruses in the 12 control animals showed a similar
distribution of consensus T/R (�94%) and nonconsensus A/K (6%) sequences as that of
the challenge stock. Similar data were obtained in another 8 control animals challenged
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FIG 4 Sieve effect with selection of SIVsmE660 neutralization-resistant virus variants. (A) Single-genome amplification and direct sequencing
of the T/F env genes from the plasma samples (Table 1) were used to determine the number of T/F variants in the vaccinees and controls.
(B) Genetic analysis of T/F Env sequences. Fifty-five informative sites were plotted as a proportion of each amino acid (AA) compared to
the consensus sequence (see Fig. S6 in the supplemental material), and the plot shown excludes the 25 sites with a �10% difference in
relative proportions between any of the groups for clarity. Residue 45 (T) and residue 47 (R), associated with neutralization resistance (54),
showed the most prominent changes in the vaccinees compared to controls. (C) The percentage of Env sequences with consensus T/R

(Continued on next page)
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in a previous study with the same SIVsmE660 stock (4% of T/F variants with nonconsen-
sus A/K) (7). Interestingly, we found that animals in both vaccine groups showed a great
enrichment of the nonconsensus neutralization-resistant A/K variant (Fig. 4C), repre-
senting 38 to 45% of the T/F sequences. Neutralization-resistant A/K viruses were the
dominant T/F variants in 10 of 11 vaccinees (Table 1). In contrast, in control animals
infected with the A/K variant, this virus was one of several T/F variants, never reaching
more than 50% of the variants in plasma (Table 1). These data support a strong sieve
effect with a skewing to infection by the nonconsensus A/K viruses in the vaccinated
animals, suggesting a contribution of immune mechanisms, i.e., NAb, able to prevent
or delay infection by the neutralization-sensitive T/R virus variants.

Vaccine-induced SIVsmE660-specific NAb responses contribute to a delay in
SIVsmE660 acquisition. Interrogating the role of humoral immune responses to the
delay in virus acquisition, we found that bAb to SIVsmE660, but not to SIVmac251, in the
TLR4�7 group showed a direct correlation with virus acquisition (Fig. 4D) (P � 0.0205).

FIG 4 Legend (Continued)
(neutralization-sensitive), A/K (neutralization-resistant), and A/R (neutralization-intermediate) sequences are shown for the SIVsmE660

challenge stock and the infected controls and vaccine groups. No viruses with T/K changes were found. (D to G) Two-tailed nonparametric
Spearman correlation plots show direct correlations of SIVsmE660 bAb in plasma of the TLR4�7 group (D), NAb to pseudotyped T/F
SIVsmE660-CG7G (E), the neutralization-sensitive SIVsmE660 (SIVsmE660/2A5-VTRN) (F), and the number of SIVsmE660 exposures to infection
(G). Associations with bAb and NAb were measured 2 weeks after the 3rd vaccination (D to F) and 2 weeks before challenge (F). Spearman
r and P values are shown.

TABLE 1 Infection of vaccinees by neutralization-resistant SIVsmE660 A/K variants

Group Animal
TRIM-5�
genotype

No. of exposures
to infection

No. of Env
proteins
sequenced

% of Env proteins with
nonconsensus A/K

No. of T/F
variants

No. of T/F
variants
with A/K

TLR4�7 T065 R 4 13 100 1 1
TLR4�7 T066 M/S 1 13 85 6 4
TLR4�7 T069 M/S 2 10 2
TLR4�7 T071 M/S 1 10 1
TLR4�7 T074 M/S 1 13 100 1 1
TLR4�7 T075 R 1 9 4
TLR4�7 T078 M/S 1 14 21 4 1
TLR4�7 T092 R 5 11 4
TLR4�7 T093 R 5 14 100 1 1
TLR4�7 T094 M/S 1 12 1
TLR4�7 T098 R 5 11 100 1 1
TLR4�7 T099 M/S 3 14 1
TLR4�QS21 T072 M/S 1 14 100 1 1
TLR4�QS21 T076 R 3 14 1
TLR4�QS21 T077 M/S 2 14 6
TLR4�QS21 T079 M/S 1 11 1
TLR4�QS21 T081 R 6 13 46 2 1
TLR4�QS21 T083 M/S 2 13 3
TLR4�QS21 T084 M/S 1 13 5
TLR4�QS21 T085 M/S 2 13 92 6 5
TLR4�QS21 T086 M/S 1 14 100 3 1
TLR4�QS21 T088 R 2 15 100 2 1
TLR4�QS21 T090 R 5 13 2
TLR4�QS21 T091 R 5 12 1
Control/TLR4�7 T080 R 4 14 2
Control/TLR4�7 T082 M/S 2 13 1
Control/TLR4�7 T095 R 1 11 7
Control/TLR4�QS21 T073 M/S 1 11 18 4 1
Control/TLR4�QS21 T087 M/S 5 11 4
Control/TLR4�QS21 T096 M/S 1 15 1
Control naive T067 M/S 1 16 3
Control naive T068 R 1 15 1
Control naive T070 R 1 10 20 7 1
Control naive T089 M/S 1 12 42 3 1
Control naive T097 M/S 1 11 3
Control naive T100 R 1 15 7 2 1
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Furthermore, considering all the vaccinated animals, plasma NAb to SIVsmE660-CG7G
directly correlated with a delay in virus acquisition (Spearman r � 0.69; P � 0.0003) (Fig.
4E). In addition, we found a direct correlation of NAb to neutralization-sensitive
SIVsmE660/2A5-VTRN (tier 1) measured at the peak of viremia (week 2 after the 3rd
vaccination) (Fig. 4F) and before challenge (week 18 after the 3rd vaccination) (Fig. 4G)
and a delay in virus acquisition (Spearman r � 0.5728 and P � 0.0034, and Spearman
r � 0.5468 and P � 0.0066, respectively). These data are in accord with the observed
sieve effect (Fig. 4C) and showed that SIVsmE660-specific NAb played a role in reducing
the risk of infection (see Table S3 in the supplemental material). While these NAb
delayed infection by neutralization-sensitive T/R viruses, the lack of NAb to the
neutralization-resistant A/K variant resulted in increased infection by these variants
(Fig. 4C).

The contribution of the vaccine-induced NAb to the delayed viral acquisition shown
in Fig. 4E to G could not be established for the individual vaccine formulations because
statistical analysis showed wide confidence intervals with only 12 animals per group.
Nevertheless, we noted that the four outcomes in Fig. 4D to G are strongly correlated
with each other in the TLR4�7 group, with the six pairwise correlation coefficients
being between 0.73 and 0.87, whereas in the TLR4�QS21 group, the range is 0.22 to
0.69. Together, these data support the conclusion that the vaccine-induced antibody
(SIVsmE660-specific bAb and NAb) provided partial protection, contributing to the delay
in infection upon repeated virus exposures.

Contribution of humoral immune responses to control of viremia. To evaluate
vaccine effects on the control of viremia, plasma SIV RNA virus loads (VL) were
measured for 25 weeks postinfection (see Fig. S7 in the supplemental material). We
observed significantly lower peak and chronic viremia in animals with the TRIM-5� R
genotype than in animals with the TRIM-5� M/S genotype within the control group
(Fig. S7), as reported by others (54). To evaluate potential vaccine effects on the
postacquisition control of viral replication, independent of the effects of the restrictive
TRIM-5� genotype, all subsequent postinfection analyses were performed using the
subset of animals with the M/S genotype (Fig. 5). Of note, one animal (T073; TRIM-5�

M genotype) of the control group had the highest VL and did not reach the study
endpoint because it had to be sacrificed at week 18 due to AIDS-related disease (Fig.
S7). Median peak VL of the vaccinees, measured at week 2 postinfection, were 1.3 logs
(TLR4�7) and 1.1 logs (TLR4�QS21) lower than those of the controls and reached
significance in the TLR4�7 group (P � 0.0116) (Fig. 5A). Analysis of VL postpeak in the
TLR4�7 group showed significantly lower viremia during the early phase at weeks 2, 3,
and 4 (P � 0.014, 0.019, and 0.029, respectively) and during chronic infection at weeks
6 to 25 (P � 0.026), demonstrating durable lower viremia in this vaccine group (Fig. 5B).
Peak VL directly correlated with the acute phase (area under the curve [AUC], 2 to 4;
n � 36; r � 0.947; P � 0.0001) and chronic phase (AUC, 6 to 24; r � 0.7583; P � 0.0001).

To assess the contribution of vaccine-induced humoral responses to the control of
viral propagation, we analyzed antibody responses in relation to viremia. We found
inverse correlations of plasma and mucosal V1V2 responses and peak VL (Fig. 5C and
D, respectively). Cyclic V2 responses inversely correlated with postpeak and chronic
viremia (Fig. 5E and F, respectively). Interestingly, both plasma and mucosal humoral
immune responses, including V2-specific responses, were associated with delayed virus
acquisition (Fig. 4D to G) and postinfection control (Fig. 5 and Table S3).

SIV-specific T cells in both vaccine groups contribute to control of viremia. We
performed a detailed analysis of vaccine-induced T cell responses, measuring peak
responses (week 2 after the 2nd and 3rd vaccinations), durability of responses (18
weeks after the 3rd vaccination), and anamnestic responses after infection (weeks 4 and
8). Animals in both vaccine groups developed robust Env- and Gag-specific T cell
responses ranging from 0.2 to 7% of total T cells in blood (Fig. 6A), with the variability
expected among outbred animals. Comparison of the antigen-specific IFN-�� T cell
subsets between the groups showed similar levels of CD4� (Fig. 6B, top) and CD8�
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(Fig. 6B, middle) T cells, cytotoxic potential (GrzB�) (Fig. 6B, bottom), and durability over
4 months after the last vaccination (see Fig. S4C in the supplemental material).

We next investigated the contribution of the SIV-specific T cell responses to virus
control. The association of Gag and Env T cell responses (measured 2 and 18 weeks
after the 3rd vaccination) with peak VL and viremia during the chronic phase was
determined (Table S4). Specifically, we found significant inverse correlations of vaccine-
induced Gag-specific IFN-�� T cell responses, measured 18 weeks after the 3rd vacci-
nation (2 weeks before the start of repeated virus exposures), with peak (Fig. 6C) and
chronic (Fig. 6E) viremia and of Env-specific T cell responses with peak VL (Fig. 6D).
In addition, detailed analysis of antigen-specific T cell subsets measured 2 weeks
before challenge (week 18 after the 3rd vaccination) (Fig. S8A and S8B) also
indicated a significant correlation with the reduction of peak, postpeak, and chronic
viremia (Table S4).

Comparison of Gag- and Env-specific T cells 2 weeks before challenge and at 8
weeks postinfection (Fig. S8A and S8B) showed robust anamnestic T cell responses with
a significant increase in the frequency of the SIV Gag (P � 0.003)- and Env (P �

0.009)-specific CD8� T cell subset (Wilcoxon matched-pairs signed-rank test). Both

FIG 5 Control of viremia. (A) The dot plot shows the peak VL of each animal with the TRIM-5� M/S genotype, and
the median is indicated. The P value is from multiple comparisons to controls using ANOVA (Kruskal-Wallis test).
(B) Geometric means of virus loads monitored for 25 weeks are shown for TLR4�7 (n � 7) and controls (n � 7) (top)
and TLR4�QS21 (n � 7) and controls (n � 7) (bottom). (C and D) Inverse correlation of SIVsmE660-specific V1V2
responses in plasma (C) and rectal mucosa (D) and peak virus loads. gp70-V1V2 responses were measured by
SIV-BAMA. (E and F) Inverse correlation of SIVsmE660-specific cyclic V2 responses in plasma and virus loads (AUC)
during the acute phase (weeks 2 to 4) (E) and chronic phase (weeks 6 to 25) (F) of infection.
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vaccine groups also showed a significant increase in the frequency of the SIV-specific
memory T cell subset with cytotoxic potential (CD95� CD28� GrzB�) (Fig. S8C) (P �

0.007 and P � 0.005, respectively) upon infection. Interestingly, this CD8� T cell subset
inversely correlated with early viral control, including peak and postpeak viremia
(weeks 2 to 4) (Fig. S8D, top and bottom, respectively). Together, these data support
our previous findings (6, 7), showing that DNA and DNA-protein vaccination induced
potent T cell responses able to contribute to the containment of the infection.

In addition to their role in the control of viremia, we further found an association of
Env-specific T cells with humoral immune responses. In particular, we found direct
correlations of Env-specific CD4� T cells with NAb against SIVsmE660-CG7G and
SIVsmE660/2A5-VTRN (Fig. 7), NAb responses which were also found to be correlates of
a delay in infection (Fig. 4E to G). These data support a helper function of vaccine-
induced Env-specific CD4� T cells in humoral immune response development. To-
gether, our data show that vaccine-induced humoral and cellular immune responses
contribute to the delay of virus acquisition and control of viremia, and they further
revealed a connection of the two arms of vaccine-induced immunity.

DISCUSSION

This study used two adjuvant formulations with the same DNA-protein combination
vaccine. Comparison of humoral and cellular immune responses showed that both
vaccines induced robust responses of similar magnitudes but also showed qualitative
differences between the vaccine groups. Despite these differences, none of those
features could be linked to better protective responses between the two vaccine
groups. TRIM-5� R animals in both groups showed a decreased risk of virus acquisition

FIG 6 Antigen-specific T cell responses and control of viremia. (A) Bars show frequencies of Env-specific and Gag-specific T cell responses
measured in PBMC samples collected 2 weeks after the 3rd vaccination. (B) Dot plots show SIV-specific IFN-�� CD4� (top), CD8� (middle), and
granzyme B-positive (GrzB�) (bottom) SIV-specific T cells. (C to E) Inverse correlations of Gag-specific IFN-�� T cells (C) and Env-specific IFN-��

T cells (D) measured 2 weeks before challenge start and virus load at peak and between Gag-specific IFN-�� T cells measured 18 weeks after the
3rd vaccination and VL during the chronic phase (weeks 6 to 25 postinfection) (E). Spearman r and P values are shown.
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due to the vaccine, in agreement with data from other reports (31, 54–56). We found
that both TRIM-5� R and M/S animals with mucosal V1V2 Ab showed a significantly
decreased risk of virus acquisition due to the vaccine, and the vaccine effect was
stronger in the TRIM-5� R animals. A sieve effect was found for animals in both groups,
an indication that the NAb produced by the vaccines are protective. The TLR4�7-
adjuvanted vaccine induced humoral responses with effector functions, including
ADCC, in more vaccinees and broader NAb. In addition, TRIM-5� M/S animals in TLR4�7
group showed reduced peak viremia.

This study is an extension of our previous work using a DNA-protein coimmuniza-
tion regimen in rhesus macaques using a SIVmac251-derived vaccine and heterologous
SIVsmE660 challenge. Whereas in a previous study, we used AT-2-inactivated virus
particles as the protein immunogen (7), in the present study, we tested this vaccine
concept using purified SIV gp120 formulated with either of two TLR4 agonist-based
adjuvants, TLR4�7 and TLR4�QS21. In a pilot study, we had shown that an HIV
DNA-protein vaccine using TLR4 (GLA-SE)-adjuvanted HIV gp120 induced higher sys-
temic antibody responses than DNA alone in rhesus macaques (13). A SIV DNA-protein
vaccine using adjuvanted Env also showed improved mucosal antibody dissemination
compared to a DNA-only vaccine (14). We tested the efficacy of such SIV DNA-protein
vaccine coimmunization regimens upon heterologous challenge administered 5 months
after the last vaccination.

We found a strong correlation of V2-specific responses, including mucosal V1V2 and
cyclic V2, with control of viremia. A role of V2-specific immune responses as a correlate
of protection was first identified in the RV144 trial (1–4) and subsequently also reported
for different vaccine-challenge models in macaques (70, 80–83). In addition to humoral
responses, the DNA-based vaccines induced cellular responses associated with reduc-
tions of peak and chronic viremia, in agreement with our previous data (5–8). Inter-
estingly, we found a positive association of Env-specific CD4� T cells and NAb, a
correlate of protection. Thus, these data suggest a role of Env-specific CD4� T cells in
providing help to B cells, thereby contributing to antibody development (84, 85) and
resulting in the development of stronger protective immune responses.

FIG 7 Association between Env-specific CD4� T cells and NAb. Shown are direct correlations of
Env-specific CD4� T cells measured 2 weeks after the 3rd vaccination and NAb to SIVsmE660 (SIVsmE660-
BR-CG7G [left] and SIVsmE660/2A5-VTRN [right]) in plasma. Spearman r and P values are shown.
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Our data show that the two vaccine formulations differentially affected antibody
features and functions, pointing to the importance of adjuvant selection. Others
reported that comparing alum and M59 adjuvants revealed distinct responses and
virological outcomes (82), and comparing alum-TLR7 and MF59 revealed the induction
of differential innate profiles (41). Others have used the TLR4-TLR7 adjuvant combina-
tion together with SIV/HIV Env and found an important role of the formulation (alum
versus adjuvant nanoemulsion) in affecting innate responses (26) and robust immuno-
genicity in mice and macaques (26, 31, 41, 46). In particular, Iyer et al. (46) reported that
a DNA/modified vaccinia virus Ankara (MVA) vaccine followed by virus-like particles
(VLPs) formulated in the TLR4/7/8 adjuvant combination increased humoral immune
responses and protection from SIVmac251 challenge. Kasturi et al. (31) recently reported
that a nanoparticle-formulated vaccine containing a combination of TLR4 and TLR7/8
agonists together with soluble recombinant SIVmac239-derived Env gp140 and Gag
protein or with VLPs containing SIVmac239 Env and Gag induced persistently high
antibody responses that were able to control SIVsmE660 challenge in macaques carrying
TRIM-5-�-restrictive alleles. Here, we found that vaccines formulated with both TLR4�7
and TLR4�QS21 adjuvants induced robust and durable antibody responses that effi-
ciently disseminated to mucosal surfaces and delayed SIVsmE660 acquisition in
macaques carrying TRIM5-�-restrictive alleles, and in addition, the vaccine-induced
humoral and cellular immune responses help to control acute and chronic viremia in
immunized animals. Thus, as noted by others, the TRIM-5�-resistant allele influences
the rate of viral acquisition (50–55), and this effect is increased in vaccinated macaques
(31, 41, 46, 54–56). In agreement with those reports, we also found that the TRIM-5�

genotype acts as a confounding contributor, together with cross-clade SIVsmE660-
specific NAb and mucosal V1V2 bAb, to vaccine-induced control of SIVsmE660 acquisi-
tion. Thus, the TRIM-5� R genotype as an innate protective immune mechanism can
assist vaccine-induced immune responses in controlling infection. Here, we show that
animals of both the TRIM-5� R and M/S genotypes benefit from the vaccine, but the
TRIM-5� R animals showed the strongest protection from SIVsmE660 acquisition. We
hypothesize that the observed protective efficacy could have been stronger using a
lower inoculation dose since our controls were infected with a median of 3 T/F variants.

The SIVsmE660 stock swarm used as the challenge stock in this work offered an
additional opportunity to explore vaccine efficacy since this swarm comprises
neutralization-sensitive and -resistant viruses. This viral diversity allowed monitoring of
the effectiveness of the vaccine-induced responses against viruses with different
neutralization properties. Indeed, we found that both vaccine groups showed a signif-
icant sieve effect, with �50% of the animals preferentially infected by T/F variants with
the neutralization-resistant A/K genotype. This represents an �10-fold enrichment
compared to the low fraction in the stock (�5%) and in infected control animals and
clearly points to vaccine-induced immune responses that are able to delay or block
infection. Using a DNA-adenovirus type 5 (Ad5) vaccine, protection against a
neutralization-sensitive T/R variant and a sieve effect resulting in a significant overrep-
resentation of neutralization-resistant A/K SIVsmE660 were reported (54). Using an Ad
prime-Env protein boost vaccine, protection against the neutralization-sensitive T/R
SIVsmE660 was recently reported; however, due to the low number of infected animals,
no clear sieve effect could be established (55). Thus, the study presented here com-
paring T/F variants of vaccinees and controls and other studies (54) clearly showed that
A/K virus selection is linked to a vaccine-induced protective mechanism and not to
innate selection, since the controls and the challenge stock show the same frequency
of A/K virus variants. Also, we and Roederer et al. (54) did not observe selection exerted
by the mucosal route of infection, as reported by others (86). One important consid-
eration is that SIVsmE660 swarms used by different laboratories differ in the composi-
tions of viral quasispecies with specific and known neutralization properties (53). It was
further noted by others that the A/K mutation at residues 45 and 47 may not be the
only decisive factor to render a virus neutralization resistant (42). This is also exempli-
fied by our finding of robust NAb against SIVsmE660 T/F Env CG7V (Fig. 4E), a tier 1 Env
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that contains the A/K mutations. Collectively, these studies show that the SIVsmE660

swarm is a useful challenge virus that allows the exploration of vaccine efficacy in
relation to specific protective responses by testing specific neutralization variants.

Different nonhuman primate (NHP) models are being used for AIDS pathogenesis
and vaccine studies using different challenge viruses, and each model is associated with
advantages and disadvantages (reviewed in reference 87). In this study, we used Indian
rhesus macaques vaccinated with a SIVmac251-derived DNA-protein vaccine and chal-
lenged by the heterologous SIVsmE660. This model was selected because the SIVsmE660

challenge stock comprises more neutralization-sensitive virus variants than SIVmac251

(53–55), providing an advantage for testing antibody-mediated protection. However,
SIVsmE660 is susceptible to restriction by the macaque TRIM-5� alleles, a cross-species
restriction factor (47–53). Thus, our analysis took into consideration the putative impact
of TRIM-5� on virus acquisition and vaccine efficacy. In addition to the vaccine effect on
TRIM-5� R animals, the data also support a significant vaccine effect, as shown in Fig.
3C, where the TRIM-5� M/S animals that developed V1V2 mucosal responses showed
a reduced risk of virus acquisition (P � 0.028). Therefore, the relevance of these results
is not restricted to TRIM-5� R animals only.

In conclusion, these data show that a combination of genetic makeup (TRIM-5� R
genotype) and vaccine-induced immune responses against SIVsmE660, in particular
SIVsmE660-specific NAb, skewed infection toward the neutralization-resistant A/K vari-
ants. Importantly, mucosal SIVsmE660-specific V1V2 responses also contributed signifi-
cantly to reduced susceptibility to SIVsmE660 infection in both the TRIM-5� R and M/S
groups, and in addition, both V2-specific antibodies and cellular responses contributed
to the control of viremia. In summary, TLR4-based adjuvants included in the DNA-
protein combination vaccine induced immune responses associated with a delay of
virus acquisition and control of viremia.

MATERIALS AND METHODS
Ethics statement. All animals were cared for and procedures were performed under a protocol

approved by the Institutional Animal Care and Use Committee of Bioqual, Inc. (animal welfare assurance
no. A3086-01; protocol no. 15-008), and the USDA (certificate no. 51-R0036). The macaques in this study
were managed according to the animal husbandry program, which aims at providing consistent and
excellent care to nonhuman primates at the vivarium. This program operates based on the laws,
regulations, and guidelines promulgated by the U.S. Department of Agriculture (e.g., the Animal Welfare
Act and its regulations and the Animal Care Policy Manual), the Institute for Laboratory Animal Research
(e.g., Guide for the Care and Use of Laboratory Animals, 8th ed. [88]), the Public Health Service, the National
Research Council, the Centers for Disease Control and Prevention, and the Association for Assessment
and Accreditation of Laboratory Animal Care (AAALAC) International. The nutritional plan utilized by
Bioqual, Inc., consisted of twice-daily feeding of Labdiet 5045 high-protein primate diet, and food intake
was closely monitored by animal research technicians. This diet was also supplemented with a variety of
fruits and vegetables as part of the environmental enrichment program established by the veterinary
staff and enrichment technician. Pairing of animals as part of the environmental enrichment program
was managed by the enrichment technician. All primary enclosures and animal rooms were cleaned daily
with water and sanitized at least once every 2 weeks. Macaques (n � 36) used in this study were 24 males
and 12 females. Their median weight was 3.6 kg, and their median age was 2.9 years. The animals were
negative for the Mamu A*01, B*08, B*17, and B*29 alleles and for Simian T cell leukemia virus (STLV)
(PCR/seronegative) and were screened for TRIM-5� genotypes. The three balanced cohorts of animals
(n � 12/group) were grouped according to sex and TRIM-5� genotype, as described in Table S1 in the
supplemental material. Vaccinations were performed under anesthesia (ketamine administered at 10
mg/kg of body weight), and all efforts were made to minimize suffering. No adverse effects were found.
All animals were euthanized at the end of the study.

Plasmid DNA and in vitro transfection. The DNA vaccination included plasmids expressing soluble
trimeric gp140 Env from SIVmac239 (plasmid 237S) and SIVmac251 T/F M766 (plasmid 241S) (64) and
plasmids expressing the membrane-bound gp120e-TM proteins (plasmid 266S and plasmid 267S).
SIVmac239 gp120e-TM (plasmid 266S) and SIV M766 gp120e-TM (plasmid 267S) consist of the gp120
region with an additional 54 C-terminal amino acids spanning the fusion peptide and part of the heptad
region fused with the transmembrane (TM) domain. gp120-TM consists of M766 gp120 fused to the TM
domain (plasmid 268S). All vaccine plasmids comprised the eukaryotic expression vector pCMV.Kan (12).

For transient expression, the plasmids (200 ng) were transiently transfected into HEK293 cells (64),
and the supernatant and cells were collected 2 days later. The cells were harvested in 1 ml of N1 buffer
(20 mM HEPES, 10% glycerol, 1 mM MgCl2, 400 mM NaCl, 0.5% Triton X-100, and 1 tablet of a protease
inhibitor cocktail [Roche]) and sonicated with two 6-s bursts on ice. Extracellular and cell-associated
fractions (1/200 of each fraction) were loaded onto a 10% NuPAGE gel and transferred to nitrocellulose
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membranes. Western immunoblot analysis was performed using a mouse anti-SIV gp120 Ab (1:5,000
dilution) (catalogue no. 1487; AIDS Reagent Program), followed by horseradish peroxidase (HRP)-labeled
sheep anti-mouse IgG (1:10,000 dilution) (GE Healthcare UK). As a loading control, the cell-associated
fraction was probed with antiactin antibody (1:10,000 dilution) (clone C4; EMD Millipore, Billerica, MA).
The bands were visualized using the enhanced chemiluminescence (ECL) Western blotting detection
system (GE HealthCare). Images of the blots were acquired by using a ChemiDoc XRS� imager and
Bio-Rad imageLab (Bio-Rad).

The cell membrane localization of gp120e-TM was evaluated by surface staining with antibodies
targeting Env, followed by flow cytometry. Briefly, 100 ng of the two membrane-bound gp120e-TM
plasmids (mac239 and M766) was transiently transfected into HEK293 cells. The next day, the cells were
harvested, washed with phosphate-buffered saline (PBS)– 0.2% heat-inactivated human serum, and
incubated with 2 �g of anti-gp120 (catalogue no. 1487; AIDS Reagent Program), followed by the addition
of allophycocyanin (APC)-labeled goat anti-mouse IgG. After washing the unbound antibody, data were
acquired in a Fortessa flow cytometer (BD Biosciences, San Jose, CA), and the data were analyzed using
the FlowJo software platform (Tree Star, Inc., Ashland, OR).

Vaccination and challenge. Two groups of animals (n � 12) were coimmunized with DNA and the
gp120 Env protein. Each animal received two DNA vaccine mixtures (with mac239 and M766 Env,
respectively) delivered via intramuscular (i.m.) injection in the left and right inner thighs followed by in
vivo electroporation (EP) using the Elgen 1000 device (Inovio Pharmaceuticals, Inc., Plymouth, PA). The
adjuvanted recombinant protein was administered by needle and syringe at the same anatomical
location immediately following DNA EP.

The two SIV DNA mixtures (1.1 mg total DNA each) for the 1st and 2nd vaccinations contained a
mixture of (i) 0.5 mg Gag DNA plasmids (p57gag [plasmid 206S] and MCP3gag [209S]) and 0.5 mg of
mac239 env DNA plasmids (gp140 [237S] and gp120e-TM [266S]) (left side administration) and (ii) 0.5 mg
Gag DNA and 0.5 mg of M766 env DNA plasmids (gp140 [241S] and gp120e-TM [267S]) (right side
administration). The DNA dose for the 3rd vaccination (2.1 mg total DNA each) consisted of 1 mg of env
and gag DNA. The gag DNA mixture for the 3rd vaccination included 0.5 mg p27CE1 and p27CE2
conserved element DNA (262S and 263S) (89). All DNA formulations, including the sham DNA, contained
0.1 mg of rmIL-12 DNA (plasmid AG157) per injection.

The recombinant SIVmac251 M766 Env gp120 protein (200 �g) was formulated in PBS with TLR4�7
(LS144 [10 �g GLA and 50 �g imiquimod in liposomes]) or TLR4�QS21 (LS131 [10 �g GLA-LSQ
liposomes]), obtained from the Infectious Disease Research Institute (IDRI), Seattle, WA. Six control
animals received 2 mg (months 0 and 2) or 4 mg (month 6) of sham DNA (plasmid CMVkan) by EP. For
the 3rd sham vaccination, the animals also received 10 �g of TLR4�7 (n � 3) and TLR4�QS21 (n � 3),
respectively. Six control animals were treatment naive.

The animals were challenged six times by the intrarectal route with weekly exposures using a 1:50
dilution of a SIVsmE660 stock, as previously reported (7, 76). To assess take of infection and potential
postinfection viral control, plasma SIV RNA levels were measured using a quantitative real-time PCR
(qRT-PCR) assay (90) with a detection limit of 15 viral RNA copies/ml. To evaluate the number of distinct
transmitted variants, single-genome amplification was performed at the peak of viral replication (2
to 3 weeks postinfection) (55, 79).

Humoral responses and functional assays. Pepscan analyses were performed by an enzyme-linked
immunosorbent assay (ELISA) at a dilution of 1:50 using 115 peptides (20-mer overlapping by 14 aa)
spanning SIVmac251 Env from aa 16 to 717 (amino acid numbering according to SIVmac239) (Advanced
Bioscience Lab, Rockville, MD). Binding antibody to SIVmac251 Env gp120 and p27Gag was measured using
serial dilutions of plasma tested by a standard ELISA (Advanced Bioscience Lab, Rockville, MD). Endpoint
binding titers are reported as the reciprocal of the highest dilution scoring positive (having a value higher
than average values obtained with naive macaque plasma plus 2 standard deviations). Concentrations of
SIV-specific IgG to SIVmac251 gp130, SIVsmE660-CG7V gp140 Env, gp70-SIVmac251 V1V2, and gp70-SIVsmE660

V1V2 in plasma rectal and vaginal mucosa were measured by SIV binding antibody multiplex assay
(SIV-BAMA) using a custom SIV multiplex ELISA (7, 91–93). Briefly, SIV Env and V1V2 antigens were
coupled to carboxylated fluorescent beads and incubated with diluted test samples. SIV-specific IgG
were detected with biotinylated goat anti-monkey IgG, followed by incubation with streptavidin-
phycoerythrin (PE). Beads were washed, and data were acquired on a Bio-Plex instrument to measure
florescence intensity. Plasma samples were tested in serial dilutions, and the area under the mean
fluorescence intensity (MFI)-plasma dilution curve (AUC), calculated using the trapezoidal curve fit
method, was reported for plasma samples. Mucosal samples were tested at a 1:2 dilution. Specific
binding activity values, calculated as MFI � dilution/total IgG concentration (micrograms per milliliter),
are reported. The total IgG concentration in mucosal samples was measured by a custom ELISA after
sample elution and preparation for binding antibody assays. The SIV-BAMA was run under good clinica
laboratory practice (GCLP)-compliant conditions, including tracking of positive controls by Levy-Jennings
charts, using 21 CFR part 11-compliant software. The rectal and vaginal samples were assayed at a
dilution of 1:2, and the binding magnitude is reported as specific activity (MFI � dilution/total IgG
concentration, in micrograms per milliliter). Neutralizing antibody activity was measured in 96-well
culture plates by using Tat-regulated luciferase (Luc) reporter gene expression to quantify reductions in
virus infection in TZM-bl cells. TZM-bl cells were obtained from the NIH AIDS Research and Reference
Reagent Program, contributed by John Kappes and Xiaoyun Wu (94–98). Assays were performed with SIV
Env-pseudotyped viruses as described previously (99). Heat-inactivated (56°C for 30 min) serum samples
were diluted over a range of 1:20 to 1:43,740 or 1:300 to 1:23,437,500 (for assays against tier 1A SIVmac251.6

and SIVsmE660/2A5-VTRN pseudovirus) in cell culture medium and preincubated with virus (�150,000
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relative light unit equivalents) for 1 h at 37°C before the addition of cells. Following a 48-h incubation,
cells were lysed, and Luc activity was determined using a microtiter plate luminometer and BriteLite Plus
reagent (PerkinElmer). Neutralization titers are the sample dilution (for serum) or concentration in
micrograms per milliliter at which relative luminescence units (RLU) were reduced by 50% compared to
RLU in virus control wells after subtraction of background RLU in cell control wells.

Cyclic V2 responses were measured in plasma (1:40 dilution, in triplicate) by surface plasmon
resonance (SPR; Biacore) using N-linked biotinylated cyclic SIVmac251 V2 and SIVsmE543 V2 peptides
captured onto streptavidin-immobilized CM7 sensor chips, followed by secondary IgG anti-monkey
antibodies. The data were evaluated by using Biacore 4000 evaluation software 4.1 (82, 100). The SIV V2
peptide sequences used were as follows: CIAQNNCTGLEQEQMISCKFNMTGLKRDKTKEYNETWYSTDLVCEQ
GNSTDNESRCY [SIVmac251(F)], CKFNMTGLKRDKTKEYNETWYSTDLVSEQGNSTDNESRC [SIVmac251(S)], CIKNNS
CAGLEQEPMIGCKFNMTGLKRDKKIEYNETWYSRDLICEQPANGESKCY [SIVsmE543(F)], and CKFNMTGLKRDKKIE
YNETWYSRDLISEQPANGSESKC [SIVsmE543(S)]. ADCC activity was measured with the flow-based ADCC-
GranToxiLux assay as described previously (77, 101), using CEM.NKRCCR5 target cells coated with
SIVmac251 gp120 protein. Specific killing is defined as the percentage of gp120-coated target cells taking
up granzyme B, with a positivity cutoff at 8%. The magnitude of ADCC responses was evaluated
according to two parameters: (i) endpoint titers of plasma antibodies mediating ADCC and (ii) maximum
percent GrzB activity. ADCC was also measured using SIVmac251- and SIVsmE660-infected target cells
according to previously reported methods (102).

Systems serology assays and analysis. Analysis of NK functions; ADCC, ADCD, antibody-dependent
phagocytosis (ADCP), and antibody-dependent neutrophil phagocytosis (ADNP) effector functions; and
antibody glycosylation was performed, as previously described (82, 103), using purified SIVmac251 M766
gp140 Env. Briefly, ADCP and ADNP of antigen-coated beads were performed using SIVmac251 M766
gp140-coated fluorescent beads. Beads were incubated with plasma from vaccinated animals, washed,
and then placed in a coculture with THP1 cells or primary human neutrophils, respectively, as effector
cells. The level of phagocytosis was quantified as the composite of the percentage and mean fluores-
cence intensity of bead uptake. Antibody-dependent NK cell activation was analyzed using SIVmac251

M766 gp140-coated 96-well plates. Plasma was added to antigen-coated plates, after which nonbinding
antibodies were washed away, and purified human NK cells were added in the presence of brefeldin A.
The levels of degranulation, interferon gamma (IFN-�), and macrophage inflammatory protein 1�

(MIP-1�) were measured. Antibody-dependent complement deposition was measured on beads using
SIVmac251 M766 gp140-coated beads. Antigen-coated beads were cultured with plasma and washed to
remove all nonbinding antibodies, and guinea pig complement was then added. The level of C3
deposition was then detected by flow cytometry. Finally, ADCC was measured using a rapid fluorescent
cytotoxicity assay, whereby CEM cells were coated with SIVmac251 M766 gp140, after which the cells were
washed and labeled with 2 distinct dyes to label the cellular membrane and cytoplasm. The targets were
then incubated with primary human NK cells at an effector-to-target cell ratio of 1:10, and the level of
death was measured by flow cytometry as the relative change in intact membrane/cytoplasm targets. All
assays were repeated in duplicate, and noninfected NHP plasma background values were subtracted for
each assay.

LASSO provided an unbiased and stringent variable selection technique to identify a minimal set of
markers that best explain the differences between animals of each group. LASSO picked only individual
markers from blocks of correlated variables, and the stringency in variable selection helps avoid
overfitting. We then used PLSDA on the LASSO-selected features and obtained a reasonably good
separation between the two groups. We validated the model in a rigorous 5-fold cross-validation
framework and found that the actual model was significantly better than 2 null models.

Measurement of SIV-specific T cells and flow cytometry. SIV-specific T cell responses were
measured by intracellular cytokine staining using peripheral blood mononuclear cells (PBMC) (0.6 � 106

cells/sample) stimulated with Gag or Env (derived from M766 or CG7V) peptide pools (15-mer peptides
overlapping by 11 aa) at a final concentration of 1 �g/ml for each peptide in the presence of monensin
(Golgi-stop; BD Pharmingen, San Jose, CA). For negative and positive controls, PBMC were cultured in
medium without peptides or stimulated with a phorbol 12-myristate 13-acetate (PMA) cell stimulation
cocktail (eBioscience, Affymetrix, Inc., San Diego, CA, USA). After a 12-h incubation, cells were washed
with PBS supplemented with 0.2% heat-inactivated human serum and surface stained as previously
described (7, 15, 89, 104), using the following antibody mixes: CD3-allophycocyanin (APC)-Cy7 (clone
SP34-2; BD Pharmingen, San Jose, CA), CD4-V500 (clone L200; BD Pharmingen), CD8-Alexa Fluor 405
(clone 3B5; Invitrogen, Carlsbad, CA), CD28-peridinin chlorophyll protein (PerCP) Cy5.5 (clone CD28.2;
Bio-Legend, San Diego, CA), CD95-fluorescein isothiocyanate (FITC) (clone DX2; BD Pharmingen), and
CCR7-APC (clone 150503; Invitrogen, Carlsbad, CA). Intracellular staining was performed after fixing and
permeabilizing the cells in fixation/permeabilization buffer (eBioscience, Affymetrix, Inc., San Diego, CA)
for 30 min at 4°C. After washing the cells with permeabilization buffer (eBioscience, Affymetrix, Inc.), the
cells were stained with an antibody mix containing anti-IFN-�–phycoerythrin (PE) Cy7 (clone B27; BD
Pharmingen), anti-granzyme B-PE (clone GB12; Invitrogen), and anti-Ki67-Alexa Fluor 700 (clone B56; BD
Bioscience) in permeabilization buffer. After 30 min of incubation at room temperature, the samples were
washed and data were acquired on an LSR II or Fortessa flow cytometer (BD Biosciences, San Jose, CA).
All the flow data were analyzed using FlowJo software (Tree Star, Inc., Ashland, OR). Samples were
considered positive if the IFN-�� T cell frequency was at least 2-fold higher than the value for the
medium control, and the numbers after subtraction of the values obtained for the negative controls were
�0.05% of total T cells. For T cell phenotyping, cells were stained as described above, using the following
antibodies: CD3-APC-Cy7, CD4-V500, CD8-Alexa Fluor 405, �4�7-APC (NHP Resource Reagents), CXCR3-
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PE-Cy7 (clone 1C6; BD Bioscience, San Jose, CA), HLA-DR–FITC (clone TU39; BD Bioscience, San Jose, CA),
granzyme B-PE, and Ki67-Alexa Fluor 700. All the data were acquired and analyzed as described above.

Single-genome amplification, sequencing, and T/F variant enumeration. From each plasma
specimen and the challenge inoculum, viral RNA was extracted using the QIAamp viral RNA minikit
(Qiagen). RNA was eluted and immediately subjected to cDNA synthesis as previously described (55). The
newly synthesized cDNA was serially diluted and distributed among 96-well plates so as to identify a
dilution where PCR-positive wells constituted �30% of the total number of reactions. PCR amplification
was performed as described previously (55). All PCR procedures were performed under PCR clean-room
conditions using procedural safeguards against sample contamination. Correctly sized amplicons deter-
mined by electrophoresis on an agarose gel were directly sequenced by cycle sequencing using BigDye
Terminator chemistry. Individual sequence fragments for each amplicon were assembled and edited
using Sequencher (Gene Codes). All sequences were aligned and phylogenetic trees were constructed
using ClustalW with manual editing in MacClade. Each low-diversity lineage was compared to a
mathematical model of viral diversification over time to identify all transmitted/founder (T/F) lineages, as
previously described (79). Each T/F variant from all infected animals as well as stock sequences were used
to generate a consensus amino acid sequence. Each T/F lineage was then compared to the consensus
and plotted as a fraction of the consensus for each vaccine group regardless of the challenge dose. In
total, 54 sites were identified as being informative, excluding single sequence polymorphisms. Twenty-
five sites showed a �10% proportional difference between groups.

Statistical analyses. Univariate statistical analyses were performed using Prism version 7 (GraphPad
Software) or SAS. Comparisons were done using nonparametric t tests, as appropriate, and analysis of
variance (ANOVA). Multivariate LASSO/PLSDA models were generated (72), and the accuracy of each of
these models was measured using a 5-fold cross-validation setup. The animals were split into five subsets
such that for each fold, four subsets were used for training, and the fifth one served as the test set. This
process was repeated five times, i.e., across the 5 folds, with each subset serving as the test set once. For
each fold, only the training samples for that fold were used for both LASSO-based feature selection and
subsequent PLSDA-based classification. This entire procedure constitutes one “5-fold cross-validation
run.” The median classification accuracy across 100 independent cross-validation runs was measured.
Two different negative-control “null” models were defined based on permuted data as well as a random
size-matched set of features.
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