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ABSTRACT MicroProteins are a class of small single-domain proteins that post-translationally regulate larger
multidomain proteins from which they evolved or which they relate to. They disrupt the normal function of
their targets by forming microProtein-target heterodimers through compatible protein-protein interaction
(PPI) domains. Recent studies confirm the significance of microProteins in the fine-tuning of plant de-
velopmental processes such as shoot apical meristem maintenance and flowering time regulation. While
there are a number of well-characterized microProteins in Arabidopsis thaliana, studies from more complex
plant genomes are still missing. We have previously developed miPFinder, a software for identifying
microProteins from annotated genomes. Here we present an improved version where we have updated
the algorithm to increase its accuracy and speed, and used it to analyze five cereal crop genomes – wheat,
rice, barley, maize and sorghum.We found 20,064 potential microProteins from a total of 258,029 proteins in
these five organisms, of which approximately 2000 are high-confidence, i.e., likely to function as actual
microProteins. Gene ontology analysis of these 2000 microProtein candidates revealed their roles in stress,
light and growth responses, hormone signaling and transcriptional regulation. Using a recently developed
rice gene co-expression database, we analyzed 347 potential rice microProteins that are also conserved in
other cereal crops and found over 50 of these rice microProteins to be co-regulated with their identified
interaction partners. Overall, our study reveals a rich source of biotechnologically interesting small proteins
that regulate fundamental plant processes such a growth and stress response that could be utilized in crop
bioengineering.
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MicroProteins are a class of small post-translational regulators
found in both plant and animal genomes. Their defining charac-
teristics are the presence of only a single protein-protein interaction
(PPI) domain and thus small size, and their evolutionary relation-
ship to their targets. MicroProteins (miPs) are classified into two
major categories: cis-microProteins, which are microProteins derived
from the same gene as their target protein, arise through processes
such as alternative splicing, proteolytic cleavage, or alternative
transcription start sites while trans-microProteins are paralogous
to their targets, arising from genes which have undergone dupli-
cation and subsequent evolutionary trimming through domain
loss (Figure 1A) (Bhati et al. 2018; Eguen et al. 2015). According to

the current model, both cis- and trans-miPs function by forming
heterodimers with their target proteins, thereby disrupting the
normal biological function of the target homodimers (Figure 1B)
(Eguen et al. 2015). This can result in a change in the nuclear
localization (Hong et al. 2011), loss of protein or DNA-binding
activity (Wenkel et al. 2007), or even the acquisition of new
functionality for the miP-heterodimer pair (Figure 1C) (Graeff
et al. 2016).

The majority of known microProteins regulate transcription
factors, although recent synthetic approaches have shown that they
can target proteins from diverse families (Dolde et al. 2018; Eguen
et al. 2020). This has raised the prospect that microProteins could be
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involved in a wide range of yet unexplored physiological processes
such as metabolism or stress response. In addition, there is emerging
evidence that microProteins regulate biotechnologically and econom-
ically important functions such as flower development (Xu et al.
2019) and apical meristem maintenance (Wenkel et al. 2007; Kim
et al. 2008). As such, both natural and synthetic microProteins could
be utilized as potent biotechnological tools in, for example, crop
bioengineering. However, while the rapid development of next-
generation sequencing has given us access to a wealth of genomic
data from which novel microProteins could be detected, accurate in
silico identification of candidate microProteins remains a challenge.

We have previously developed a tool called miPFinder to find
potential microProteins from annotated genomes (Straub and Wenkel
2017), which we have used to find and study microProteins in plant
genomes. Here we present an updated version of the algorithm with
improved accuracy that is also able to process poorly annotated
genomes. Furthermore, we demonstrate that the new scoring algorithm
is able to find known microProteins with high accuracy. We have used
the improved miPFinder (miPFinder v2.0) to study five monocot
species, namely barley, wheat, sorghum, rice and maize, and found
that these genomes are a rich source of potential microProteins. We
identified 20,064 potential microProtein candidates from a total of
53,469 small proteins, of which approximately 10% were predicted to
be high-confidence, i.e., likely to function as a microProtein. We
performed gene ontology analysis on these 10% and found that many
of the targets are involved in transcriptional control and stress re-
sponse. Using rice as an example, we extracted all rice microProteins
and their targets that are conserved in at least three other species and
analyzed their biological role using the Rice Genome Annotation
Project database (Kawahara et al. 2013). We found that the targets
of these conservedmicroProteins are involved in regulating growth and
stress response, as well as reproductive processes such as heading date
and flowering time. Additionally, we analyzed the co-expression of
these identified microProtein-target pairs and found 56 that showed
significant positive or negative correlation, indicating that they are
co-regulated and thus likely to function together within the tissues.
Together, these findings will pave way for the study of novel micro-
Proteins that are possible biotechnological targets for future crop
improvement such as stress tolerance or biomass production.

MATERIALS AND METHODS

Initial proteome filtering and clustering of
potential microProteins
The first step of the process is to exclude any annotated proteins
which have a protein existence level (as defined by UniProt) of 5. This

annotation level describes proteins whose existence is uncertain
and therefore may not encode for actual proteins. The proteome is
divided into two parts, one containing all the potential micro-
Proteins (called candidate microProteins, cmiPs), and all the po-
tential targets. The user can specify the division boundary, however
by default miPFinder v2.0 defines proteins no larger than 150 amino
acids to be cmiPs, and the rest as targets. Next all cmiPs are compared
against each other using phmmer (0.1 gap open/extension penalty,
BLOSUM50 scoring matrix) to find groups of homologous cmiPs.
All phmmer results with a bitscore less than 30.0 are discarded as
potential false positives. All cmiPs are subsequently divided into two
groups, those with no identified homologs (single-copy cmiPs) and
the rest (homologous cmiPs).

Each single-copy cmiP is compared against the targets using
phmmer (0.1 gap open/extension penalty, BLOSUM50 scoring ma-
trix). Equally, for each homologous cmiP, all identified homologs are
aligned using Clustal Omega (version 1.2.4) with default settings to
create multiple sequence alignments (MSAs). From these MSAs
HMMER profiles are created using hmmbuild (version 3.1b2) and
searched against the targets. All targets with a bit score lower than
10 or higher than 120 are discarded and the top 10 hits are kept. The
targets are compared against the InterPro database and any target
with a single annotated domain is removed. Finally, all potential
microProtein candidates with more than 10 homologous micro-
Proteins are excluded.

Scoring of potential microProteins
For each cmiP, all identified targets are individually scored according
to the following formula:

Score ¼
�

1
bitscorecoverage

� bitscore � weight
�

� 1

1þ e20:1�ðMicroProtein  Instability  Index270:0Þ

where coverage is defined as cMIP  length
Identified   ancestor   length and weight is defined

as 10
1þe2k�coverage�1002m where k = 0.1 and m = 50, and MicroProtein

Instability Index is the calculated protein instability score (Guruprasad,
Reddy, and Pandit 1990).

Detection and analysis of crop microProteins
We downloaded the proteomes of barley (UP000011116), rice
(UP000059680), wheat (UP000019116), maize (UP000007305) and
sorghum (UP000000768) from UniProt. Additionally, we down-
loaded the Gene Ontology and InterPro annotations for each protein
within these genomes fromUniProt, as well as a list mapping InterPro
identifiers to their entry types (e.g., family, domain), and the Core
ontology file from geneontology.org that maps GO identifiers to
their annotated information. We used these files as an input for the
miPFinder algorithm and analyzed each crop species separately.
We took the top 10% of the microProtein-target pairs for each
species and extracted the target GO identifiers using a Python script.
The GO identifiers from each organism were first analyzed separately
using agriGO v2.0 with default settings (Tian et al. 2017). The results
from agriGO were combined into a list and analyzed using reviGO
(Supek et al. 2011) using default similarity scoring algorithm with
an allowed similarity of 0.5.

Expression analysis for microProtein-target expression
For the co-expression analysis of rice microProteins and their
targets we first converted microProteins and their targets groups
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into pairwise form. For each microProtein-target pair, we extract-
ed the anatomical expression pattern across 10 different rice
tissue samples using RNASeq anatomy database with help of
Python script. For RNASeq data, we mapped reads to reference
genome using Hisat2 aligner and estimated read count using
featureCounts tool. This pairwise expression dataset was then
used to calculate a Pearson correlation coefficient (PCC) in R
(Chandran et al., 2019). The significant correlation was selected
when -0.7, r .0.7 and p-value, 0.01. The previously charac-
terized information was mapped to the microProtein-target pair

based on the locus identifier from the funRiceGenes database
(Yao et al. 2018).

Data availability
The open access sources for tools and data used in this study
has been listed and cited at appropriate parts of manuscript
(Materials and Methods, and Supplementary Information).
The code for miPFinder v2.0 is available on https://github.
com/ku-mip/mipfinder2. The data and script used in co-expression
analysis is available from https://github.com/csg-khu/miPs.

Figure 1 A) Trans-miPs are generated through the duplication of the ancestral gene (top) and subsequent evolutionary trimming (middle), leaving
only the domain responsible for dimerization (bottom, blue). Black lines are introns while colored and gray boxes represent exons. B) Cis-miPs are
derived from the same mRNA transcript (top) as their target proteins (middle) through alternative splicing, alternative translation start site or
alternative polyadenylation. Alternative splicing can lead to the generation of microProteins (bottom) by only including the exon containing the
dimerization domain (blue). Alternative translation start site (circled) within the mRNA of the parent protein (top) can lead to the generation of a
truncated construct that encodes for the dimerization domain (bottom, green). In some instances, an alternative polyadenylation signal (circled) can
lead to the generation of a shorter mRNA construct fromwhich the protein containing the dimerization domain (bottom, yellow) is made from. TSS –
Translation start site. Poly (A) – polyadenylation site. C) The balance between the target homodimers and the target-microProtein (red) heterodimers
can affect many molecular functions such as DNA-binding, recruitment of a co-repressor (purple) and other accessory proteins (teal) or even nuclear
localization of the target protein.
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Supplemental material available at figshare: https://doi.org/10.25387/
g3.12344138.

RESULTS

New miPFinder algorithm uses an orthogonal approach
to detect microProteins from genomes
The original miPFinder pipeline used annotated genomes in con-
junction with (optional) databases such as STRING (Szklarczyk et al.
2019), and iPFAM (Finn et al. 2014) to detect microProteins.
However, we found that while this approach worked for well-studied
organisms for which high-quality experimental data are available, it
underperformed for organisms where the genome annotation was
either mostly unavailable or of poor quality. In order to ensure that
the software can be reliably used on any genome, whether well-
curated or computationally-annotated, we rewrote the algorithm to
enrich for microProteins focusing on the primary sequence infor-
mation content of the small proteins, while reusing some concepts
from the previous algorithm (Straub and Wenkel 2017). We first
defined a set of rules that define a potential microProtein and their
interaction partners based on the characteristics of known micro-
Protein-partner pairs (Table 1). These are well-defined traits that a
potential microProtein or the target must have in order to be
considered a microProtein (Straub and Wenkel 2017).

Because the potential microProtein and target characteristics have
a significant overlap with the rest of the proteome, the initial filtering
steps would also include many proteins that are not real micro-
Proteins. In order to overcome this, we proceeded to develop a list of
filters to further narrow down the set of identified putative micro-
Proteins and their interaction partners (Table 2, see Materials and
Method for further information). These traits are associated with
known microProtein-target pairs, but the exact parameter cut-off
values can easily be modified by the user depending on the charac-
teristics of the analyzed proteome. For example, in large genomes that
have undergone many gene duplications, it may be necessary to
increase the number of allowed homologs in order to not exclude all
but the smallest protein families as the duplication of genes will
increase the average protein family size. We set the criteria for small
proteins to be less or equal than 150 amino acids as these should be
small enough to only contain a single domain. Furthermore, we
filtered out all proteins with an existence level of 5 (UniProt defini-
tion) as these may not represent actual existing proteins within the
cells. We kept all microProtein homologs with a bit score between
30 and 120 as we found both too dissimilar and too similar hits reduce

the accuracy of the algorithm. Finally, we removed any identified
target that is less than 40 amino acids longer than the identified
microProtein, as these proteins are unlikely to contain another
domain due to the small size difference and are unable to act as a
target.

While the algorithm informs the users of potential microProteins
that will have to be further verified in vitro and in vivo, we wanted to
ensure that the algorithm is able to correctly identify known micro-
Proteins. To this end, we used a set of 23 known microProteins from
Arabidopsis thaliana (Table 3, Supplementary Table 1) and analyzed
the results after applying each filtering step to make sure that they do
not lead to an increase in false negatives. Additionally, we examined
the results to ensure that proteins deemed unlikely to be micro-
Proteins based on their known function were removed. These in-
cluded, for example, small highly conserved single-domain proteins
that are part of large protein families such as calmodulins and
thioredoxins. These steps also helped reduce the erroneous identi-
fication of microProtein-target pairs for large families of small
proteins where some members happened to be larger than the
microProtein size cut-off, leading them to be mistakenly identified
as a highly conserved targets of the smaller family members. Finally,
due to the relatively small size of the reviewed Arabidopsis proteome
(15877 proteins), we changed the maximum allowed homologs to 8 as
this made the algorithm perform better as indicated by the relative
ranking of the known microProteins as well as by manual inspection
of the final results. Taken together, these filtering steps enriched for
the presence of known microProteins in A. thaliana while reducing
the number of presumed contaminants.

miPFinder v2.0 detects known microProteins and their
targets with high accuracy
While the initial filtering steps enriched for potential microProtein
candidates based on the A. thaliana dataset, the resulting list of
potential microProteins (420) from Arabidopsis was too large for
in-depth characterization. We wanted to assign a score to each
potential microProtein based on the likelihood that the identified
candidate was a real microProtein. Using a number of different
(including biochemical) properties of A. thaliana known micro-
Proteins, we created a scoring algorithm which takes into account
a number of different factors such as the length of the microProtein
and the length of the potential interaction partner. In addition, the
algorithm considers the likelihood of the interaction partner being a
homolog of a given potential microProtein, as well as the predicted
instability index (see Materials andMethods for further information).

The new scoring algorithm performs very well, ranking the
majority (21/23) of known microProteins in the top 20% percentile
of the results (Table 3). Only two proteins, Q9LXI8 (called LITTLE
ZIPPER 3) and Q56WL5 (LITTLE ZIPPER 4) proteins, are found
much lower in the results list. While these LITTLE ZIPPER protein
family members have been experimentally shown to interact with
class III homeodomain leucine-zipper (HD-ZIPIII) transcription
factors from which they evolved (Wenkel et al. 2007; Floyd et al.
2014), they show very weak homology to their known targets. As one

n■ Table 1 Characteristics of potential microProteins and their
targets used in the miPFinder v2.0 algorithm

Potential microProtein
characteristics Potential target characteristics

Homologous to their interaction
partner

Homologous to the potential
microProtein

Contains a single domain Contains two or more domains
High predicted instability index

n■ Table 2 List of filters used by the miPFinder v2.0 algorithm

MicroProtein filter Target filter

Length ,=150 amino acids Length . 150 amino acids
Has no more than 10 homologs in the proteome No identified target has a bit score lower than 10 and higher than 120
Existence level ,= 4 (as defined by UniProt) Existence level ,= 4 (as defined by UniProt)
Has an identified homologous target with a bit score of more than 30 Longer than the identified microProtein by at least 40 amino acids
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of the most important aspects of scoring is the identification of
high-confidence targets, this inevitably meant that they would be
ranked much lower than other microProteins which share high
homology with their known targets. Nevertheless, the algorithm
correctly identifies them as potential microProteins, and ranks them in
the top half of the final results list, demonstrating that it is able to deal
with cryptic microProtein candidates.

We also looked at the targets of the known microProteins as
predicted by STRING (Szklarczyk et al. 2019) and BioGrid (Stark
et al. 2006) databases. While not all microProtein-target interactions
have been extensively verified, we found that miPFinder is able to
correctly predict well-characterized targets. For example, both
Q9LXI8 (LITTLE ZIPPER 3) and Q56WL5 (LITTLE ZIPPER 4)
have the HD-ZIPIII members correctly identified as interacting
partners (Wenkel et al. 2007). Equally, Q1G3I2 and Q9LRM4 both
have their actual target CONSTANS predicted as an interactor by
miPFinder (Graeff et al. 2016). For others, the predicted targets were
close homologs of the true interactor. For example, Q9M157 had GL3
as a predicted interactor instead of GL1, while O22059 had predicted
targets of the MYB transcription factor family, but none of them

matched the true target MYB66. On the other hand, there were also
microProteins whose predicted targets did not match those identi-
fied by the databases, such as Q9FLE9 and Q9SJH0. However, it
is possible that the target predicted by the miPFinder is the phys-
iological one, as these databases incorporate both experimental and
in silico predictions such as text mining (e.g., STRING) and therefore
the absence of miPFinder-identified targets does not necessarily
indicate a false discovery, although we did not test this experimen-
tally. Taken together, our analysis shows that the new miPFinder
program is able to both accurately detect microProteins from a
genome, and correctly identify the targets (or closely related homo-
logs) of known microProteins.

Crop genomes are a rich source of microProteins
We wanted to test our new algorithm and explore the potential
microProteins in commercially important cereal crops which could
be used as a novel bioengineering targets. We analyzed five mono-
cotyledonous cereal proteomes (wheat, barley, maize, sorghum, rice)
using miPFinder, and found a moderate enrichment of potential
microProteins in these organisms (Table 4, Supplementary Figure 1A,
B; Supplementary Table 2). There was a large variation present in the
fraction of detected small proteins and microProteins in these
proteomes. For example, 33% of the rice proteome and 27% of the
barley proteome consists of small proteins, compared to only 14%
and 19% in wheat and maize respectively. In wheat 30% of all small
proteins were predicted to be microProteins compared to 52% in
maize. We also checked whether the microProteins have identifiable
homologs in the genome and found no clear relationship between the
proteome size and the fraction of single-copy vs. homologous can-
didate microProteins (Table 4). Both barley and maize had a much
higher proportion of homologous microProteins, while rice and
sorghum contained more single-copy microProteins. The only ex-
ception was wheat which displayed a much higher proportion of
homologous candidate microProteins (84%) than other organisms. A
possible reason for this is that the wheat genome is hexaploid, having
formed through hybridization of three species. As such, there are
likely to be many more homologous (technically homeologous) genes
(functionally alleles) than in the other diploid monocots that we
analyzed.

Potential crop microProteins are related to diverse
molecular pathways
The algorithm identified a large number of candidate microProteins
in these proteomes, whose scores follow a power law distribution
(Figure 2). This means that while the algorithm identified a number
of potential microProteins from these large genomes, only a small

n■ Table 3 A list of known A. thaliana microProteins scored using
the miPFinder v2.0 algorithm

MicroProtein UniProt ID TAIR ID Ranking (percentile)

Q9M157 AT4G01060 1 (1)
Q9LJW5 AT3G28917 2 (1)
O22059 AT2G46410 3 (1)
D3GKW6 AT2G30432 4 (1)
Q9LNI5 AT1G01380 6 (2)
Q8GV05 AT5G53200 7 (2)
B3H4X8 AT2G30424 10 (3)
Q84RD1 AT2G30420 14 (4)
Q1G3I2 AT4G15248 16 (4)
Q9CA51 AT1G74660 18 (5)
Q2Q493 AT1G18835 19 (5)
Q9LRM4 AT3G21890 20 (5)
Q9SJH0 AT2G42870 49 (12)
Q9FLE9 AT5G39860 52 (13)
Q8GW32 AT1G26945 55 (14)
Q9LXG5 AT5G15160 59 (15)
F4HXU3 AT1G14760 61 (15)
Q9CA64 AT1G74500 63 (15)
Q9LXR7 AT3G58850 68 (17)
Q9LJX1 AT3G28857 69 (17)
F4JCN9 AT3G47710 88 (21)
Q9LXI8 AT3G52770 189 (45)
Q56WL5 AT2G36307 191 (46)

n■ Table 4 Number of microProteins found in the five analyzedmonocot species. Small proteins include all proteins smaller than 150 amino
acids, including all microProteins. MicroProteins refers to the number of all small proteins identified as a potential microProtein. % Small
proteins refer to the relative amount of small proteins compared to the whole genome. % MicroProteins refers to the relative amount of
microProteins compared to the number of small proteins

Barley Rice Wheat Maize Sorghum

Total proteins 35965 43603 105061 39399 34001
Targets 26372 29242 90307 32098 26541
Small proteins 9593 14361 14754 7301 7460
MicroProteins 3810 5451 4482 3790 2534
Single-copy 1515 3686 697 1537 1474
Homologous 2295 1765 3785 2253 1060
% Small proteins 27% 33% 14% 19% 22%
% MicroProteins 40% 38% 30% 52% 34%
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proportion of them had a high score denoting confidence that the
protein acts as a microProtein. At the same time, a majority of the
proteins scored low, meaning that while they fulfill the criteria of a
microProtein as defined earlier, they are unlikely to function as a
potential microProtein. As such, we chose the top 10% of the
candidates from each organism for further study as these represent
small proteins most likely to act as microProteins. We performed
gene ontology analysis on this set of proteins to map their biological
processes. Unfortunately, outside of well-studied reference genomes
these small proteins were almost completely unannotated, and there-
fore we had to focus on their identified targets instead. These targets
had more complete annotations from which we could infer the role of
the microProteins as they are likely to directly regulate their targets.

We took ten highest-scoring targets for each microProtein in the
top 10% of identified microProteins and extracted their gene ontology
(GO) terms. We analyzed each organism separately using agriGO v2
(Tian et al. 2017) and created a combined list of GO terms which we
further analyzed with reviGO (Supek et al. 2011), sorting the list
based on the p-values of the enrichment (Supplementary Table 3).
We find that the most significant term is ‘cellular response to
stimulus’, followed by ‘RNA biosynthetic/metabolic process’, and
‘catabolic process’. However, this is not unexpected as these are very
frequent Gene Ontology terms and cover many different biological
functions. Other enriched terms include ‘cell wall organization’,
‘reproductive process’, ‘cellular response to stress’, ‘ubiquitin-
dependent protein catabolic process’, and ‘transcription’, while
less-enriched terms include ‘methylation’, ‘response to light stim-
ulus’ and ‘regulation of hormone levels’. As almost all known
microProteins are related to transcription factors, it is not surpris-
ing to see that ‘transcription’ and ‘gene expression’ are enriched in
the GO analysis. The term cellular response to stress implies that
some microProteins may be controlling biotic and abiotic responses
to stress in plants. This also ties in with the ubiquitin-dependent
protein catabolic process, as stress can induce protein misfolding
and/or aggregation, warranting the need for the cells to remove
erroneous proteins. This process could be controlled by micro-
Proteins which are able to quickly turn these processes on and off.
Equally, ‘reproductive process’ is a broad term but microProteins
which affect flower development (Xu et al. 2019) (and therefore the
sexual reproduction of a plant) are known, so other microProteins
which fine tune this process possibly exist as well. Finally, response

to light stimulus is another category which is already controlled
by known microProteins (Hyun and Lee 2006) and is especially
amenable to microProtein control as light conditions for plants
(e.g., direct light vs. shade) can change very quickly, requiring a
rapidly controlled response from the plant. On the other hand, there
are currently no publications that demonstrate microProteins being
involved in methylation and response to hormone levels. These
processes, however, could be under microProtein control as both
protein methylation and hormone signaling require fine temporal
control by enzymes and receptors, respectively.

Analysis of rice microProteins reveals their role in plant
development and stress response
In order to test the predictions of the new miPFinder algorithm, we
compared the predicted microProteins and their targets against a
recent rice RNA expression dataset across 10 tissues. As one of our
aims was to identify microProteins that have a fundamental biological
role in plant development, we first took all rice microProteins as
identified by miPFinder v2.0 and searched for their homologs in all of
the other four analyzed species (barley, wheat, maize or sorghum).
We reasoned that any protein that is conserved in at least three of the
four other species represents a potential microProtein that has a
shared essential role across monocots and perhaps beyond. From a
total of 5448 predicted rice microProteins we found 422 microPro-
teins that have an identified homolog in at least three of the other
analyzed species. We then associated each of these potential micro-
Proteins with their highest-scoring target for further analysis. Due to
the requirements of the downstream software we had to convert the
UniProt accession names into Ensembl transcript identifiers. For a
number of microProtein-target pairs one or the other did not have a
corresponding transcript identifier and thus had to be excluded from
the analysis, leaving us with 347 potential microProtein-target pairs.

We mapped all previously characterized gene information from
funRiceGenes database (Yao et al. 2018) to the microProtein targets
and extracted their biological role keywords, which were divided into
individual words and phrases (Table 5), and found 28 and 24 pre-
viously characterized targets and microProteins, respectively. We
found targets mostly involved in abiotic stress response such a salt
or drought, as well as a few targets that control flowering time and
yield. The individual keywords were similar to the annotated phrases,
with root and growth annotation being the most prevalent, followed
by auxin, stress and development. Reassuringly, we found homologs
of known microProteins and their targets among the annotated
proteins. The target Os12g41860, which is annotated as a member
of the class III HD-ZIP family, is co-expressed with the microProtein
Os04g33560, which is homologous to LITTLE ZIPPER 3 microPro-
tein. Equally, Os07g49460 which contains a CCT (CONSTANS,
CO-like, and TOC1) domain has been linked to flowering (Koo
et al. 2013). In A. thaliana, CONSTANS is a known target of
microProtein regulation which together with the microProteins
represses flowering (Graeff et al. 2016), and so it likely that this
target is under similar control by a yet uncharacterized microProtein.
This rice target belongs to the ARR-like protein family which is a two-
component response regulator. It is interesting to note that the target
does not contain the conserved catalytic aspartic acid residue nec-
essary for the phosphorelay system, having a glutamic acid residue
instead (D114E). The microProtein, which lacks the CCT domain,
has the conserved aspartic acid present. It has been shown for
A. thaliana ARR18 that the wild-type protein containing the con-
served aspartate (ARR18WT) is able to homodimerize with a consti-
tutive gain-of-function mutant where the aspartic acid was mutated

Figure 2 Score distribution of identified candidate microProteins as
assigned by miPFinder.
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to a glutamic acid (ARR18D70E), but not the case of a constitutive loss-
of-function mutant containing asparagine (ARR18D70N). Impor-
tantly, this gain-of-function ARR18D70E mutant was able to activate
transcription of a reporter gene (Veerabagu et al. 2012). It is possible
that in rice the target, due to its aspartic to glutamic acid mutation, is
constitutively active and that the dimerization with the microProtein
provides modulation of the transcriptional activation activity by
sequestering these active homodimers into inactive heterodimers.
Crucially, while they are homologous to known A. thaliana micro-
Proteins, they nevertheless represent novel microProtein-target pairs
that may be controlling plant biological processes.

Finally, we analyzed which microProtein-target pairs were
co-expressed on mRNA level. While this does not consider post-
translational regulation of the protein, it is a useful tool for
identifying genes with a shared function. We analyzed the gene
expression correlation patterns for the final list of 347 micro-
Protein-target pairs across 10 anatomical tissues. We found
56 microProtein-target pairs with significant positive or nega-
tive expression correlation (-0.7 , r . 0.7 and p-value , 0.01;
Supplementary Table 4). This means that out of 347 identified
microProtein-target pairs, around 16% are co-regulated with
their highest-scoring target as identified by miPFinder, indicat-
ing that it might be their biological interaction partner. Overall,
this shows that the identified microProtein-target pairs regulate
plant processes such as transcriptional control, stress response
and reproduction, and that the expression of many of the identified
targets are significantly correlated at the RNA level.

DISCUSSION
The post-translational proteome is an attractive target in biotechno-
logical research as it allows researchers to target specific protein states
(e.g., post-translational modifications, conformations, splice variants)
(Cattaneo and Chirichella 2019). MicroProteins can be harnessed as
biotechnological tools as they have specifically evolved to control
protein-protein complexes. Furthermore, the recent use of synthetic
microProteins for post-translational regulation of plant proteins in
Arabidopsis and rice has demonstrated that these small proteins are
not limited to transcription factors (Eguen et al. 2015; Graeff et al.
2016; Bhati et al. 2018; Dolde et al., 2018; Eguen et al., 2020). With
advances in next-generation sequencing and genome annotation
quality, data from novel organisms that may contain microProteins
is becoming more prevalent. For example, small open reading frames
(smORFs) which are starting to receive more attention (Su et al.
2013), are a potentially huge untapped source of trans-microProteins.
This suggests that many biological pathways may be regulated by

undiscovered microProteins. Such trans-microProteins could be
utilized in biotechnological research such as crop bioengineering.
It has also opened up new opportunities to explore the function of
new genes and pathways involved in adaptation to changing envi-
ronments (Varshney, Tuberosa, and Tardieu 2018). There are ex-
amples where involvement of mRNA variants producing functional
truncated proteins have recently been described in crop plants, such
as the alternatively spliced form of the maize ATHB17 protein. A
smaller ATHB17 isoform functions as microProtein and positively
affects the expression of genes by suppressing the repressor activity of
the full-length ATHB17 protein. Overexpression of the ATHB17
microProtein variant resulted in increased kernel weight (Cantu et al.
2013; Rice et al. 2014). By regulating specific targets, microProteins
can provide attractive means to alter traits of interest for crop
improvement. More examples can be found in genomic data from
alternative transcriptome sequencing of stress and other biological
conditions (Barbazuk, Fu, and McGinnis 2008; Panahi et al. 2015;
Liu et al. 2018; Zhang et al. 2017).

However, the accurate detection of microProteins from genomic
data remains a challenge due to the biochemical and biophysical
similarity to other small proteins. Our lab has previously developed
the first ever algorithm for this purpose, called miPFinder, and
utilized it to find new microProteins in the A. thaliana genome
(Straub and Wenkel 2017). We rewrote and updated the algorithm to
improve its accuracy and reduce its reliance on annotation databases
and demonstrate that the new version is able to identify all known
A. thaliana microProteins from the set of small proteins. The
algorithm is also able to correctly predict the known targets of
existing microProteins, although in some cases the predicted target
is a homolog of the true interacting partner, and there are cases where
the algorithm disagrees with other computationally predicted sour-
ces. However, this does not necessarily mean that the identified
proteins are incorrect, as they may still be relevant biological binding
partners.

In order to find novel microProtein targets for future crop
improvement, we used miPFinder to analyze the genomes of five
monocotyledonous crop species - wheat, barley, rice, sorghum and
maize. We found that approximately 9% of all proteins were iden-
tified as potential microProteins.While this represents a large fraction
of the overall proteins, only a small percentage (10–20%) of potential
microProteins are scored highly, indicating their likelihood of func-
tioning as a real microProtein. It is noticeable that the abundance
of microProteins is independent of genome size. Irrespective of
having the largest genome size, wheat does not contain the highest
number of microProtein candidates. This could be partially attributed
to the less efficient genome assembly and low confidence structural
protein annotation from the complex allohexaploid wheat genome
(Brenchley et al. 2012). An alternative argument for this observation
could also be that the highly repetitive genome organization does not
influence microProtein evolution.

Looking at the highest scoring microProteins in all genomes as
well as those identified to be co-regulated in rice, we found that these
putative microProtein targets are most commonly involved in the
‘control of transcription’ and ‘stress response’, as well as ‘hormone
signaling’, ‘methylation’, and ‘light level response’. In recent years,
more studies have been emerging that demonstrate the importance of
microProteins in regulating these biological processes. In a recent
study, a maize F-box protein called COI1 was found to generate a
novel alternative transcript in response to drought stress (Thatcher
et al. 2016). This truncated COI1 mRNA consists of only the F-box
domain but has lost the C-terminal leucine rich repeat domain. Such

n■ Table 5 Frequency of biological role keywords occurring in the
identified microProtein targets. Each target may have had more
than one keyword associated with it. Number in parentheses after
each term indicates the frequency of occurrence

Target keywords (n = 124) Target phrases (n = 64)

Root (7) Transcription factor (5)
Growth (6) Salt stress (4)
Auxin (5) Abscisic acid (3)
Stress (5) Flowering time (2)
Development (5) Heading date (2)
Shoot (4) Grain yield (2)
Grain (4) Auxin response (2)
Drought (4) Drought stress (2)
Salt (4) Stress tolerance (2)
Seedling (3) Cold stress (2)

Volume 10 October 2020 | microProteins in Cereals | 3715



a truncated F-box protein could potentially function as a “decoy”, as
defined by Lee and colleagues. The recent study of these decoy F-box
protein networks involved in circadian clock function strongly
endorses the importance of such truncated F-Box microProteins in
the regulation of plant development in response to environmental
stimuli (Lee et al. 2018). Equally, the inferred regulation of protein
function and gene expression by methylation and other similar
transient modifications are known to regulate development and stress
adaptation in crops (Gardiner et al. 2018; Wang et al. 2011).

In summary, our study extends the understanding of micro-
Proteins in cereal crops and shows that crop genomes are rich in
high-confidence microProteins. The potential microProteins in
monocots cover the unexplored regulation mechanisms of stress
and growth pathways, and provide a possible molecular link between
biological and environmental processes. The rapid development in
genome-engineering tools such as CRISPR-Cas9 will allow us to
uncouple microProtein-regulated pathways by generating loss-
of-function mutants; such plants can then be studied for their
phenotypes under respective biological condition which can aid
breeding strategies to enhance desirable traits in crops. As a future
perspective it would be of interest to investigate the relationship
between the spatio-temporal microProtein expression levels and
the resulting phenotypes to better understand how microProteins
are contributing to various aspects of plant development in a
tissue and environmental-condition specific manner. Such investi-
gations will challenge and revolutionize our current understanding
of trait regulation and crop improvement.
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