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Stage-specific, Nonlinear Surface 
Ozone Damage to Rice Production 
in China
Colin A. Carter1, Xiaomeng Cui1, Aijun Ding2, Dalia Ghanem1, Fei Jiang2, Fujin Yi3 & 
Funing Zhong3

China is one of the most heavily polluted nations and is also the largest agricultural producer. There 
are relatively few studies measuring the effects of pollution on crop yields in China, and most are 
based on experiments or simulation methods. We use observational data to study the impact of 
increased air pollution (surface ozone) on rice yields in Southeast China. We examine nonlinearities in 
the relationship between rice yields and ozone concentrations and find that an additional day with a 
maximum ozone concentration greater than 120 ppb is associated with a yield loss of 1.12% ± 0.83% 
relative to a day with maximum ozone concentration less than 60 ppb. We find that increases in mean 
ozone concentrations, SUM60, and AOT40 during panicle formation are associated with statistically 
significant yield losses, whereas such increases before and after panicle formation are not. We conclude 
that heightened surface ozone levels will potentially lead to reductions in rice yields that are large 
enough to have implications for the global rice market.

Ozone air pollution threatens future global food security1–4. For certain regions and crops, including rice in 
China, ozone pollution is projected to be more damaging to food production than climate change5. Air pollu-
tion has been increasing at an alarming rate in China6, a country that is the world’s largest rice producer and 
importer7. Hence, any yield reduction has repercussions for rice prices and global food security. Ozone regulation 
could improve rice production in China. However, to design such policies effectively, a better understanding 
of the complex relationship between ozone and rice yields is needed. Here we examine this relationship using 
county-level longitudinal data from Southeast China. We find that increases in mean ozone concentrations, 
SUM60, and AOT40 during panicle formation (PF) are associated with statistically significant yield loss, whereas 
such increases before and after PF are not. We further examine the effect of “peak” ozone days. We find that an 
additional day with a maximum ozone concentration greater than 120 ppb (parts per billion) is associated with a 
yield loss of 1.12% ±  0.83% relative to a day with maximum ozone concentration less than 60 ppb. This evidence 
on nonlinearities in the relationship between rice yields and ozone pollution should inform ozone regulation 
policies and open new directions for future research.

Rice is the most important crop in China. In 2015, China harvested about 30% of the global production of rice, 
206.4 million metric tons (mmt) of rough rice8. Although China maintains a policy target of 95% self-sufficiency 
in rice9, China is now the world’s largest rice importer with imports reaching 6.2 mmt (rough equivalent) in 2015 
and China is expected to remain the largest rice importer for the next decade10 (Supplementary Figure 1). Only 
8% of global production of rice is traded internationally in an average year, which means the world price is very 
sensitive to small trade volume changes.

China has some of the worst and continuously rising air pollution on the globe11–14. Current evidence on yield 
response of rice to heightened ozone concentrations is based primarily on controlled experiments15–17. Previous 
studies using historical data have examined the effect of ozone pollution on a number of crops in the United States 
and India, but only for winter wheat in China18–23.

This study quantifies the effect of heightened surface ozone on rice yields in China. We perform a county-level 
longitudinal analysis for five provinces in Southeast China. Our data spans three years, 2006, 2008 and 2010. 
Because there are no widespread rural station-monitored ozone records in China, we use hourly surface ozone 
concentrations simulated by the Community Multi-scale Air Quality Model (CMAQ), which is well-validated 
and was used in previous work23. The spatial distribution of simple average ozone concentrations is illustrated 
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in Fig. 1. Figure 2 presents the average daily ozone concentration over the growing season for our sample. We 
estimate a multivariable model of rice yields that includes surface ozone concentrations as well as weather var-
iables, fertilizer use, and natural disasters. Our model includes county and year fixed effects, controlling for 
county-specific or year-specific unobservable factors. Hence, our analysis is robust to omitted variables that are 
either county-specific or year-specific. Using this model, we examine two important questions: First, is ozone 
damage to rice yield heterogeneous during different stages of the growing season? Second, how do “peak” ozone 
days affect yield? To answer these questions, we specifically examine yield loss associated with heightened ozone 
concentrations during PF, an important stage of the growing season for yield24–26.

Panel A of Fig. 3 presents the estimated yield loss associated with a one-unit increase in 8-hour simple aver-
age ozone concentration, SUM60 and AOT40 before, during and after PF. For all the measures we consider, we 
find no statistically significant evidence that heightened ozone concentrations before and after PF are associated 
with yield loss. We find that a one ppb increase in the 8-hour simple average ozone measure during PF is associ-
ated with an 0.48% ±  0.42% reduction in yield. For SUM60 and AOT40, an additional ppmh (parts per million 
hours) during PF is associated with an 0.74% ±  0.50% and 1.59% ±  1.14% reduction in annual yield, respectively. 
Additional details on the estimated yield loss due to a unit increase in the above pollution measures during the 
entire growing season are in Supplementary Methods VI.

The above results provide strong statistical evidence that PF is the critical stage of plant growth in terms of 
ozone damage to rice yield. To contextualize how important these estimates are, we present the distribution of 
within-county year-to-year variation of simple average, SUM60 and AOT40 during PF in Panel B of Fig. 3. In 
more than 45% of within-county changes in our sample, we observe more than 4 ppb year-to-year changes in 
simple average, more than 3 ppmh changes in SUM60, and more than 1.5 ppmh changes in AOT40. According 
to our results, these changes would be associated with changes in yield of more than 1.92%, 2.22% and 2.40%, 
respectively.

Figure 1. Levels and Variations of Simple Average Ozone during PF. (A) Simple average ozone during PF 
averaged across 2006, 2008, and 2010. (B) Year-to-year variation of simple average ozone during PF from 2006 
to 2008. (C) Year-to-year variation of simple average ozone during PF from 2008 to 2010. Counties shown in 
color are used in the regression analysis. Black and white shaded areas are not included because they did not 
plant rice consistently over the time period analyzed. Regions shown in white are outside the five provinces 
in our sample. These maps were generated by mapping calculated values from our data to county polygons by 
using ArcGIS 10 (http://www.esri.com/software/arcgis). The shapefile of polygons was obtained from Global 
Administrative Areas (http://gadm.org).

http://www.esri.com/software/arcgis
http://gadm.org
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We next turn to the question of the effect of “peak” ozone days. We sort days into 20 ppb categories according 
to the 8-hour maximum ozone concentration in that day (< 60, 60–80, 80–100, 100–120, > 120 ppb). Panel A in 
Fig. 4 shows the effect of an additional day with an 8-hour maximum ozone concentration in the different cate-
gories relative to a day with an 8-hour maximum less than 60 ppb. We find that an additional day with an 8-hour 
maximum ozone concentration between 100–120 ppb is associated with 0.94% ±  0.43% yield loss, whereas an 
additional day with an 8-hour maximum ozone concentration above 120 ppb is associated with 1.28% ±  0.86% 
yield loss. Panel B in Fig. 4 illustrates the proportion of days that fall into the different categories. About 7% of the 
days during PF in our sample have an 8-hour maximum ozone concentration above 100 ppb.

To summarize our results, a roughly 1% rice yield loss is associated with the following increases in the different 
ozone measures we consider during PF: 2.08 ppb in simple average ozone concentrations, 1.35 ppmh in SUM60, 
0.63 ppmh in AOT40, and an additional day with extreme ozone concentrations above 100 ppb. For the five prov-
inces we consider, our results suggest that this change in yield would result in a loss of 337 thousand mt of paddy 
rice output using 2010 production levels (Supplementary Table 1). If this yield loss occurred in all of China, it 
would lead to a loss of about 2 mmt of annual rice output, about one third of China’s current annual rice imports.

Figure 2. Average Daily Daytime Ozone Levels over the Growing Season. Daily 8-hour (10 am-5 pm) average 
ozone concentrations are averaged across the two growing seasons for all counties for each day in a year. We 
limit our plot of post-PF to the one-month period right after PF for simplicity. The actual post-PF period in 
the second growing season for counties in Guangdong and Hainan extends two more weeks (for details see 
Supplementary Table 2).



www.nature.com/scientificreports/

4Scientific RepoRts | 7:44224 | DOI: 10.1038/srep44224

Ozone regulation is clearly an important food-security policy tool for China, with implications for the rest 
of the world. This study points to the complex relationship between rice yields and ozone pollution. Our results 
confirm that the gains from ozone regulation for rice in China are large, similar to previous controlled experi-
ments16,27 (Supplementary Methods V and VI). Our contribution lies in providing strong statistical evidence that 
the gains from ozone regulation are nonlinear and specific to stages of plant growth. Our results suggest that the 
largest yield gains from ozone regulation occur during PF. Furthermore, days with 8-hour maximum ozone con-
centration larger than 100 ppb during PF are most harmful to yield. Our study points to an important direction 
for future research, examining the heterogeneity in crop response to heightened ozone during different stages 
of plant growth as well as to days with “peak” ozone concentrations. Future controlled experiments as well as 
longitudinal studies in different countries are required to further examine these aspects of heterogeneity in crop 
response to surface ozone, which are key to designing ozone regulation policies that reduce threats to global food 
security.

Figure 3. Yield Loss Associated with a Unit Increase in Simple Average, SUM60 and AOT40 Ozone 
Measures During Different Stages of the Growing Season. (A) Ozone coefficients. Estimates are obtained 
from the regressions for simple average, SUM60 and AOT40 constructed separately over three periods: the 
period before PF (Pre-PF), the PF period (PF), and the period after PF (Post-PF), given in equation (1). Black 
dots represent point estimates, and gray bars represent 95% confidence intervals based on prefecture-level 
cluster-robust standard errors (refer to Section II in Supplementary Methods for the relationship between 
prefectures and counties). The regression includes control variables for weather, fertilizer application, and 
natural disasters, as well as county and year fixed effects. (B) Distribution of within-county ozone variation 
during PF. We report the histograms for within-county changes in simple average, SUM60 and AOT40 during 
PF. For each variable, observations are categorized into six bins according to year-to-year variation. The range of 
the bins is labeled under each bar.
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Methods
The baseline statistical model is a standard linear fixed effects model of the natural logarithm of yield. The results 
in Panel A of Fig. 3 are obtained from the following regression model. Let i denote a county, r denote a province, 
and t denote a year,

γ δβ β β α λ= + + + ′ + ′ + + +− −y o o o xlog( ) w , (1)irt irt
pre PF

irt
PF

irt
post PF

irt rt ir t irt1 2 3 

where yirt denotes the annual rice yield for county i in province r in year t, wirt is a vector of weather variables, 
including degree days and total precipitation in the entire growing season, xrt is a vector of control variables at the 
provincial level including fertilizer application on rice and natural disaster variables, αir and λt control for 
county-specific and year-specific unobservables, respectively, and ∈irt represents the error term. −oirt

pre PF, oirt
PF and 

−oirt
post PF are O3 measures before, during and after PF, respectively. Details on the data and variable construction 

are in Supplementary Methods I and III, respectively.
The simple average O3 is measured in ppb and equals the mean of the hourly O3 concentrations for 10 am-5 pm 

during the different stages of the growing season. We perform sensitivity analyses to verify that our estimates 
are robust to the definition of the daytime window (Supplementary Methods V). SUM60 and AOT40 meas-
ure the cumulative O3 above a certain threshold, and the unit of measure is ppmh. SUM60 sums up the hourly 
average O3 concentrations greater or equal to 60 ppb for different stages in the growing season. AOT40 uses an 
alternative threshold of 40 ppb, and sums the “excess” hourly O3 concentrations above 40. Figure 2 shows spatial 
and temporal variation of simple average O3 during PF, and variation of SUM60 and AOT40 can be found in 
Supplementary Methods. Formulas for the ozone, weather, fertilizer, and natural disaster variables can be found 
in Supplementary Methods III.

The following model is used to obtain the results in Panel A in Fig. 4

γ δβ β β β α λ= + + + + ′ + ′ + + +y o o o o w xlog( ) , (2)irt irt b irt b irt b irt b irt rt ir t irt1 , 1 2 , 2 3 , 3 4 , 4 

where oirt, bj is the number of days in the jth category during PF for j =  1, 2, 3, 4. The categories are determined by 
the maximum 8-hour ozone concentration in a day in the following ppb bins {60–80, 80–100, 100–120, > 120}, 
where the reference category is < 60 ppb. For a formal definition of oirt, bj, see Supplementary Methods IV.
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