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A B S T R A C T   

Product yield on carbohydrate feedstocks is a key performance indicator for industrial ethanol production with 
the yeast Saccharomyces cerevisiae. This paper reviews pathway engineering strategies for improving ethanol 
yield on glucose and/or sucrose in anaerobic cultures of this yeast by altering the ratio of ethanol production, 
yeast growth and glycerol formation. Particular attention is paid to strategies aimed at altering energy coupling 
of alcoholic fermentation and to strategies for altering redox-cofactor coupling in carbon and nitrogen meta-
bolism that aim to reduce or eliminate the role of glycerol formation in anaerobic redox metabolism. In addition 
to providing an overview of scientific advances we discuss context dependency, theoretical impact and potential 
for industrial application of different proposed and developed strategies.   

1. Introduction 

In 2020, 99 billion liters of ethanol were produced by yeast-based 
fermentation of agriculture-derived carbohydrates [1]. Of this volume, 
approximately 30% was produced from Brazilian cane sugar (mainly 
consisting of sucrose) and approximately 54% from corn starch-derived 
glucose, mainly in the United States of America [1]. Ethanol is pre-
dominantly used as a renewable ‘drop-in’ transport fuel and 
ethanol-based value chains towards other compounds, including jet fuel 
and polyethylene, are under development [2,3]. 

Despite a plethora of academic and industrial studies on alternative 
microbial platforms [4], Saccharomyces cerevisiae remains the organism 
of choice for industrial ethanol production from carbohydrates. Factors 
that contribute to its popularity include rapid fermentation of glucose 
and sucrose to ethanol, insensitivity to phages, a long history of safe use 
in food applications and a high tolerance to ethanol. Ethanol concen-
trations in corn-starch-based, very-high-gravity fermentation processes 
can reach up to 21% (v/v) [5,6]. In bulk fermentation processes such as 
ethanol production, where costs of the carbohydrate feedstock can ac-
count for up to 70% of the total production costs [7], every detectable 

improvement of the ethanol yield on sugar is economically relevant. The 
extensive toolbox for genetic modification of S. cerevisiae [8] is therefore 
intensively used to explore options for maximizing ethanol yields by 
engineering its metabolic network. 

In S. cerevisiae, anaerobic metabolism of glucose or sucrose starts 
with their conversion to pyruvate via the ATP-generating Embden- 
Meyerhof glycolytic pathway. NADH generated by this oxidative 
pathway is re-oxidized by the combined action of pyruvate decarbox-
ylase (Pdc1, Pdc5, Pdc6, EC 4.1.1.1: pyruvate → acetaldehyde + CO2) 
and NAD+-dependent alcohol dehydrogenases (predominantly Adh1, EC 
1.1.1.1: acetaldehyde + NADH → ethanol + NAD+ [9]) (Fig. 1). This 
native yeast pathway for alcoholic fermentation perfectly conserves the 
degree of reduction of sugars [10] and almost completely captures their 
heat of combustion in ethanol (− 2840 kJ per mol of glucose versus 
− 2734 kJ per two mol of ethanol). Clearly, if alcoholic fermentation was 
the only relevant metabolic process in industrial ethanol production, 
attempts to improve ethanol yields on sugars as sole carbon and electron 
sources would be futile. Metabolic engineering strategies for improving 
ethanol yields are therefore directly or indirectly related to another 
cellular process that occurs during industrial ethanol production: 
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anaerobic growth. 
In the absence of growth, survival of yeast cells requires cellular 

maintenance metabolism, which encompasses use of ATP for growth- 
independent processes that maintain structural integrity and viability 
[11]. In anaerobic yeast cultures, this ATP is exclusively generated via 
alcoholic fermentation (Fig. 1). In contrast, growth of yeast cells not 
only requires ATP but also organic precursors for biomass components, 

whose biosynthetic pathways compete for carbon with ethanol pro-
duction (Fig. 1). Anaerobic growth occurs in all current industrial pro-
cesses for ethanol production and the resulting surplus yeast biomass is 
valorized by its inclusion in a by-product stream sold as an animal feed 
supplement [12]. 

Growth is coupled to formation of glycerol, a second important 
byproduct of anaerobic yeast metabolism, by redox-cofactor 

Fig. 1. Schematic representation of the distribution of substrate over biomass, glycerol, ethanol and CO2 in anaerobically growing S. cerevisiae. NADH/NAD+ redox- 
cofactor coupling and use of ATP for sugar phosphorylation, biomass formation and maintenance are indicated by dotted and dashed arrows, respectively. Glucose, 
fructose and (after hydrolysis) sucrose are converted into pyruvate via the Emden-Meyerhoff glycolysis, yielding 2 NADH and 2 ATP per glucose equivalent. ATP is 
used for cellular maintenance and synthesis of biomass (growth). NADH is primarily re-oxidized via alcoholic fermentation, but a surplus of NADH formed during 
biomass synthesis is re-oxidized via the production of glycerol. 
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metabolism. Formation of S. cerevisiae biomass from sugar, ammonium 
or urea and other nutrients is coupled to a net reduction of NAD+ to 
NADH [13,14] (Fig. 1). Anaerobic S. cerevisiae cultures cannot re-oxidize 
this NADH by mitochondrial respiration and instead rely on 
NADH-dependent reduction of the glycolytic intermediate 
dihydroxyacetone-phosphate to glycerol-3-phosphate, in a reaction 
catalysed by NAD+-dependent glycerol-3-phosphate dehydrogenase 
(Gpd1, Gpd2, EC 1.1.1.8 [15,16]). Glycerol-3-phosphate is then hydro-
lyzed by glycerol-3-phosphate-phosphatase (Gpp1, Gpp2, EC 3.1.3.21 
[17]) to yield phosphate and glycerol (Fig. 1). In processes based on 
wild-type S. cerevisiae strains, approximately 4% of the potential ethanol 
yield on carbohydrate feedstocks was estimated to be lost to glycerol 
[18]. Based on current ethanol production volumes, this loss would 
correspond to approximately 4 billion liters of ethanol per year. 

The aim of this paper is to review the current body of knowledge on 
pathway engineering strategies that focus on maximizing ethanol yields 
on glucose or sucrose by altering the ratio of ethanol, biomass and 
glycerol formation in S. cerevisiae. This scope excludes a large body of 
metabolic engineering research aimed at expanding the sugar- and 
polysaccharide substrate range of S. cerevisiae to enable its nascent 
application for industrial-scale fermentation of lignocellulosic hydroly-
sates generated from agricultural residues or energy crops (reviewed in 
Refs. [4,19–21]). However, the discussed strategies can, in principle, be 
applied in such ‘second-generation’ bioethanol processes as well as in 
‘first-generation’ processes based on corn starch or cane sugar, once 
other metabolic engineering strategies have been successfully 
addressed. 

2. Process conditions 

Growth of anaerobic laboratory cultures of wild-type S. cerevisiae 
strains under different conditions provided insight in how distribution of 
sugar over biomass, glycerol and ethanol can be influenced and have 
therefore been a key source of inspiration for the design of metabolic 
engineering strategies. 

In anaerobic, sugar-limited cultures of S. cerevisiae, maintenance- 
energy requirements are essentially growth-rate independent [22–24]. 
The fraction of the consumed sugar that is fermented to ethanol there-
fore increases with decreasing specific growth rate [11] (Fig. 2A). This 
correlation is clearly demonstrated in anaerobic retentostat cultures of 
S. cerevisiae, in which all biomass is retained in the culture and only 
cell-free effluent leaves the reactor. In such systems, near-theoretical 
ethanol yields on glucose were demonstrated during prolonged growth 
at near-zero specific growth rates [22]. 

As an alternative to reducing the specific growth rate, the fraction of 
the sugar substrate that is fermented to ethanol by actively growing 
anaerobic cultures to meet maintenance-energy requirements can be 
increased by changing cultivation conditions. In particular, addition of 
weak organic acids such as lactate, acetate, propionate or benzoate to 
anaerobic batch and chemostat cultures grown at low pH, was shown to 
lead to lower biomass yields and higher ethanol yields [13,25–29]. 
These results reflect an increased maintenance energy requirement for 
intracellular pH homeostasis, caused by an influx of protons into the 
yeast cytosol as a result of weak acid diffusion (Fig. 2B) [30]. In 
anaerobic yeast cultures, countering this ‘weak acid uncoupling’ and 
maintenance of intracellular pH homeostasis critically depends on 
ATP-dependent proton export by the plasma membrane ATPase (Pma1, 

Fig. 2. Schematic representation of energy metabolism in S. cerevisiae and strategies to improve ethanol yield on sugar. A: Alcoholic fermentation of glucose or 
fructose. B: Maintenance energy requirements can be increased by presence of weak organic acids in culture medium. C: The net ATP yield (mol ATP/mol glucose 
equivalent) of maltose utilization is lower than that of glucose, since maltose transport is proton coupled, whereas glucose is transported via facilitated diffusion. D: 
Plasma membrane ATPase exports protons at the cost of ATP. E: Example of a futile cycle, e.g. a set of reactions that leads to net hydrolysis of ATP, that can be 
introduced in order to enforce ‘ATP wasting’. F: The Enter-Doudoroff glycolytic pathway yields only 1 ATP per glucose equivalent, instead of 2 ATP. G: Intracellular 
targeting of invertase (iSuc2) combined with uptake of sucrose by proton symport (left) lowers the ATP yield compared to wildtype S. cerevisiae, where sucrose is 
hydrolyzed extracellularly, after which the resulting monosaccharides are taken up via facilitated diffusion (right). 
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EC 7.1.2.1) (Fig. 2D) [31,32]. These observations clearly indicate the 
potential of modifying maintenance-energy requirements as a means to 
improve ethanol yields. Practical issues such as costs of adding organic 
acids and their subsequent removal from process effluents, as well as 
potential synergies of weak organic acid and ethanol toxicity [33,34], 
preclude direct application of weak organic acid uncoupling in indus-
trial bioethanol production. Feedstocks for second-generation bio-
ethanol production already contain inhibitors such as acetic acid, 
furfural and hydroxymethyl-2-furaldehyde [21,35–37], which cause 
increased ATP requirements for cellular maintenance. In addition, high 
concentrations of ethanol also in themselves affect maintenance energy 
requirements by increasing permeability of the yeast plasma membrane 
to protons and thereby activating Pma1 [38,39]. 

Experiments on disaccharide metabolism by anaerobic S. cerevisiae 
cultures provided a first demonstration that ethanol yields can be 
modified by changing the mechanism of sugar import. In contrast to 
transport of glucose, which occurs via facilitated diffusion by Hxt 
transporters [40,41], uptake of its dimer maltose by S. cerevisiae is 
mediated by Malx1 transporters and involves symport with a single 
proton [32,42]. After intracellular hydrolysis of maltose by a Malx2 
maltase (EC 3.2.1.20, maltose + H2O → 2 glucose), alcoholic fermen-
tation of the resulting two glucose molecules yields 4 molecules of ATP. 
However, since one of these ATP molecules has to be used to enable 
expulsion of the symported proton by Pma1, which has a stoichiometry 
of 1H+/ATP [32,42], the net ATP yield from maltose fermentation is 
only 1.5 ATP per glucose equivalent (Fig. 2C). Indeed, based on hexose 
units, ethanol and biomass yields of S. cerevisiae in anaerobic 
maltose-limited chemostat cultures were shown to be 16% higher and 
25% lower, respectively, than in corresponding glucose-limited cultures 
[31]. These observations inspired metabolic engineering studies that 
were focused on sucrose-containing feedstock for bioethanol 
production. 

During growth on ammonium or urea [43,44], a significant part of 
the ‘surplus’ NADH generated in biosynthesis is derived from the syn-
thesis of amino acids from these nitrogen sources and sugar. Several 
studies reported lower glycerol yields and higher ethanol yields on sugar 
in anaerobic cultures grown with amino acids or yeast extract as the 
nitrogen source [45–47]. Although use of amino acids as industrial ni-
trogen source is not an economically viable proposition, these obser-
vations highlighted the potential for engineering redox-cofactor 
metabolism to improve ethanol yields. 

3. Engineering of energy coupling 

3.1. Introduction of futile cycles 

Several metabolic engineering strategies have been explored to in-
crease the use of sugar for cellular maintenance energy requirements by 
introducing metabolic ‘futile cycles’, whose net effect is the hydrolysis of 
ATP to ADP and inorganic phosphate with a concomitant release of heat 
(Fig. 2E). Such ‘ATP wasting’ cycles can either be introduced by 
constitutive expression of ATPases or by creating more complicated 
futile cycles that cause a net hydrolysis of ATP. Overexpression of the 
soluble F1 unit of the Escherichia coli H+-ATPase in S. cerevisiae [48,49] 
led to a 10% increase of the anaerobic ethanol yield on glucose relative 
to a reference strain, but also caused a 26% decrease of the specific 
growth rate [48]. Overexpression of PHO5 or PHO8, which encode 
aspecific phosphatases (EC 3.1.3.1/2) [50,51] was similarly reported to 
cause increased ATP turn-over. PHO8 overexpression was reported to 
cause a 17% higher ethanol yield on glucose, without affecting growth 
rate [50]. Simultaneous activity of ATP-generating glycolytic and 
ATP-consuming gluconeogenic enzymes leads to textbook examples of 
futile metabolic cycles. Though not tested with the specific aim to 
improve ethanol yields, overexpression of the gluconeogenic enzyme 
fructose-1,6-bisphosphatase (Fbp1, EC 3.1.3.11: fructose-1,6-bisphos-
phate + H2O → fructose-6-phosphate + Pi) increased glucose 

consumption (19%) and CO2 (10%) and ethanol (14%) production rates 
of aerobic suspensions of non-growing cells [52]. An even more pro-
nounced effect on the ethanol production rate (22%) was found when 
the gluconeogenic enzyme phosphoenolpyruvate carboxykinase 
(PEPCK, EC 4.1.1.49: oxaloacetate + ATP → phosphoenolpyruvate +
ADP + CO2) was simultaneously overexpressed [52,53]. More recently, 
E. coli PEPCK (pckA) was overexpressed together with the yeast ana-
plerotic enzyme pyruvate carboxylase (Pyc2, EC 6.4.1.1: pyruvate +
ATP + CO2 → oxaloacetate + ADP + Pi) [54]. Simultaneous activity of 
these enzymes results in hydrolysis of two ATP molecules for the for-
mation of phosphoenolpyruvate (PEP) from pyruvate. Since, in 
glucose-grown cultures, the glycolytic enzyme pyruvate kinase (Pyk2, 
Cdc19, EC 2.7.1.40) converts PEP back to pyruvate with the formation of 
only a single ATP, the net result of this futile cycle is the hydrolysis of 
one ATP. The potential of this strategy was demonstrated by more 
ethanol production, related to yeast biomass, by the overexpression 
strain than by the control strain [54]. 

An inherent risk of the constitutive expression of futile cycles is that, 
in industrial processes, situations may occur in which a too large drain of 
the cellular ATP content can no longer be compensated for by faster 
alcoholic fermentation. In extreme situations, net ATP synthesis might 
even decrease below maintenance energy-requirements and cause cell 
death. Careful ‘tuning’ of the in vivo activity of engineered futile cycles 
can, in principle, address this problem in cultures grown under constant 
conditions in the laboratory. However, such tuning would be much more 
difficult to achieve in large-scale industrial processes, which are highly 
dynamic, for example as a consequence of changing sugar and ethanol 
concentrations. Application-oriented pathway-engineering studies 
therefore mostly focus on strategies that, instead, aim at a fixed, stoi-
chiometric reduction of the ATP yield from ethanol fermentation. 

3.2. Decreasing the ATP stoichiometry of yeast glycolysis 

The bacterium Zymomonas mobilis employs the Entner-Doudoroff 
(ED) pathway for alcoholic fermentation. Instead of the 2 mol ATP/ 
mol glucose generated in yeast glycolysis, this pathway has a net ATP 
yield of only 1 mol ATP/mol glucose [55,56]. As a consequence, high 
ethanol yields can be achieved in growing Z. mobilis cultures [55,56]. A 
now expired patent proposed functional expression of the ED pathway in 
S. cerevisiae (Fig. 2F) [57]. However, experimental studies failed to 
achieve the high in vivo activities of 6-phosphogluconate dehydratase 
(PGDH, EC 4.2.1.12: 6-phosphogluconate → 2-dehydro-3-deoxy-gluco-
nate-6-phosphate) in S. cerevisiae that would be required to demon-
strate an impact on ethanol yield [58,59]. A limiting activity of PGDH, 
which contains an [4Fe-4S] iron-sulfur cluster [60], was attributed to 
the well-documented difficulties in expressing heterologous 
iron-sulfur-cluster enzymes in the yeast cytosol [61]. 

An alternative approach to reduce the ATP yield of glycolysis in 
S. cerevisiae was based on functional expression of a heterologous, non- 
phosphorylating, NADP+-dependent glyceraldehyde-3-phosphate de-
hydrogenase (GAPN, EC 1.2.1.9: glyceraldehyde-3-phosphate + NADP+

→ 3-phosphoglycerate + NADPH), which bypasses the ATP-generating 
phosphoglycerate kinase reaction (Pgk1, EC 2.7.2.3: 1,3-biphosphogly-
cerate + ADP → 3-phosphoglycerate + ATP) [62–64]. Strains engi-
neered with this strategy increased the ethanol yield in anaerobic 
cultures by 3% [64] and 7.6% [62]. This increase was partly attributed 
to a lower ATP yield of glycolysis and partly to changes in redox-cofactor 
metabolism (see 4.2). 

3.3. Altering topology and energy coupling of disaccharide metabolism 
and transport 

In contrast to maltose which, as described above, is taken up by 
proton symport prior to hydrolysis [31,32,42], sucrose metabolism in 
wild-type S. cerevisiae strains is predominantly initiated by its extracel-
lular hydrolysis to glucose and fructose, catalysed by invertase (Suc2, EC 
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3.2.1.26) (Fig. 1) [65,66]. After uptake via facilitated diffusion, medi-
ated by Hxt transporters [67], these hexoses are oxidized to pyruvate by 
yeast glycolysis. 

Due to the presence of a second start codon in the SUC2 transcript, a 
small fraction of the expressed invertase is retained in the cytosol [66] 
while, moreover, the Mal11 (Agt1) maltose-proton symporter is also 
able to import sucrose [68,69]. Replacement of the native SUC2 gene by 
a constitutively expressed, truncated SUC2 gene that no longer encoded 
the N-terminal excretion sequence of Suc2 led to a near-complete tar-
geting of invertase to the yeast cytosol (Fig. 2G) [70]. Adaptive labo-
ratory evolution of an engineered S. cerevisiae strain expressing this 
internal invertase (‘iSuc2’) in anaerobic, sucrose-limited chemostat 
cultures yielded an evolved strain with increased expression of MAL11. 
When compared under identical conditions in anaerobic chemostat 
cultures, the evolved strain showed an 11% higher ethanol yield and a 
30% lower biomass yield on sucrose than the reference strain [70]. 
These results were in good agreement with predictions based on stoi-
chiometric models of yeast metabolism and mirrored earlier compari-
sons of biomass and product yields of wild-type S. cerevisiae grown 
anaerobically on maltose and glucose [31]. Using a similar strategy, it 
should also be possible to decrease the ATP yield of monosaccharide 
dissimilation by replacing the endogenous facilitated diffusion trans-
porters by proton symporters [71,72]. 

4. Engineering of redox metabolism 

Multiple pathway engineering strategies for improving ethanol yield 
on sugars aim to minimize production of glycerol. In aerobic S. cerevisiae 
cultures, generation of glycerol-3-phosphate by the Gpd1 and Gpd2 
glycerol-3-phosphate dehydrogenases is non-essential due to the pres-
ence of an alternative route for glycerolipid synthesis that involves 1- 
acyldihydroxyacetone-phosphate as intermediate [73]. In contrast, 
due to the essential role of glycerol formation in NADH redox-cofactor 
balancing in non-respiratory cultures, double deletion of GPD1 and 
GPD2 prevents anaerobic growth [74,75]. Anaerobic growth of gpd1Δ 
gpd2Δ strains can be rescued by supplementation of compounds such as 
acetaldehyde or acetoin, which can be reduced by intracellular 
NADH-dependent dehydrogenases [74,75]. Glycerol-negative mutants 
are highly sensitive to osmotic stress due to the key role of glycerol in 
osmotolerance of S. cerevisiae [74,76]. 

In anaerobic, glucose-limited cultures of S. cerevisiae grown on syn-
thetic media with ammonium as nitrogen source, approximately 12 
mmol of glycerol is formed per gram of biomass dry weight [74,77], 
which closely matches calculated requirements for NADH re-oxidation 
[78]. Strain-dependent diversity in glycerol production may reflect 
different biomass composition, formation of metabolites whose forma-
tion is coupled to a net generation of NADH (e.g. acetate [75]) and/or 
activity of the γ-butyric acid (GABA) shunt [79]. ‘Tuning’ of in vivo ac-
tivities of glycerol-3-phosphate dehydrogenase, by deletion of either 
GPD1 or GPD2 or by promoter engineering, has in different wild-type 
S. cerevisiae strain backgrounds and under different (semi-) anaerobic 
cultivation conditions, been shown to affect specific growth rates, 
glycerol and ethanol yields (Fig. 3B) [18,74,75,80]. While biomass 
synthesis in S. cerevisiae results in a net reduction of NAD + to NADH, it 
requires a net oxidation of NADPH to NADP+ [81,82]. Based on this 
observation, Anderlund et al. (1999) [83] and Nissen et al. (2001) [84] 
explored whether expression of heterologous soluble transhydrogenases 
(EC 1.6.1.1: NADPH + NAD+ → NADP+ + NADH) from E. coli or 
Azotobacter vinelandii, respectively, could convert the ‘surplus’ NADH 
generated by anaerobic S. cerevisiae cultures into NADPH and thereby 
lower glycerol production. Physiological analysis of the resulting strains 
revealed that, instead, intracellular concentrations of reduced and 
oxidized forms of these cofactors favoured the reverse reaction, thus 
resulting in higher glycerol yields and a lower ethanol yields than in the 
corresponding reference strains [83,84]. 

4.1. Engineering redox-cofactor coupling of nitrogen assimilation 

Based on observations that amino acid synthesis from ammonium or 
urea is a key contributor to the ‘excess’ NADH formed in yeast biosyn-
thesis, an early redox engineering study [18] focused on Gdh1, the 
NADP+-dependent glutamate dehydrogenase (EC 1.4.1.4) that catalyses 
the key reaction in ammonium assimilation by nitrogen-sufficient 
S. cerevisiae cultures: (2-oxoglutarate + NH4

+ + NADPH → glutamate 
+ NADP+, Fig. 3A). Theoretical analysis predicted that making ammo-
nium assimilation NADH-dependent could reduce glycerol production in 
anaerobic cultures by half. In one strategy, deletion of GDH1 was com-
bined with constitutive overexpression of GLN1 and GLT1, which 
encode ATP-dependent glutamine synthetase (GS, EC 6.3.1.2: glutamate 
+ NH4

+ + ATP → glutamine + ADP + Pi) and NADH-dependent gluta-
mate-2-oxoglutarate aminotransferase (EC 1.4.1.14: glutamine +

2-oxoglutarate + NADH + H+ → 2 glutamate + NAD+ (GOGAT), 
respectively. In anaerobic bioreactor batch cultures, a resulting engi-
neered strain grew at 90% of the specific growth rate of the reference 
strain, while its glycerol yield on glucose was 38% lower and its ethanol 
yield was 10% higher [43]. The increased ethanol yield was attributed to 
a combination of reduced NADH formation and increased ATP con-
sumption in ammonium assimilation. In a second strategy, deletion of 
GDH1 was combined with overexpression of the NADH-dependent 
glutamate dehydrogenase GDH2 (EC 1.4.1.2: 2-oxoglutarate + NH4

+

+ NADH → glutamate + NAD+). This approach led to a 30% lower 
glycerol yield. However, the ethanol yield was hardly affected and the 
biomass yield was 12% higher than that of the reference strain. This 
observation was attributed to a reduced loss of carbon via CO2 formation 
in the oxidative pentose-phosphate pathway [18], which is the main 
source of NADPH in S. cerevisiae [85,86]. Since NADH re-oxidation in 
the first step of ammonium assimilation cannot completely replace 
glycerol formation, the GS-GOGAT strategy, as successfully imple-
mented by Nissen et al. (2000) [43], left room for further reduction of 
glycerol yields. 

4.2. Expression of NADP+-dependent, non-phosphorylating 
glyceraldehyde 3-phosphate dehydrogenase (gapN) 

In S. cerevisiae, the oxidative step in glycolysis is catalysed by the 
strictly NAD+-dependent oxidation of glyceraldehyde-3-phosphate to 
1,3-diphosphoglycerate by isoenzymes of glyceraldehyde-3-phosphate 
dehydrogenase (Tdh1, 2 or 3, EC 1.2.1.12). Based on stoichiometric 
modelling of yeast metabolism, Bro et al. (2006) identified expression of 
a heterologous non-phosphorylating, NADP+-dependent 
glyceraldehyde-3-phosphate dehydrogenase (GAPN), which generates 
3-phosphoglycerate instead of 1,3-diphosphoglycerate, as a promising 
option to increase ethanol yields (Fig. 3C). Initial experimental verifi-
cation of this model prediction by expression of Streptococcus mutans 
gapN showed a 44% lower glycerol yield in anaerobic, glucose-grown 
batch cultures than in a reference strain. No negative impact on spe-
cific growth rate or biomass yield was observed, but also the ethanol 
yield on glucose was not significantly altered [64]. Subsequent studies in 
which expression of Bacillus cereus gapN was tested, reported a 3.5% 
higher final ethanol concentration and a 23% reduction of the glycerol 
yield on sugar relative to a reference strain [63]. Expression of Bacillus 
cereus gapN in combination with deletion of GPD1, yielded a strain that 
exhibited a 49% lower glycerol yield and 8% higher ethanol yield than 
the wild-type reference strain. However, the engineered strain was 
found to be highly sensitive to osmotic stress, thereby precluding its use 
in high-gravity industrial ethanol fermentation. When osmotolerance 
was restored by overexpression of TPS1 and TPS2, which encode 
trehalose-6-phosphate synthase (EC 2.4.1.15: glucose-6-phosphate +
UDP-glucose → UDP + trehalose-6-phosphate) and 
trehalose-6-phosphate phosphatase (EC 3.1.3.12: trehalose-6-phos-
phate + H2O → trehalose + Pi), near-wild-type anaerobic growth rates 
were reported along with an up to 8% higher ethanol yield and 73% 
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Fig. 3. Schematic representation of pathway engineering strategies for minimizing formation of glycerol as ‘redox’ sink for re-oxidation of NADH generated in 
biosynthetic reactions during anaerobic growth of S. cerevisiae. A: Biosynthetic reactions require a net input of ATP and NADPH, while yielding NADH. Ammonium 
assimilation is the key contributor to NADH production, and replacing the NADP+-dependent step by an NADH-dependent step, can reduce the NADH production in 
biosynthetic reactions. B: Native glycerol pathway. C: Bypass of NAD+-dependent glyceraldehyde-3-phosphate dehydrogenase by heterologous non-phosphorylating, 
NADP+-dependent glyceraldehyde-3-phosphate dehydrogenase (GAPN). D: Non-oxidative bypass of NAD+-dependent glyceraldehyde-3-phosphate dehydrogenase by 
heterologously expressed phosphoribulokinase and ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco). E: Re-oxidation of NADH by A-ALD-expressing 
strain, using exogenous acetate as electron acceptor. F: Re-oxidation of NADH enabled by combined expression of heterologously expressed NADH-dependent 
acetylating acetaldehyde dehydrogenase (A-ALD), phosphoketolase and phosphotransacetylase. G: Re-oxidation of NADH enabled by combined expression of het-
erologously expressed A-ALD and pyruvate-formate lyase. H: Combined expression of a heterologous NADH-dependent glycerol dehydrogenase and the native 
dihydroxyacetone kinase enables ethanol formation from glycerol when combined with strategies D, E, F and/or G. 
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lower glycerol yield, respectively [62]. In a further study [87], expres-
sion of gapN from Streptococcus mutans was combined with deletion of 
FPS1, which encodes a membrane channel protein involved in glycerol 
export, in some strains combined with overexpression of UTR1, which 
encodes S. cerevisiae NADH kinase (EC 2.7.1.86: ATP + NADH → ADP +
Pi + NADPH) [88]. While lower glycerol yields and higher ethanol yields 
were observed in micro-aerobic cultures, the engineered strains were 
unable to grow under fully anaerobic conditions. 

4.3. NADH-dependent reduction of acetate to ethanol 

In many fermentative bacteria, acetylating acetaldehyde dehydro-
genase (A-ALD, EC1.2.1.10: acetyl-CoA + NADH + H+ → acetaldehyde 
+ CoA + NAD+) catalyses a key reaction in alcoholic fermentation, that 
is followed by NADH-dependent reduction of acetaldehyde to ethanol 
[89]. The potential of using the combination of A-ALD and yeast alcohol 
dehydrogenase to re-oxidize NADH in anaerobic S. cerevisiae cultures, 
and thereby replace glycerol as NADH redox sink for ethanol, was 
explored by expressing the A-ALD-encoding E. coli gene mhpF in a gpd1Δ 
gpd2Δ strain [90]. Like other gpd1Δ gpd2Δ S. cerevisiae strains, the 
resulting strain did not grow anaerobically on glucose as sole carbon 
source. However, anaerobic growth was restored by addition of acetate 
to growth media (Fig. 3E). In anaerobic S. cerevisiae cultures, acetate is 
activated to acetyl-CoA the acetyl-CoA synthethase isoenzyme Acs2 (EC 
6.2.1.1: acetate + ATP + CoA → acetyl-CoA + AMP + PPi, [91]). In 
anaerobic bioreactor batch cultures supplemented with 2 g/L acetate, 
the engineered strain did not produce glycerol and showed a 13% higher 
apparent ethanol yield on glucose (note that part of the produced 
ethanol was derived from acetate rather than from glucose). Under these 
conditions, the mhpF-expressing strain grew at 44% of the specific 
growth rate of the GPD1 GPD2 reference strain [90]. Introduction, in the 
same gpd1Δ gpd2Δ genetic background, of a single copy of an expression 
cassette for eutE, an alternative E. coli A-ALD gene, increased specific 
growth rate to 84% of that of the reference strain [92]. 

When E. coli EutE was expressed in a GPD1 GPD2 S. cerevisiae strain, a 
mere 10% reduction of the amount of glycerol produced per gram 
biomass was observed in anaerobic, glucose-grown batch cultures sup-
plemented with acetate. This observation indicated that the native 
glycerol pathway effectively competed with E. coli EutE for NADH in this 
genetic context. Deletion of GPD2, which encodes the redox-regulated 
isoenzyme of glycerol-3-phosphate dehydrogenase in S. cerevisiae, led 
to an 80% reduction of glycerol production, with a corresponding in-
crease in acetate consumption [92]. 

Acetate is a common constituent and inhibitor of yeast performance 
in the hydrolysates of lignocellulosic biomass that are explored as 
feedstocks for ‘second-generation’ yeast-based ethanol production [93]. 
Since, in such processes, expression of A-ALD offers an option to convert 
an inhibitor into additional product, further pathway engineering stra-
tegies were explored to increase the amount of NADH available for ac-
etate reduction and to improve robustness of engineered gpd1Δ gpd2Δ, 
A-ALD-expressing strains. To enable additional NADH generation, the 
native S. cerevisiae NADP+-dependent 6-phosphogluconate de-
hydrogenases Gnd1 and Gnd2 (EC 1.1.1.44: 6-phosphogluconate +
NADP+ → ribulose-5-phosphate + CO2 + NADPH) were replaced by the 
NAD+-dependent enzyme GndA from Methylobacillus flagellates (EC 
1.1.1.343). To force flux through the resulting, now partially 
NADH-coupled oxidative pentose-phosphate pathway, ALD6, which 
encodes NADP+-dependent acetaldehyde dehydrogenase (EC 1.2.1.5: 
acetaldehyde + NADP+ → acetate + NADPH), was deleted. This meta-
bolic engineering strategy resulted in a 29% higher acetate consumption 
per gram biomass than in the parental gpd1Δ gpd2Δ, EutE-expressing 
strain [94]. Relative to a congenic GPD1 GPD2 reference strain, the 
engineered strain showed a 13% higher ethanol yield and a 29% lower 
specific growth rate. 

An alternative strategy to boost the acetate-reducing capacity of 
EutE-expressing strains focused on changing the cofactor preference of 

alcohol dehydrogenase, which in S. cerevisiae is strictly NADH- 
dependent [95]. Relative to an industrial S. cerevisiae strain expressing 
Bifidobacterium adolescentis EutE in a gpd1Δ gpd2Δ background, a further 
engineered strain that expressed an NADPH-dependent alcohol dehy-
drogenase from Entamoeba histolytica, combined with overexpression of 
S. cerevisiae NADP-dependent glucose-6-P dehydrogenase (Zwf1, EC 
1.1.1.49: glucose-6-phosphate + NADP+ → 6-phospho-glucono-1, 
5-lactone + NADPH) and acetyl-CoA synthetase (Acs2) showed an 
almost 3-fold higher acetate consumption [95]. 

A different strategy to increase the potential for acetate reduction by 
A-ALD expressing strains is to enable anaerobic co-conversion of glyc-
erol, which is left in the final phases of fermentation or obtained from 
post-distillation stills [96], to ethanol. In the patent literature, an 
NADH-specific glycerol dehydrogenase from E. coli (gldA, EC 1.1.1.6: 
glycerol + NAD+ → dihydroxyacetone + NADH + H+) was expressed 
together with an additional copy of DAK1, encoding dihydroxyacetone 
kinase (EC 2.7.1.29: dihydroxyacetone + ATP → dihydroxyacetone 
phosphate + ADP) [97,98]. Combined with enzymes from the lower half 
of glycolysis, pyruvate decarboxylase and alcohol dehydrogenase, GldA 
and Dak1 enable conversion of glycerol to ethanol with the formation of 
1 mol of NADH (Fig. 3H). When, besides sugars, glycerol and acetate are 
present as an additional substrates in A-ALD expressing cultures, glyc-
erol conversion to ethanol acts as source of NADH enabling more acetate 
reduction. Indeed, high apparent ethanol yields of 0.48–0.50 g ethanol 
per gram of glucose were reported for S. cerevisiae strains in which gldA 
and DAK1 overexpression was combined with expression of E. coli mhpF 
or EutE [97,98]. 

4.4. Integration of acetyl-CoA reduction by A-ALD in yeast sugar 
metabolism 

Organic acid concentrations in ‘first generation’ feedstocks for yeast- 
based ethanol production are generally around 1.3 g/L, [37,99], which 
limits the potential impact of the replacement of glycerol production by 
reduction of exogenous acetate via an engineered A-ALD pathway. In 
such settings, NADH re-oxidation by A-ALD could still replace glycerol 
production if acetyl-CoA is formed from glucose by pathways that yield 
fewer than 2 mol of NADH per mole of acetyl-CoA. The patent literature 
describes two strategies to achieve this goal, of which the first is based 
on heterologous expression of a bacterial pyruvate formate-lyase (PFL; 
EC 2.3.1.54: pyruvate → acetyl-CoA + formate) in A-ALD-expressing 
S. cerevisiae [100,101] (Fig. 3E). PFL, which is an oxygen-sensitive 
enzyme, was shown to be able to functionally replace the native 
pathway for acetyl-CoA synthesis in anaerobic S. cerevisiae cultures 
[102,103]. Synthesis of acetyl-CoA via glycolysis and PFL yields only 
one NADH per acetyl-CoA and thus enables a net reduction of one NADH 
when combined with ethanol production via A-ALD and yeast alcohol 
dehydrogenase. To prevent NADH formation by the yeast formate de-
hydrogenases Fdh1 and Fdh2 (EC 1.17.1.9: formate + NAD+ → CO2 +

NADH; [104]), it was proposed to delete FDH1 and FDH2 from 
PFL/A-ALD expressing strains [100,101]. 

A second strategy for coupling A-ALD to sugar metabolism proposed 
in the patent literature [105] is based generation of acetyl-CoA through 
phosphoketolase (EC 4.1.2.9) and phosphotransacetylase (EC 2.3.1.8) 
(Fig. 3F). In this strategy, xylulose-5-phosphate is first formed from 
glucose in a redox-cofactor neutral manner via the enzymes of the 
non-oxidative pentose-phosphate pathway. This sugar phosphate is then 
converted into glyceraldehyde-3-phosphate and acetyl-phosphate by a 
heterologously expressed phosphoketolase (PK, EC 4.1.2.9: xylulo-
se-5-phosphate + Pi → acetyl-phosphate + glyceraldehyde-3-phosphate 
+ H2O). Subsequently, a heterologously expressed phospho-
transacetylase (PTA, EC 2.3.1.8: acetyl-phosphate + CoA → acetyl-CoA 
+ Pi) converts acetyl phosphate to acetyl-CoA. This pathway has been 
successfully used for the ATP-efficient generation of acetyl-CoA as a 
precursor for aerobic product formation by engineered S. cerevisiae 
strains [106,107]. While the exact impact on ethanol yields will depend 
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on strain and process characteristics, both pathways have the theoretical 
potential to completely replace the role of glycerol formation in NADH 
re-oxidation. 

4.5. Expression of Calvin-cycle enzymes 

Phosphoribulokinase (PRK, EC 2.7.1.19: ribulose-5-phosphate +
ATP → ribulose-1,5-biphosphate + ADP) and ribulose-1,5-bisphosphate 
carboxylase/oxygenase (Rubisco, EC 4.1.1.39: ribulose-1,5-biphos-
phate + CO2 + H2O → 2 glyceraldehyde-3-phosphate + 2H+) are the 
two key enzymes of the Calvin cycle for autotrophic CO2 fixation. By 
capturing CO2, these enzymes together have the potential to generate a 
redox-cofactor-neutral bypass of the oxidative glyceraldehyde-3- 
phosphate dehydrogenase reaction in glycolysis when ribulose-5- 
phosphate, the substrate of phosphoribulokinase, is generated from 
glucose via the reactions of the non-oxidative pentose-phosphate 
pathway (Fig. 3D). In theory, this bypass should enable the use of 
ethanol formation as a redox sink for NADH generated in biosynthetic 
reactions. This hypothesis was tested by Guadalupe-Medina et al. (2013) 
[108], who demonstrated the presence of a functionally active Rubisco 
in cell extracts of an engineered S. cerevisiae strain that co-expressed the 
Thiobacillus denitrificans type-II Rubisco CbbM with the E. coli chaper-
onins GroEL and GroES. Co-expression of CbbM, GroEL, GroES with 
spinach phosphoribulokinase was shown to result in a 90% lower 
glycerol yield and a 10% higher ethanol yield in anaerobic, 
sugar-limited chemostat cultures grown at a dilution rate of 0.05 h− 1 

and sparged with CO2-enriched nitrogen [108]. In line with the low 
affinity of CbbM for CO2 [109], a less pronounced effect on glycerol and 
ethanol yields was observed when cultures were sparged with pure ni-
trogen gas. 

Papapetridis et al. (2018) observed that an S. cerevisiae strain that 
combined constitutive expression of PRK, Rubisco, GroEL and GroES 
showed only a modest reduction of glycerol in fast-growing anaerobic 
batch cultures on glucose than the slow-growing chemostat cultures 
studied by Guadalupe-Medina et al. (2013). To improve competition of 
the Rubisco pathway for NADH with the native glycerol pathway, GPD2 
was deleted and the four key enzymes of the non-oxidative pentose 
phosphate pathway were overexpressed. In addition, PRK was expressed 
from a weaker, anaerobically inducible promoter to avoid reported toxic 
effects of PRK overexpression in microorganisms [110,111] during 
aerobic pre-cultivation. The resulting strain retained a wild-type growth 
rate in anaerobic, glucose-grown batch cultures, while showing an 86% 
lower glycerol yield and 15% higher ethanol yield on glucose than a 
congenic reference strain [77]. 

The strategies discussed above were first designed to reduce or 
eliminate the need for glycerol formation in alcoholic fermentation of 
disaccharides or hexoses. However, they can similarly be employed in 
conversion of other sugars into ethanol. Xylose-utilizing S. cerevisiae 
have been engineered either based on the functional expression of the 
fungal xylose reductase (XR, EC 1.1.1.307: xylose + NAD(P)H → xylitol 
+ NAD(P)+) and xylitol dehydrogenase (XDH, EC 1.1.1.9: xylitol +
NAD+ → xylulose + NADH), or the expression of a bacterial xylose 
isomerase (EC 5.3.1.5: xylose → xylulose). A key challenge in the 
strategy based on XR and XDH is that XR typically prefers NADPH as 
cofactor, while XDH exclusively uses NAD+ [112]. As a consequence of 
this cofactor imbalance, xylitol is formed as a byproduct. Changing the 
cofactor preference of ammonium assimilation as demonstrated by 
Nissen et al. (2000) [43] facilitated re-oxidation of NADH generated in 
the XDH reaction and improved ethanol yield in an XR/XDH-based 
S. cerevisiae strain [113]. Combined functional expression, of PRK and 
Rubisco [114,115]; phosphoketolase and phosphotransacetylase [116]; 
or GAPN [64] were similarly applied to improve redox co-factor 
balancing in XR/XDH-based strains and, thereby, ethanol yields on 
xylose. 

5. Model-based comparison of maximum theoretical impact of 
individual engineering strategies 

Experimentally determined ethanol yields achieved with the 
pathway engineering strategies discussed in paragraphs 3 and 4 
(Table 1) can be influenced by experimental conditions as well as by the 
S. cerevisiae genetic background into which genetic modifications were 
introduced, for example due to different biomass compositions. To 
eliminate these factors, different pathway strategies were implemented 
in a stoichiometric model of the core metabolic network of S. cerevisiae 
[117] and used to calculate growth stoichiometries of anaerobic, 
sugar-grown cultures (Table 2). Although the resulting estimates cannot 
be used to predict performance of strategies in specific strain back-
grounds or processes, they do enable comparison of the maximum 
impact of the different strategies and identification of trade-offs. 

To evaluate pathway engineering strategies aimed at reducing the 
ATP yield from sugar fermentation, two scenarios were simulated. In the 
first, glucose import required a net input of 0.5 ATP, which corresponds 
to the ATP yield per hexose unit in strains that combine sucrose-proton 
symport with intracellular sucrose hydrolysis [70]. The second scenario, 
in which glucose import required 1 ATP, corresponds to a situation in 
which hexose transport occurs via symport with a proton or, alterna-
tively, glucose is fermented via an alternative glycolytic pathway with a 

Table 1 
Reported impacts on glycerol production, maximum specific growth rate and ethanol production in anaerobic batch cultures of S. cerevisiae strains subjected to 
different pathway engineering strategies aimed at reducing glycerol production and improving ethanol yield. Depending on the studies, changes in product yields were 
either expressed per amount of substrate or per amount of biomass. Subscript x denotes dry biomass, ↑ indicates overexpression of native S. cerevisiae genes.  

Strategy Genotype Glycerol 
yield 

Growth 
rate 

Ethanol 
yield 

Reference 

Altered cofactor specificity of ammonium assimilation gdh1Δ GLN1↑GLT1↑ − 38% (g/g 
glucose) 

− 10% +10% (g/g 
glucose) 

[18]  

gdh1Δ GDH2↑ − 30% (g/g 
glucose) 

− 5% +3% (g/g 
glucose) 

[18] 

NADH-dependent reduction of acetate to ethanol gpd1Δ gpd2Δ Ec-mphF − 100% (g/ 
gx) 

− 56% +13% (g/g 
glucose) 

[90] 

(Ec = E. coli) gpd1Δ gpd2Δ Ec-eutE − 100% (g/ 
gx) 

− 7% +9% (g/g 
glucose) 

[94] 

NADH-dependent reduction of acetate to ethanol with increased 
NADH generation via pentose-phosphate pathway 

gnd2Δ gnd1Δ gndAΔ ald6Δ gpd1Δ gpd2Δ Ec- 
eutE 

− 100% (g/ 
gx) 

− 29% +11% (g/g 
glucose) 

[94] 

NADH re-oxidation via expression of Calvin-cycle enzymes, 
optimized for anaerobic growth rate (So = Spinacia oleracea, Td =
Thiobacillus denitrificans) 

gpd2Δ RPE1↑TKL1↑ TAL1↑ NQM1↑ RKI1↑ 
TKL2↑ So-prk Td-cbbm (9 copies) Ec-groES, Ec- 
groEL 

− 86% (g/gx) 0% +15% (g/g 
glucose) 

[77] 

Reduced NADH and ATP formation in glycolysis by expression of 
gapN 

Sm-gapN − 40% (g/g 
glucose) 

0% +2% (g/g 
glucose) 

[64] 

(Sm = Streptococcus mutans) gpd1Δ Sm-gapN TPS1↑ TPS2↑ − 73% (g/g 
glucose) 

0% +8% (g/g 
glucose) 

[62]  
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net ATP yield of 1 mol/mol glucose (e.g. the Entner-Doudoroff pathway) 
in combination with a glucose facilitator. At a specific growth rate of 
0.30 h− 1, simulation of these scenarios gave predicted increases of 
ethanol yield on hexose equivalents of 8.1% and 16.2%, respectively 
(Table 2). Due to a larger impact of a constant maintenance-energy 
requirement at low growth rate [22,118], predicted benefits of these 
engineering strategies declined as the specific growth rate approached 
zero (Table 2). An important consequence of these two strategies was 
that, at each specific growth rate, specific rates of sugar conversion were 
33% and 100% higher, respectively, than in the reference situation 
(Supplementary Table 1). Especially at high specific growth rates, which 
are important for supporting high volumetric productivities in industrial 
batch processes, achieving such high conversion rates may be chal-
lenging due to the requirement for a large resource allocation to 
glycolytic proteins [119,120] or for membrane space to accommodate 
the required number of sugar transporters [121]. In addition, concom-
itant reductions of the biomass yield on sugar by 25% and 50%, 
respectively (Supplementary Table 2) may cause economic trade-offs 
when surplus yeast biomass is sold as a co-product for application in 
animal feed products [12]. 

To assess the maximum theoretical impact on ethanol yield of the 
strategies focused on redox-cofactor balancing, glycerol production was 
set to zero, so that re-oxidation of NADH generated in biosynthesis 
occurred exclusively via the engineered pathways. At a specific growth 
rate of 0.3 h− 1, the PFL/A-ALD, PK/PTA/A-ALD and PRK/Rubisco 
strategies yielded predicted improvements of the ethanol yield on 
glucose of 8.7%, 9.7% and 11.9%, respectively. The predicted differ-
ences between the impacts of the three strategies can be predominantly 
attributed to the different net ATP and ethanol yields for NADH re- 
oxidation via these pathways. Due to different ATP and carbon effi-
ciencies of these heterologous pathways, implementation of these redox 
engineering strategies in the stoichiometric model also led to higher 
predicted biomass yields on glucose and correspondingly lower specific 
rates of glucose consumption (Supplementary Tables 1 and 2). Thus, in 
contrast to strategies aimed at reducing the ATP stoichiometry of sugar 
fermentation, their industrial implementation should not be affected by 
a potentially limited capacity of sugar fermentation and/or transport or 
by a trade-off with revenues from surplus yeast biomass. As observed for 
the strategies aimed at engineering ATP coupling of sugar dissimilation, 
the impact of the redox-engineering strategies on ethanol yield declined 
with decreasing specific growth rate and, at the lowest simulated growth 
rate (0.001 h− 1), the predicted increase of ethanol yield on glucose was 
only approximately 1%. 

For several of the strategies, experimental studies (Table 1) yielded 
larger improvements of the ethanol yield than the maximum theoretical 

improvements shown in Table 2. In addition to differences in biomass 
composition and ethanol yields of reference S. cerevisiae strains, these 
differences may reflect unintended impacts of genetic modifications on 
cellular energy requirements. For example, high-level expression of 
heterologous proteins has been associated with increased cellular energy 
requirements [122,123] which, in anaerobic cultures, can contribute to 
higher ethanol yields. In addition, alteration of the expression of 
membrane proteins may potentially lead to increased ATP dissipation, 
for exampling by futile cycling of glucose through overexpressed Mal11 
and Hxt transporters. 

6. Discussion and outlook 

As outlined in this review, multiple pathway engineering strategies 
have been demonstrated to improve ethanol yields on sugars in anaer-
obic laboratory cultures of S. cerevisiae by altering the ratio of the for-
mation of ethanol, biomass and glycerol. However, observations made 
under controlled conditions in laboratory-scale media are not neces-
sarily representative for industrial processes. Even in anaerobic glucose- 
limited cultures of wild-type S. cerevisiae, ethanol yields on glucose 
approach the theoretical maximum of 2 mol ethanol/mol glucose at 
near-zero growth rates [22]. Consequently, predicted benefits of all 
investigated pathway engineering strategies strongly depend on specific 
growth rate (Table 2). In industrial batch processes, the impact of the 
described engineering strategies on ethanol yield is likely to be highest 
during the initial phase in which vigorous growth occurs. Conversely, 
during the final phases of a batch fermentation process, where growth 
has essentially ceased and high ethanol concentrations lead to an 
increased maintenance energy requirement, their impact may well be 
negligible. 

In addition to the inherent dynamics of industrial processes, devel-
opment of industrial strains should take into account trade-offs between 
ethanol yield and other performance indicators. In particular, an 
improved product yield should not go at the expense of productivity. 
With few exceptions, academic studies reported that S. cerevisiae strains 
which were successfully engineered for improved ethanol yield grew 
slower than their non-engineered parental strains (Table 1). The 
extensive synthetic biology toolbox for genetic modification of 
S. cerevisiae, including approaches such as multiplexed Cas9-mediated 
genome editing and in vivo assembly and chromosomal integration of 
synthetic DNA fragments [124,125], is therefore intensively used to 
explore options for maximizing ethanol yields by engineering its meta-
bolic network. In addition, pathway engineering in this yeast benefits 
from the availability of genome-scale metabolic models (for reviews see 
Refs. [126,127]), which allow for fast predictions of the impact of 

Table 2 
Maximum impact of different pathway engineering strategies for improving ethanol yields, estimated with a stoichiometric model of the core metabolic network of 
S. cerevisiae [117]. Assumptions on biomass composition, maintenance-energy requirements, as well as modifications to the model that were implemented to simulate 
each of the metabolic engineering strategies, are described in Supplementary Materials. For the strategies focused on NADH re-oxidation, glycerol production was set at 
zero and oxidation of surplus NADH from biosynthetic reactions was entirely routed through the engineered pathways.  

Specific growth rate 
(h− 1) 

Yethanol/hexose (mol/mol) 

Reference Altered ATP coupling of sugar dissimilation Alternative pathways for re-oxidation of 
NADH 

Wild type H+ symport/intracellular hydrolysis of sucrose (yields 
1.5 ATP/hexose) 

H+ symport of glucose (yields 1 
ATP/glucose) 

PFL/A- 
ALD 

PK/PTA/A- 
ALD 

PRK/ 
Rubisco 

0.3 1.51 1.63 (8.1%) 1.76 (16.2%) 1.64 
(8.7%) 

1.66 (9.7%) 1.69 
(11.9%) 

0.1 1.54 1.66 (7.5%) 1.77 (14.9%) 1.67 
(8.4%) 

1.69 (9.5%) 1.71 
(11.3%) 

0.03 1.62 1.72 (5.8%) 1.81 (11.6%) 1.74 
(7.4%) 

1.76 (8.5%) 1.78 (9.5%) 

0.01 1.75 1.81 (3.6%) 1.87 (7.2%) 1.84 
(5.2%) 

1.86 (6.1%) 1.86 (6.4%) 

0.001 1.95 1.97 (0.6%) 1.98 (1.2%) 1.97 
(1.0%) 

1.98 (1.2%) 1.98 (1.2%)  
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genetic interventions on distribution of fluxes in metabolic networks. A 
dedicated study on PRK/Rubisco based strains [77] illustrates that 
restoring the specific growth rate of engineered strains to wild-type 
levels may require substantial additional engineering. Alternatively, 
adaptive laboratory evolution and/or reverse engineering of evolved 
strains [128,129] can be used for this purpose. Another important 
trade-off concerns cellular robustness. Until engineering strategies are 
available that fully restore osmotolerance in glycerol-negative strains, 
strategies aimed at reducing glycerol production should not completely 
eliminate glycerol production [76]. In addition to targeted engineering 
strategies, robustness may be increased by using natural and industrial 
S. cerevisiae strains with a high innate tolerance to industrially relevant 
stress factors in strain improvement programmes [130,131]. 

Temperature, pH, pCO2, ethanol concentration and their dynamics in 
large-scale industrial processes may affect the impact of engineering 
strategies, thus requiring process-specific strain optimization. The eco-
nomic significance of small differences in ethanol yield, combined with 
the use of non-defined industrial media and dynamic industrial pro-
cesses, raises non-trivial challenges in setting up high-throughput 
cultivation and analysis systems that faithfully predict strain perfor-
mance in real-life applications. Although companies tend not to disclose 
the genetic make-up of industrial strains, the introduction of multiple 
‘high-ethanol-yield’ S. cerevisiae strains into USA-based ethanol plants 
[132–134] indicates that at least some of the strategies discussed in this 
review already contribute to profitability and sustainability of industrial 
ethanol production. Introduction into Brazil, the second-largest etha-
nol-producing economy, may involve additional challenges related to 
the use of non-aseptically operated, extended production campaigns. 
This mode of operation not only poses high demands on the genetic 
stability of engineered strains, for example to prevent recovery of 
glycerol production by strains with down-regulated GPD1 and/or GPD2 
expression, but also on their ability to compete with ‘wild’ strains 
entering the process [135]. 

Improving ethanol yield on fermentable sugars is by no means the 
only target of metabolic engineering studies related to yeast-based 
ethanol production. Other targets of intensive research include the 
reduction of processing costs by expression of polysaccharide hydrolases 
[136], extending substrate range to convert more fermentable substrates 
in crude industrial media [137,138], improving performance at high 
temperature to improve heat economy and cope with process tempera-
ture profiles [139], increasing yeast tolerance to process inhibitors and 
ethanol [139,140], improving osmotolerance of engineered strains with 
reduced glycerol formation [16,141] and simplification of nutritional 
requirements of industrial strains [142–145]. In addition, integration of 
corn-fiber from 1.5G processes [21] and reducing the need for antibi-
otics [139,146] are actively explored. Combination of these and other 
relevant traits with strategies for improving product yield, in S. cerevisiae 
and potentially also in other yeast species [130,147,148] will, in the 
coming years, continue to generate interesting challenges for academic 
and industrial research. 
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