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Abstract

Although a large number of case–control statistical and machine learning studies

have been conducted to investigate structural brain changes in schizophrenia, how

best to measure and characterize structural abnormalities for use in classification

algorithms remains an open question. In the current study, a convolutional 3D auto-

encoder specifically designed for discretized volumes was constructed and trained

with segmented brains from 477 healthy individuals. A cohort containing 158 first-

episode schizophrenia patients and 166 matched controls was fed into the trained

autoencoder to generate auto-encoded morphological patterns. A classifier discrimi-

nating schizophrenia patients from healthy controls was built using 80% of the sam-

ples in this cohort by automated machine learning and validated on the remaining

20% of the samples, and this classifier was further validated on another independent

cohort containing 77 first-episode schizophrenia patients and 58 matched controls

acquired at a different resolution. This specially designed autoencoder allowed a sat-

isfactory recovery of the input. With the same feature dimension, the classifier

trained with autoencoded features outperformed the classifier trained with conven-

tional morphological features by about 10% points, achieving 73.44% accuracy and

0.8 AUC on the internal validation set and 71.85% accuracy and 0.77 AUC on the

external validation set. The use of features automatically learned from the segmented

brain can better identify schizophrenia patients from healthy controls, but there is

still a need for further improvements to establish a clinical diagnostic marker. How-

ever, with a limited sample size, the method proposed in the current study shed

insight into the application of deep learning in psychiatric disorders.
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1 | INTRODUCTION

Since Johnstone et al. first reported significant increased ventricular

size in patients with long-term ill schizophrenia from CT images

(Johnstone et al., 1976), brain structural changes in schizophrenia

have been shown in a large number of imaging studies, which have

iteratively better characterized with the development of medical

imaging and image analysis techniques. A meta-analysis conducted by

Radua et al. reported gray matter volume decrements clustered in the

insula, operculum, the superior temporal gyrus, and the medial frontal

and anterior cingulate cortices in patients with first-episode psychosis

in 25 case–control voxel-based morphometry (VBM) studies (Radua

et al., 2012). Subsequently developed surface-based analysis, which is

more optimal for the analysis of highly curved gray matter structure

than VBM, showed reduced cortical thickness in the prefrontal, tem-

poral and parietal cortices in both long-term ill and first-episode

schizophrenia patients (van Erp et al., 2018; Sugihara et al., 2017;

Takayanagi et al., 2020; Yan et al., 2019).

In addition to gray matter volume and thickness, other morpho-

logical features such as gyrification (Schaer et al., 2008) and curvature

have also been implicated in schizophrenia by means of surface-based

morphometry. Compared to cortical thickness，these measures are

more influenced by genetic and embryonic developmental factors,

and are more reflective of neural connectivity established during brain

maturation (Mota & Herculano-Houzel, 2012). It has been reported

that Gyrification Index (GI) is altered in the bilateral insula, temporal

pole and left orbitofrontal cortex in patients with schizophrenia

(Spalthoff et al., 2018). However, findings of cortical gyrification in

first-episode schizophrenia remain uncertain and variable, as both

increased and decreased local GI was observed in regions of the fron-

tal cortex (Matsuda & Ohi, 2018).

Although informative, analyses using conventional univariate

group statistics ignore potential interaction among brain regions or

voxels. The combination of neuroimaging features and machine learn-

ing algorithms are capable of analyzing brain measures in a multivari-

ate way to detect patterns in brain morphology that are different

between patients and healthy controls. Most machine learning studies

in neuroimaging use classical features, such as cortical thickness, as

input to the algorithm. The using of predefined features makes classi-

fication models more readily interpretable by identifying brain regions

and features that contribute significantly to classification. However, a

recent multicenter machine learning study in schizophrenia found

that, although having better classification performance than other

type of features, utilizing regional cortical thickness as an input to the

classifier could only achieve 55%–70% classification accuracy

(Winterburn et al., 2019).

Although previous studies demonstrated that neuroanatomical

alterations in neuropsychiatric disorders tend to be subtle and widely

distributed spatially (Ellison-Wright et al., 2008), it remains an open

question how best to measure and describe the structural abnormali-

ties as the cerebral cortex of the human brain has a complex morpho-

logical structure that consists of both folded and smooth surfaces. We

thus hypothesize that there may be a specific “pattern” in the brain of

schizophrenic patients at the higher level, which may not been fully

represented by the analysis of single or even multiple morphological

measures widely used in analyses. Therefore, a high-level representa-

tion may be needed to abstractly characterize brain morphology in

order to achieve improved classification precision.

In the current study, we developed a deep convolutional autoen-

coder (CAE) network to encode the volume of segmented brain and in

order to reconstruct the volume as closely as possible to the input.

The encoded latent vector is treated as the “morphological finger-

print” and fed into a machine learning algorithm to build a schizophre-

nia discrimination model. Finally, the performance of the

discrimination model built on morphological fingerprint was compared

with the model built on conventional brain morphological features in

terms of accuracy, sensitivity, specificity, and area under the ROC

curve (AUC).

2 | METHOD

2.1 | Datasets

The study was approved by the ethics committee of West China Hos-

pital and written informed consent was obtained from all participants.

The study included three datasets (Table 1). Dataset 1, which contains

477 healthy volunteers, was used for training of the CAE. Dataset

2, which contains 158 first-episode schizophrenia patients and

166 demographically matched healthy controls, was used for training

the classification model and internal validation. Dataset 3, which con-

tains an independent cohort of 77 first-episode schizophrenia patients

and 58 matched healthy controls, was treated as an independent vali-

dation set. Illness duration of all patients was less than 2 years, with

illness onset evaluated by the Nottingham Onset Schedule using the

information provided by patients, family members, and other sources

when available. Healthy controls in Dataset 1 used for CAE develop-

ment did not overlap with healthy individuals of Dataset 2 or

3 (Table 1).

Diagnoses of schizophrenia were determined using the Struc-

tured Interview for the DSM-IV (SCID-P). Severity of psychopathol-

ogy was evaluated using the Positive and Negative Syndrome Scale

(PANSS). Psychiatric evaluations and MR scans were performed prior

to any medication treatment.

Healthy controls were recruited by poster advertisement, and did

not differ significantly from the corresponding schizophrenia group on

age, sex, and years of education. All controls were screened using the

SCID-NP to confirm the lifetime absence of psychiatric illnesses. Con-

trol subjects reported no known history of psychiatric illness in first-

degree relatives. The following exclusion criteria applied to all of the

above groups: any neurological disorder, lifetime drug or alcohol

abuse or dependency, pregnancy, or significant systemic illness such

as hepatitis or cardiovascular disease. Brain MR images were

inspected by an experienced neuroradiologist to check image quality

and exclude patients with visible cerebral abnormalities of neuroradio-

logical significance.
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2.2 | Image acquisition

194 subjects of Dataset 1 were scanned on a GE EXCITE 3 T MRI

scanner (Milwaukee, USA). High-resolution T1 weighted volumes

were obtained using a spoiled gradient recall (SPGR) sequence

(TR = 8.53 ms, TE = 3.4 ms, TI = 400 ms, Flip angle = 12�,

resolution = 1 mm isotropic) and an 8-channel phase-array head coil.

The other 283 subjects of Dataset 1 were scanned on a Siemens Tim

Trio 3 T MRI scanner (Erlangen, German). High-resolution T1

weighted (T1w) volumes were obtained using a MPRAGE sequence

(TR = 1900 ms, TE =2.26 ms, TI = 900 ms, Flip angle =9�,

resolution = 1 mm isotropic) and a 12-channel phase-array head coil.

Subjects in Dataset 2 were scanned on the same GE EXCITE 3 T

MRI scanner with identical imaging parameters as individuals scanned

with this scanner in Dataset 1.

Subjects in Dataset 3 were scanned on the same Siemens Tim

Trio 3 T MRI scanner as individuals in Dataset 1, but using a different

coil (32-channel phase array coil) and imaging parameters (MPRAGE,

TR = 2400 ms, TE = 2.01 ms, TI = 1000 ms, Flip angle =8�,

resolution = 0.8 mm isotropic).

2.3 | Image preprocessing and segmentation

All T1w volumes were spatially normalized through iterative rigid reg-

istration. Initially, all the T1 volumes were rigid registered to the

MNI152 template using flirt tool provided in the fsl package

(Jenkinson et al., 2012). Then all the registered T1w volumes were

averaged to form an initial study specific template. In the next itera-

tion, all the original T1w volumes registered to the newly generated

study specific template and then averaged again to form a new study

specific template. The iteration stopped when the study-specific tem-

plate generated in the current iteration had not changed compared to

the one generated in the previous iteration.

All the registered T1w volumes from the last iteration were further

processed with Freesurfer's recon-all processing pipeline with the

Desikan-Killiany-Tourville (DKT) atlas to generate the segmented brains

(Fischl, 2012). The DKT atlas defined 68 cortical regions (34 per hemi-

sphere) and 14 subcortical structures (seven per hemisphere). The qual-

ity of segmentation was visual inspected by overlaying the segmented

brain on the T1 weighted image (Figure S1). The brain surface was

reconstructed from a segmented brain and the following measures

were computed: 1) Volume of 14 subcortical regions normalized by the

participant's total cerebral volume (14 features); 2) mean cortical thick-

ness, mean curvature, gauss curvature, cortical folding index and corti-

cal curvature index from 68 cortical regions (68*5 = 340 features). The

quality of labeled surface mesh and parametric surface mesh generated

by Freesurfer (FS) were visual inspected to avoid topological defeat and

apparent calculation error (Figure S2). A total of 354 (340 + 14) shape-

related features that represent cerebral morphometry were extracted

from each T1w volume for classical machine learning.

Next, all cortical regions and subcortical structures were merged

into one label respectively, making the segmented brain contains onlyT
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five components: background, cortical gray matter, white matter,

cerebrospinal fluid, and subcortical gray matter. The label-merged vol-

umes were used as input for the autoencoder.

2.4 | The architecture of convolutional
autoencoder and network training

The architecture of the CAE is illustrated in Figure 1. Briefly, the encoder

contained four 3D convolutional layers and one fully connection layer.

The number of channels linearly increases from 64 to 512. The pooling

layer was replaced by setting the stride in the convolutional layer to two

to avoid loss of information (Du et al., 2019). The decoder contains one

fully connection layer, which restores the latent vector to volume, and

four transposed convolution layers with linearly reduced channels to

upsample volume to the size of the input. The length of the latent vector

was initially set to 354 to match the length of feature vector obtained

from the FS pipeline. The effect of the length of the latent vector on the

classification performance was also evaluated by setting the length to

708, 177, 88, 44, and 22 (double, 1/2, 1/4, 1/8 and 1/16 of 354).

Instead of using the traditional MSE loss when training the pro-

posed CAE, we used the same strategy as used for training deep neu-

ral networks for image segmentation purposes (Ma et al., 2021). After

the last transpose convolution, a volume of five channels with the

same size as the original input was generated and normalized using

the softmax function. The voxel values in each channel represent their

probability of belonging to the five components. The five-channel

probability volume was then fed into a specially designed loss function

Lð Þ, which is a hybrid of focal loss LFocalð Þ and Hausdorff distance

(HD) loss LHDð Þ.

L¼LFocalþLHD

LFocal ptð Þ¼� 1�ptð Þ2 log ptð Þ

pt ¼ p, if y¼ class label
1�p, otherwise

�

LHD ¼ 1
jΩ j

X
Ω

S�Gð Þ2 ∘ G2
DTMþS2DTM

� �h i

Where pϵ 0, 1½ � is the model's estimated probability for the class with y

equal to the predefined label. Ω denotes the grid on which the image

is defined, which means that max is with respect to all pixels. GDTM

and SDTM denote the distance transform maps of ground truth

G (Figure 2c) and predicted segmentation S, respectively. The ∘ sign

denotes the Hadamard (i.e. voxel-wise) product. Minimizing this

hybrid loss function maximizes the recovery of the boundaries of each

tissue (Figure 2d).

This CAE was trained for 500 epochs and each data batch

included 32 resized label-merged volumes for parameter optimization

via Adam (Adaptive Moment estimation)-based iteration (Kingma &

Ba, 2014). More detail about the design of the network is provided in

Supplement eMethod. Our implementation of the proposed CAE and

hybrid loss training in PyTorch is available at https://github.com/MAI-

Lab-West-China-Hospital/Convolutional-autoencoder-for-labeled-

volume

2.5 | Training and evaluation the classification
model via automated machine learning

Stratified hold-out partitioning was performed on Dataset 2 with ratio

of 4:1 to generate training and test sets, and the ratio of patients to

controls in both training and test sets was similar to that of the entire

dataset.

An automated machine learning (AutoML) pipeline implemented

in the open source package PyCaret was used to build classification

models with feature vectors from both freesurfer (FS) and CAE. This

pipeline first performs an exhaustive search in the pool of all available

classification algorithms with default hyperparameters. The best pos-

sible classification algorithm was determined through nested 10-fold

cross-validation. The selected classifier was further fine-tuned using

different hyperparameter combinations inside a grid search cross-vali-

dation. The hyperparameter configuration producing the best classifi-

cation performance was chosen, and then the model was fit to the

entire training set to build the final model. The final model was tested

on both the internal (Dataset 2) and external test set (Dataset 3). The

entire workflow is presented in Figure 3. Evaluation of classification

accuracy, specificity, sensitivity and AUC, were used to evaluate clas-

sifier performance.

F IGURE 1 The architecture of the proposed 3D convolutional autoencoder.
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3 | RESULTS

3.1 | The quality of decoded volume from CAE

As the type of output volumes and loss functions of our proposed

CAE are similar to those of semantic segmentation in deep neural

networks, the DICE coefficient, which is commonly used in assess-

ment the quality of image segmentation, was used to evaluate the

quality of the volumes recovered from the CAE. Since the back-

ground component has the largest percentage, the background

component unsurprisingly achieved the highest DICE score in

dataset 2 and 3. Within the cerebrum, the DICE scores for each

component were subcortical nuclei, white matter, cerebrospinal

fluid, and gray matter in descending order (Table 2). Visually, the

subcortical nuclei and cerebrospinal fluid obtained relatively good

recovery due to their simpler shapes. The boundaries between the

white matter and gray matter were also well recovered. However,

some boundaries of the pial surface lost certain details after

decoding, but the gross shape of the sulcus and fundus were still

well preserved.

There is an approximate exponential relationship between the

length of latent vector and DICE score. When the length was set to

177, the DICE score of each component is almost at a plateau

(Figure 4).

F IGURE 2 A representative case demonstrating the input and output of proposed CAE: Skull removed T1w volume (a); tissue segmentation
of a (b); distance transform of b (c); CAE recovered b (d).

F IGURE 3 The workflow of training and evaluation the classification model via automated machine learning.
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3.2 | Machine learning with classical features from
Freesurfer

The AutoML pipeline identified the gradient boosting classifier (GBC)

as the best model algorithm for the training dataset. After fine-tuning,

an average accuracy of 62.61% ± 8.20% was achieved in 10-fold

cross-validation. The hyperparameters were then fixed and a final

model was trained on the entire training dataset. The final model

achieved an accuracy of 64.06% (95%CI: 51.10%–75.68%), specificity

of 60.61%, sensitivity of 67.74% and AUC of 0.68 on the internal test

dataset and an accuracy of 60.00% (95%CI: 51.22%–68.33%), speci-

ficity of 52.31%, sensitivity of 67.14% and AUC of 0.63 on the exter-

nal test dataset.

The top 10 features significant contributed to the classification

are listed in Table 3 (also plotted in Figure 6a).

3.3 | Machine learning with morphological
fingerprint from CAE

The AutoML pipeline popped up extraTrees (Geurts et al., 2006) as

the best model algorithm for the training dataset. After fine-tuning, an

average accuracy of 72.10% ± 9.10% was achieved in 10-fold cross-

validation. The hyperparameters were then fixed and a final model

was trained on the entire training dataset.

The final model achieved an accuracy of 73.44% (95%CI:

60.91%–83.70%), specificity of 63.64%, sensitivity of 83.87% and

AUC of 0.80 on the internal test dataset and an accuracy of 71.85%

(95%CI: 63.47%–79.25%), specificity of 63.08%, sensitivity of 80.00%

and AUC of 0.77 on the external test dataset. The ROC curve compar-

ison of two classifier on both internal and external test dataset is pre-

sented in Figure 5.

TABLE 2 The Dice coefficient of five decoded component in dataset 2 and 3.

Dataset (length of latent vector)

Dice coefficient

Background CSF White matter Subcortical regions Gray matter

2 (length z = 22) 0.97 ± 0.0032 0.82 ± 0.040 0.82 ± 0.020 0.89 ± 0.0105 0.75 ± 0.021

2 (length z = 44) 0.98 ± 0.0027 0.83 ± 0.037 0.83 ± 0.019 0.89 ± 0.0095 0.75 ± 0.020

2 (length z = 88) 0.98 ± 0.0029 0.84 ± 0.036 0.85 ± 0.013 0.90 ± 0.0095 0.77 ± 0.018

2 (length z = 177) 0.98 ± 0.0025 0.88 ± 0.031 0.91 ± 0.013 0.92 ± 0.0091 0.83 ± 0.017

2 (length z = 354) 0.98 ± 0.0024 0.89 ± 0.026 0.91 ± 0.012 0.93 ± 0.0082 0.84 ± 0.016

2 (length z = 708) 0.98 ± 0.0024 0.89 ± 0.026 0.91 ± 0.012 0.93 ± 0.0083 0.84 ± 0.016

3 (length z = 22) 0.98 ± 0.0027 0.79 ± 0.039 0.81 ± 0.0090 0.88 ± 0.0064 0.73 ± 0.012

3 (length z = 44) 0.98 ± 0.0027 0.80 ± 0.037 0.82 ± 0.0083 0.89 ± 0.0061 0.74 ± 0.011

3 (length z = 88) 0.98 ± 0.0023 0.81 ± 0.035 0.84 ± 0.0081 0.89 ± 0.0060 0.75 ± 0.010

3 (length z = 177) 0.98 ± 0.0023 0.87 ± 0.034 0.91 ± 0.0080 0.92 ± 0.0058 0.83 ± 0.010

3 (length z = 354) 0.98 ± 0.0022 0.88 ± 0.029 0.91 ± 0.0081 0.93 ± 0.0061 0.84 ± 0.0096

3 (length z = 708) 0.99 ± 0.0021 0.88 ± 0.028 0.91 ± 0.0072 0.93 ± 0.0056 0.84 ± 0.0093

F IGURE 4 The Dice coefficient of images recovered from different lengths of latent vector on dataset 2 (a) and dataset 3 (b).
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Although the features from CAE cannot directly correspond to

the anatomical structure, we still can still infer the correspondence

between CAE features and neuroanatomy from the decoded volume.

We set the first 10 features that contribute significantly to the classi-

fication in the feature vector of length 354 to 0, fed them into the

decoder to get the recovered images, subtracted them from the

images recovered from the untouched features in order to get the dif-

ference images, and then superimposed the difference images onto

the brain surface (Figure 6b and the workflow is illustrated in

Figure S3). Differential areas (different between groups) were found

throughout the brain, but with a tendency to concentrate in orbito-

frontal cortex and temporal lobe.

3.4 | Effect of fingerprint length on discriminative
performance

When doubling the length of latent vector to 708, extraTrees was the

best classification algorithm. An average accuracy of 69.98% ± 9.39%

were achieved in training phase, and an accuracy of 75.00% (95%CI:

62.60%–84.98%), specificity of 69.70%, sensitivity of 80.65% and

AUC of 0.80 on the internal test dataset and an accuracy of 68.15%

(95%CI: 59.58%–75.90%), specificity of 66.15%, sensitivity of 70.00%

and AUC of 0.74 on the external test dataset.

When halving the length of latent vector to 177, extraTrees

was still the best classification algorithm. An average accuracy of

70.53% ± 8.04% were achieved in training phase, and an accuracy

of 71.88% (95%CI: 59.24%–82.40%), specificity of 69.70%, sensi-

tivity of 74.19% and AUC of 0.80 on the internal test dataset and

an accuracy of 68.89% (95%CI: 60.36%–76.57%), specificity of

67.69%, sensitivity of 70.00% and AUC of 0.72 on the external test

dataset.

The performance of classifiers trained on shorter feature vec-

tors are summarized in Table 4 and Figure 5. A positive correlation

can be observed between length of feature vector and the perfor-

mance of classifier trained on it, especially when the length is

below 177.

4 | DISCUSSION

Deep learning is very good at discovering complex patterns of fea-

tures in data, and has made great progress in the field of image recog-

nition, with 90.88% accuracy already achieved on ImageNet (Deng

et al., 2009). Features used are distinct from expert-designed features,

as they are learned automatically from the data. Such characteristics

make deep learning very promising for image-based diagnosis in men-

tal disorders, as changes in the brains of patients with mental disor-

ders tend to be modest, widely distributed and to have a complex

correlational structure. In the current study, we utilized a novel CAE

based method for brain morphological feature extraction. The volume

of segmented brain was compressed by the CAE to approximately

0.03% of original size to form the morphological fingerprint. As corti-

cal thickness, volume and gyrification index are all derived from the

segmented brain, the morphological fingerprint covers all these fea-

tures implicitly. With the same feature dimension, the classifier

trained with the features extracted by this method outperformed the

classifier trained with traditional features by about 10 percentage

points in discriminating first-episode schizophrenia patients from

healthy controls.

Although promising, applications of autoencoder approaches to

neuroimaging data obtained from patients with psychiatric disorders

are still rare (Chen et al., 2020). Pinaya et al. used a deep autoenco-

ders approach to identify abnormal brain structural patterns in neuro-

psychiatric disorders. However, they used classical features, such as

cortical thickness, as the input of autoencoder, which does not fully

exploit the ability of deep learning to learn features automatically

from images (Pinaya et al., 2019). Vyškovský et al. applied a stacked

autoencoder classifier to a group of voxels selected by group-wise

statistics to discriminate schizophrenic patients from normal controls

(Vyškovský et al., 2022). The use of univariate feature selection

ignores the spatial relationships between voxels and also does not

take full advantage of the representation learning capabilities of deep

learning. Yamaguchi et al. used the image as an input to the autoenco-

der, however, only gray matter was considered. In addition, the input

images, which were preprocessed with smoothing, lost most of the

TABLE 3 The top 10 features
significant contributed to the
classification from the optimal model
build on FS features.

Hemisphere Region Measure Relative importance score

Left Inferior temporal cortex Curvature index 6.49778

Left Pars opercularis cortex Gauss curvature 6.07964

Left Caudal anterior cingulate cortex Curvature index 4.36896

Left Superior temporal cortex Gauss curvature 4.29484

Right Entorhinal cortex Thickness 4.22146

Right Frontal pole cortex Curvature index 3.85126

Right Pars opercularis cortex Curvature index 3.64841

Left Inferior parietal cortex Folding index 3.63153

Right Fusiform cortex Curvature index 3.48298

Right Caudal middle frontal cortex Folding index 3.47759
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key morphological information, such as local curvature and folding

index (Yamaguchi et al., 2021).

In contrast, five main components were simultaneously involved

in our current study. Even so, the amount of foreground and back-

ground voxels is still highly unbalanced, especially for subcortical

nuclei and cerebrospinal fluid. The focal loss, which lessens the contri-

bution of background voxels and highlights foreground voxels, was

employed as the base loss function to prevent the loss function from

being dominating by enormous background voxels during training (Lin

et al., 2020). In addition, it is of utmost importance for our purposes

to accurately recover the boundaries of each tissue type. In conven-

tional U-net network, skip connections was used in the encoder-

decoder architecture to preserve fine-grained details in the prediction.

However, in our task, the use of skip connection results in a lack of

detail in the encoded feature vector. In order to encode all the infor-

mation into the feature vector while preserving as much detail as pos-

sible, we discarded the skip connection and added the HD loss item

to the loss function. HD loss used the distance map to generate a gra-

dient to make the boundary stops at the interface of two tissue

(Karimi & Salcudean, 2020).

It is worth noting that even when we employed the AutoML to

seek the optimal classification algorithm and hyperparameters, but

accuracies achieved, whether based on FS features or CAE features,

are lower than most previous classification studies. Clinical heteroge-

neity in disease stage (ours were early course patients) or medication

(our samples were medication naïve) may be an influencing factor.

Most previous studies recruited later course patients and treated

patients, both of which features have been associated with increased

case–control differences. In particular, while there may be widely dis-

tributed accelerated aging effects in long term ill individuals (Zhang

et al., 2015), antipsychotic effects may lead to focal change such as in

striatum that may be used to increase case–control differentiation (Li

et al., 2018).

In addition, some prior studies had the problem called “double
dipping” due to incorrect use of feature selection (Arbabshirani

et al., 2017; Ball et al., 2020). Since in most prospective neuroimag-

ing studies, the sample size of patients is often less than the number

of features. Thus, feature selection allows a more specific focus on

the relevant features and helps to improve the accuracy of the clas-

sification. Caution should be taken that feature selection can only

be performed on the training set, otherwise information leakage

would happen. However, some studies performed feature selection

before training/test data split, making information from the test

data leak into the model training process, which violates the need

for complete data separation between model training and test data

sets. Using error in analysis can lead to an overestimation of classifi-

cation performance by about 15%–30%, depending on the number

of involved study participants and features (Ball et al., 2020). Double

dipping can be easily avoided by skipping feature selection. In cur-

rent study, the best models that best fit the data are all tree-based

ensemble models, which have built-in feature selection capabilities

(Guan et al., 2014), making an external feature selection step not

necessary.T
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External validation is crucial before deploying predictive/

classification models in clinical practice (Kelly et al., 2019). However,

the results of previous studies were mostly from the same cohort, or

even just from cross-validation without setting up separate validation

datasets, which rendered findings vulnerable to the risk of overfitting

(Arbabshirani et al., 2017). In the current study, we utilized both inter-

nal and external validation sets. The external validation set differed

from the training data in terms of population, imaging device and

acquisition parameters, providing a relatively conservative approach

to external validation. The performance on the external validation set

is slightly lower than that on the internal validation set, whether based

on FS features or CAE features. Since differences in imaging resolu-

tion have been standardized in the process of spatial normalization

and structural images are relatively insensitive to differences in

imaging equipment, possible explanations may be the heterogeneity

of the patient population and patient sample characteristics.

Another noteworthy point is that most previous classification

studies have incorporated only features such as cortical thickness

and surface area, whereas our study found that the shape of the

local cortex may be a more valuable discriminatory feature. Previous

studies have also raised concern that the results of VBM studies

may have misidentified differences in local cortical shape as changes

in gray matter volume (Davatzikos, 2004). As cortical thickness is

susceptible to age and antipsychotic drugs, there may be important

advantages to examining brain shape relative to local volume fea-

tures in studies of mental disorders. In this regard, the current study

also provides a novel and flexible approach for brain shape

representation.

F IGURE 5 ROC curve of models built on autoencoded features (indicated by CAE) and traditional anatomical features (indicated by FS) on
internal (a) and external (b) validation dataset; ROC curve of autoencoded features based models with different feature lengths on internal (c) and
external (d) validation dataset.

F IGURE 6 Significant brain regions contribution to classification derived from traditional anatomical features based model (a) and
autoencoded features based model (b). The colored regions in subplot a indicate that at least one morphological metric in this region contributes
significantly to the classification. The highlight areas in subplot b are the significant regions derived from autoencoded features based model,
which is widespread throughout the brain, but with a tendency to concentrate in orbitofrontal cortex and temporal lobe.

SUN ET AL. 787



There are several limitations to this study. All subjects involved in

current study were assigned to a binary case–control label. This

dichotomous classification may limits the practical application of the

model in the clinical practice, as spectrum concept was introduced in

DSM-5 (Tandon et al., 2013). Further, comparing individuals with

other psychiatric disorders, such as bipolar disorder, is needed to eval-

uate the validity and generalization of the proposed methodology to

address clinically important diagnostic questions. During the assess-

ment of feature length on classification performance, an expected lin-

ear relationship was not observed between feature length and

performance, therefore a systematic evaluation of the relationship

among length of encoded features, the quality of recovered image

and classification performance is needed.

5 | CONCLUSION

In summary, the current study used features automatically learned from

brain tissue segmentation maps from MRI images to discriminate

schizophrenia patients and healthy controls. The discriminative accu-

racy was improved over that achieved using conventional cortical fea-

tures on the same dataset and with the same feature dimension, but

still were at a level below that needed for clinical application as diag-

nostic markers. However, our analyses provide evidence that efforts to

identify valid markers for case–control differentiation may benefit from

our encoding based approach which provided superior performance.
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