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SUMMARY

Obesity is a pandemic afflicting more than 300 million people worldwide, driven
by consumption of calorically dense and highly rewarding foods. Dopamine (DA)
signaling has been implicated in neural responses to highly palatable nutrients,
but the exact mechanisms through which DA modulates homeostatic feeding cir-
cuits remains unknown. A subpopulation of arcuate (ARC) agouti-related peptide
(AgRP)/neuropeptide Y (NPY) (ARCASRP/NPY+) eurons express the D(1A) dopa-
mine receptor (Drd1) and are stimulated by DA, suggesting one potential avenue
for dopaminergic regulation of food intake. Using patch clamp electrophysiology,
we evaluated the responses of ARC Drd1-expressing (ARCP"¥"*) neurons to over-
night fasting and leptin. Collectively, ARC®®'* neurons were less responsive to
caloric deficit than ARCA9RP/NPY+ haurons; however, ARCP™®* neurons were in-
hibited by the satiety hormone leptin. Using Channelrhodopsin-2-Assisted Circuit
Mapping, we identified novel subgroups of ARCP"'* neurons that inhibit or
excite ARCARP/NPY* naurons. These findings suggest dopamine receptive neu-
rons have multimodal actions in food intake circuits.

INTRODUCTION

Throughout the world, human diets are increasingly composed of high calorie food, a development that
represents a major factor contributing to the obesity pandemic (Kearney, 2010; Statovci et al., 2017). Over-
eating is the primary driver of obesity, and consumption of fat and sugar activates the brain’s innate reward
systems (Berridge et al., 2010; Verdejo-Roman et al., 2017). Obese individuals suffer from a plethora of co-
morbid conditions including type 2 diabetes, cardiovascular disease, cancer, and metabolic syndrome (En-
gin, 2017; Powell-Wiley et al., 2021; Scully et al., 2020; Bhaskaran et al., 2014), and these conditions signif-
icantly reduce lifespan and create an enormous burden on healthcare systems (Cawley and Meyerhoefer,
2012). Except for invasive bariatric surgery, current treatments for obesity such as altered diet are inade-
quate for controlling patient weight, particularly over protracted periods of time (Mann et al., 2007). Eluci-
dation of how reward systems impinge on energy balance circuits is necessary to develop better treatment
strategies in the fight against this public health crisis.

Within the CNS, the arcuate nucleus of the hypothalamus (ARC) is an essential integrator of peripheral
signals that reflect metabolic states (Cone et al., 2001; Dietrich and Horvath, 2013; Sternson et al., 2013).
Landmark experiments demonstrated that activation of ARC agouti-related peptide (AgRP) neurons,
which co-express Neuropeptide Y (NPY) (hereinafter referred to as ARCAIRP/NPY+ o rons), is sufficient
to invoke voracious feeding, even in sated animals (Aponte et al.,, 2011; Krashes et al.,, 2011; Atasoy
et al., 2012; Betley et al., 2013). ARCAIRP/NPY+ o irons are modulated by hormones and neurotransmit-
ters secreted during states of caloric deficit and surplus (Cone et al., 20071; Aponte et al., 2011; Garfield
et al., 2016). For instance, ARCASRF/NPY* neyrons increase their firing in response to orexigenic peptides
including ghrelin, orexin, neuromedin B, or gastric releasing hormone (GRH) (Hewson et al., 2002; van
den Pol et al.,, 2009; Kohno and Yada, 2012; Mandelblat-Cerf et al., 2015; Cowley et al., 2003; Chen
et al., 2017). Conversely, ARCASRF/NPY* nayron firing is decreased in response to peptide YY, insulin,
or leptin (Xu et al., 2005; Takahashi and Cone, 2005; Yang et al., 2010; Bouret et al., 2012; Baver
et al., 2014; Jones et al., 2019). ARCAIRP/NPY* neirons release gamma-aminobutyric acid (GABA),
AgRP, and NPY onto their downstream targets, and these inhibitory outputs drive different aspects of
feeding behaviors (Krashes et al., 2013; Atasoy et al., 2012; Betley et al., 2013). Today, ARCAIRP/NPY+ o
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Figure 1. Overnight fasting increases spontaneous firing in ARCA9RP/NPY* hayrons but not ARCP™'* neurons

(A) Representative fluorescence images of ARCP™' (TdTom, red) and ARCAIRF/NPY* (GFP, green) neurons. Scale bar 150 um.

(B) Diagram of overnight fasting experimental setup.

(C) Spontaneous firing rates of ARCP™™ neurons (n = 24 neurons from fed animals and n = 30 neurons from fasted animals) and ARCA9R"NPY* heurons (n = 20
neurons from fed animals and 17 neurons from fasted animals). For all groups: (*p < 0.05, **p < 0.01, ***p < 0.001 as determined by two-way ANOVA with
Bonferroni post hoc comparison, Fgenotype (1, 87) = 7.12, p = 0.009; Ftasting (1, 87) = 9.73, p = 0.003). Data are represented as mean + SEM.

(D) Inter spike interval membrane potentials of ARCP™'™* (n = 24 neurons from fed animals and n = 30 neurons from fasted animals) and ARCAIRP/NPY+ (n = 20
neurons from fed animals and 17 neurons from fasted animals). For all groups: (*p < 0.05, **p < 0.01, ***p < 0.001 as determined by two-way ANOVA with
Bonferroni post hoc comparison, Fgenotype (1, 87) = 0.104, p = 0.7482; Facting (1, 87) = 0.830, p = 0.3647).

(E) Firing thresholds of ARCP™'™* (n = 20 neurons from fed animals and 22 neurons from fasted animals) and ARCA9RP/NPY* (n — 16 neurons from fed animals
and n = 13 neurons from fasted animals). For all groups: (*p < 0.05, **p < 0.01, ***p < 0.001 as determined by two-way ANOVA with Bonferroni post hoc
comparison, Fgenotype (1, 68) = 0.396 p = 0.531; Fragting (1, 68) = 2.42 p = 0.124).

(F) Representative traces of whole cell current clamp recordings of spontaneous firing. Vertical scale bars, 20 mV. Horizontal scale bars, 200 ms.

the discrete molecular mechanisms governing their activity remains incomplete (Claret et al., 2007; Gar-
field et al., 2016; Alhadeff et al., 2019; Goldstein et al., 2021).

Current models of food intake circuity lack explanations for how information about the rewarding proper-
ties of food is integrated with homeostatic systems, and researchers have hypothesized that dopamine
(DA) may be a key player in hedonic regulation of appetite during the consumption of rewarding and highly
palatable foods (Wise, 2006; Palmiter, 2007; Alhadeff et al., 2019; Mazzone et al., 2020). Staining for DA re-
ceptors has revealed dopamine one receptor (Drd1) immunoreactivity in the ARC, peri-ARC, and median
eminence (ME) (Romero-Fernandez et al., 2014). However, characterization of ARC neuron subtypes has
proven challenging (Vong et al., 2011; Krashes et al., 2011; Campbell et al., 2017), and it is unknown which
neuronal populations express Drd1 in this region. Recent studies have demonstrated that DA modulates
the activity of ARC neurons (Zhang and van den Pol, 2016; Alhadeff et al., 2019), including AgRP neurons
that express Drd1 (Zhang and van den Pol, 2016). These results implicate DA signaling as one mechanism
through which information about the rewarding properties of drugs and palatable foods integrate into ho-
meostatic circuits.

Using patch clamp electrophysiology, we compared the membrane properties of Drd1-expressing neurons
(ARCP™@'*) and ARCAIRP/NPY* naurons. ARCP™ neurons exhibited significant inhibitory responses to lep-
tin, although these responses were less drastic than those observed in ARCASRP/NPY*
ARCP™* neuronal membrane properties were not significantly affected by overnight fasting. To gain bet-
ter insight into the role of ARCP™'* neurons in ARC circuitry, we used Channelrhodopsin-2-Assisted Circuit
Mapping (CRACM) to identify novel connections from ARCP™™* neurons to other ARC neurons and char-
acterized these inputs. We established that the ARCP™'* neuron population is heterogeneous and in-
CPrdTHAIRP/NPY) | ltimately, we un-

neurons. These findings

neurons. Surprisingly,

cludes a subpopulation of neurons that co-express AGRP and NPY (AR
covered subgroups of ARCP™'* neurons that either inhibit or excite AR
reveal a complex circuitry where ARCP™'* neurons can differentially modulate a key population of orexi-

CAGRP/NPY+

genic neurons and further our understanding of DA's role in the regulation of appetite.

RESULTS

Overnight fasting increases spontaneous firing in AR
neurons

cAgRP/NPY+ CDrd1+

neurons but not AR

wDrd1 expression has been documented in ARC, including in ARCAIRP/NPY+ aurons (Romero-Fernandez
et al,, 2014; Zhang and van den Pol, 2016). However, neurophysiological characteristics of the ARCP™'™*
neurons have not been established. Therefore, we determined the electrophysiological properties of
ARCP™'* neurons in comparison to ARCAIRP/NPY* neyrons. To visualize Drd1 expressing neurons in
the ARC (ARCP™'"), we crossed Drd1'™'®Re2 (Drd1-Cre) mice (Heusner et al., 2008) with Gt(ROSA)
265ormHCAGdTomatolHze  (Aj14  or  TdTomato) mice (Madisen et al, 2010), generating
Drd1°®*:tdTomato'¥* double transgenic animals, which express TdTomato when Cre recombinase is
expressed from the Drd1a locus. In the hypothalamus, we observed tdTomato expression in the ARC,
ME, and ventromedial hypothalamus (VMH) (Figures 1A and S1). To visualize ARCAIRP/NPY+ 1o Urons,
we used Tg(Npy-hrGFP)1Lowl! (NPY-GFP) mice (van den Pol et al., 2009), which express GFP under the
control of the Npy promoter, labeling NPY neurons in the ARC and other brain regions (Figures 1A
and S1). 59.3% + 3.2% of ARCAIRP/NPY+ neurons co-expressed Drd1-TdTom, whereas 52.2% + 2.9%
of ARCP™'™ neurons co-expressed NPY-GFP (from Drd1®*;tdTomato'"*;NPY-GFPSF™*: triple
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transgenic mice, n = 3 animals, four sections per animal) (Figure S1). To establish the baseline electrical
behavior of these two neuronal populations, we performed whole cell current clamp and recorded spon-
taneous firing in fluorescently labeled ARCP™'* and ARCAIRP/NPY* neyrons from animals provided ad li-
bitum access to standard chow (henceforth fed ARCP™®'™ neurons, and fed ARCASRP/NPY* neurons,
respectively) (Figures 1A-1D). To further assess membrane excitability, a subset of recorded neurons
was injected with progressively increasing steps of square current (Figure 1E). Fed ARCP™'™ and
ARCAIRPNPY™ hairons did not have significant differences in spontaneous firing rates (ARCP™'™:
0.60 + 0.15 Hz; ARCAIRP/NPY+. 84 + 0.26 Hz; unpaired two-tailed Student's t-test t = 0.846, df = 42,
p = 0.403), inter spike interval membrane potentials (ISI-MPs) (ARCP™@™. _4890 + 220 mV:
ARCASRP/NPY*. 44 54 + 1.33 mV; unpaired two-tailed Student’s t-test t = 0.720, df = 43, p = 0.476),
and firing thresholds (ARCP™'*: —32.62 + 0.77 mV; ARCASRP/NPY*. _3281 + 0.75 mV; unpaired two-
tailed Student'’s t-test t = 0.173, df = 34, p = 0.864).

ARCAIRP/NPY* haurons become excited during states of caloric deficiency (Takahashi and Cone, 2005; Liu et al.,
2012; Wei et al., 2015; Laing et al., 2018), and we hypothesized this phenomenon might also be observable in
ARCP™™* neurons in fasted mice. Therefore, to determine if the electrophysiological properties of ARCP™'* neu-
rons are impacted by negative energy balance, we fasted Drd1®*;tdTomato'¥* and NPY-GFP mice overnight
and performed whole cell current clamp recordings in fluorescently labeled neurons (Figure 1B). In line with pre-
vious reports, ARCAIRP/NPY+ 1 alirons from fasted animals (henceforth referred to as fasted ARCA9RPNPY* heurons)
fired at a significantly faster frequency than neurons from fed animals (Figure 1C). Strikingly, the spontaneous
firing, ISI-MP and firing threshold of ARCP™"™ neurons from fasted animals (fasted ARCP™'™* neurons) were
not significantly different from ARCP™®"™* neurons from fed animals (Figures 1C-1E). In addition, fasted
ARCAIRPNPY* eurons fired at a higher frequency than the ARCP™'* neurons from fasted mice (Figure 1C).
Thus, fasting increases the spontaneous firing rate of ARCASRF/NFY+ CP"™ neurons, indicating
that these neuronal populations may not be identical in terms of their inputs or sensitivity to anorexigenic signals.

neurons butnot AR

ARCP™"* neurons are inhibited by leptin

ARCASRP/NPYF herons are inhibited by sensory cues and peripheral signals of food detection, nutrient con-
sumption, and positive energy equilibrium (Chen et al., 2015; Borgmann et al., 2021; Beutler et al., 2017; Su
etal, 2017; Alhadeff et al., 2019; Berrios et al., 2021). One potent inhibitor of ARCAIRP/NPY* o irons is the
anorexigenic hormone leptin, which directly hyperpolarizes and silences ARC*9**/NPY* neyrons during
states of energy surplus (Takahashi and Cone, 2005; Baver et al., 2014; Bermeo et al., 2020). To ascertain
the responses of ARCP™* neurons to leptin, we performed whole cell patch clamp electrophysiology
on ARCP™"™* and ARCAIRPNPY* neurons and measured changes in firing rate and membrane potential after
a 3 min of perfusion of 100 nM leptin (Figure 2). As expected, bath application of leptin decreased the firing
rate of all ARCAIRP/NPY* neyrons from fed and fasted animals (Figures 2A-2C). In addition, leptin signifi-
cantly hyperpolarized all tested fed and fasted ARC*9R*"NP"* neurons (Figure 2D). Although leptin perfu-
sion also inhibited the majority of ARCP™'* neurons, the hormone's effects were of smaller magnitude
compared to responses observed in ARCASRP/NPY* nayrons. In fed ARCP™@'™ neurons, bath application
of leptin decreased firing rate of all tested neurons (Figures 2E-2G). However, this reduction was only
64% on average, compared to an average 93% reduction in firing rate for fed ARCA9R"NPY* neyrons, a dif-
ference that was not statistically significant (unpaired two-tailed Student’s t-test, p = 0.13, t = 1.64, df = 10,
n = é neurons per group). In addition, although leptin perfusion significantly hyperpolarized fed ARCP"!*
neurons, only 83% of tested neurons had a reduction in membrane potential. Taken with our previous
finding that ARCP™'* neurons had insignificant changes in firing rates because of fasting (Figure 1C), these
results indicate heterogeneity in terms of how ARCP™'* neurons respond to energy balance signals.

ARCP""* neurons functionally connect to other ARC neurons

After comparing the effects of fasting and leptin on ARCP™'* neurons, we evaluated if other ARC neurons

receive inputs from ARCP™'* neurons in the region. To achieve this, we injected an AAV carrying Cre-
dependent Channelrhodopsin-mCherry (ChR2-mCh) (Boyden et al., 2005) into the ARC of Drd1®’* mice
and performed patch clamp electrophysiology on randomly selected neurons in the ARC (Figure 3). This
strategy allowed us to use Channelrhodopsin-2-Assisted Circuit Mapping (CRACM) (Petreanu et al.,
2007; Atasoy et al., 2008) to interrogate the postsynaptic responses of ARC neurons following ARCP™*
neuron activation (Figures 3A-3E). We observed viral expression throughout the basomedial hypothala-
mus, which is concentrated in the ARC and peri-ARC (Figure 3A).
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Figure 2. ARCP™'* neurons are inhibited by leptin

(A) Representative traces of whole cell current clamp recordings of leptin-mediated inhibition in ARCA9RNPY* heyrons from fed animals (top) and
ARCAIRP/NPY+ 1o irons from fasted animals (bottom). Vertical scale bars, 20mV. Horizontal scale bars, 60s.

(B) Change in firing rate from baseline for neurons perfused with leptin, binned for 1-min intervals. Each data point represents the average firing in the
previous 60 s. Green: fed ARCAIRP/NPY+ natirons (n = 6); light green: fasted ARCAIRP/NPY* arons (n = 7). Data are represented as mean + SEM.

(C) Firing rate at baseline and 8 min after the start of leptin perfusion for ARCAIR"NPY* neyrons from fed animals (*p < 0.05, **p < 0.01, ***p < 0.001 as
determined by paired two-tailed Student's t-test, t = 4.14, df = 5, n = 6 pairs).

(D) Inter spike interval membrane potential at baseline and 8 min after start of leptin perfusion for ARCASRPNPY* neyrons from fed animals (*p < 0.05,

**p < 0.01, ***p < 0.001 as determined by paired two-tailed Student’s t-test, t = 5.73, df = 5, n = 6 pairs).

CDrd‘H CDrdPr

E) Representative traces of whole cell current clamp recordings of leptin-mediated inhibition in fed AR

( neurons (top) and fasted AR
(bottom). Vertical scale bars, 20mV. Horizontal scale bars, 60s.
(

neurons
F) Change in firing rate from baseline for neurons perfused with leptin, binned for 1-min intervals. Each data point represents the average firing in the
previous 60 s. Red: fed ARCP"™* neurons (n = 6); pink: fasted ARCP™"™ neurons (n = 6). Data are represented as mean + SEM.

(G) Firing rate at baseline and 8 min after the start of lepin perfusion for ARCP™"* neurons from fed animals (*p <0.05, **p <0.01, ***p < 0.001 as determined
by paired two-tailed Student's t-test, t = 4.95, df = 5, n = 6 pairs).

(H) Inter spike interval membrane potential at baseline and 8 min after start of leptin perfusion for AR
***n < 0.001 as determined by two-tailed Student's t-test, t = 3.81, df = 5, n = 6 pairs).

CPr¥"* neurons from fed animals (*p < 0.05, **p < 0.01,

We obtained current clamp recordings from 32 neurons in 19 coronal hypothalamic slices from 12 animals.
Of these 32 neurons, we identified six neurons that expressed ChR2 (ChR2+), eight neurons with postsyn-
aptic depolarizations, six neurons with postsynaptic hyperpolarizations, and 12 neurons with no discernible
response (Figures 3B and 3C). Light stimulation in ChR2+ neurons resulted in a significant change in peak
membrane potential from baseline (Figure 3B) and the latency of the response for these neurons was
0.30 + 0.04 ms (Figure 3E), consistent with the temporal kinetics of ChR2-based neuron activation (Boyden
et al., 2005). Light stimulation did not result in a significant change in peak membrane potential from base-
line in nonresponders but was significant for neurons with depolarizing and hyperpolarizing responses (Fig-
ure 3C). Latency of the response from onset of the light stimulus for depolarizing and hyperpolarizing neu-
rons was 5.16 + 0.54 ms and 7.46 + 1.39 ms, respectively (Figure 3E). Because these neurons often
demonstrate spontaneous firing and occasionally show postsynaptic depolarization resulting in action po-
tentials, only traces where the analysis window was free of action potentials were analyzed, likely resulting
in underestimation of the strength of depolarizing inputs to these neurons. One hyperpolarizing neuron
was observed to have an average response latency of 13.9 ms, suggesting the input may have originated
from a neuron with an intermediary connection to an upstream ChR2 expressing neuron. To confirm the
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Figure 3. ARCP"'* neurons functionally connect other ARC neurons

(A) Top left: representative image of 40x DIC IR and fluorescence of ChR2-mCh ARC viral expression in acute coronal brain slices. Bottom left: Schematic of
bilateral intracranial injection of Cre dependent ChR2-mCh to the ARC of Drd1-Cre mice. Scale bar 50 pm. Right: representative image of 4x DIC IR and
fluorescence of ChR2-mCh ARC viral expression in acute coronal brain slices. Scale bar 250 um.

(B) Change in membrane potential for light off and on for ChR2 expressing neurons, (*p < 0.05, **p < 0.01, ***p < 0.001 as determined by paired two tailed
Student’s t-test, t = 4.763, df = 5, n = 6 pairs).

(C) Change in membrane potential of ARC neurons which depolarized, hyperpolarized, or had no response to ARCP™'* ChR2 inputs. (*p < 0.05, **p < 0.01,
***n < 0.001 as determined by paired two tailed Student’s t-test; depolarized: t = 4.763, df = 5, n = 8 pairs; hyperpolarized: t = 3.81, df = 5, n = 6 pairs); no
response: t=3.81, df = 5, n = 12 pairs). Top right: pie chart summary recorded responses in ARC neurons. (*p < 0.05, **p < 0.01, ***p < 0.001 as determined
by paired two tailed Student's t-test).

(D) Representative whole cell current clamp traces for responses to four light stimulations, three individual traces from the same neuron shown per response type. For
ChR2+, vertical scale bar = 40 mV. For depolarizing, hyperpolarizing, and no response, vertical scale bar = 10 mV. All horizontal scale bars, 50 ms.

(E) Latency from light onset to response initiation for responding neurons. (*p < 0.05, **p < 0.01, ***p < 0.001 as determined by ordinary one-way ANOVA
with Bonferroni post hoc comparison, n = 6-8/group; Fgroue = 1.85 (2, 17), p = <0.001). Error bars represent mean + SEM.

(F) Change in membrane potential for hyperpolarizing neurons during baseline and after 5 min from the start of the perfusion of PTX. (*p < 0.05, **p < 0.01,
***5 < 0.001 as determined by paired two-tailed Student's t-test, t = 8.440, df = 5, n = 6 pairs, p = <0.001).

(G) Change in membrane potential for depolarizing neurons during baseline and after 5 min from the start of the perfusion of CNQX/APS5. (*p < 0.05,
**p < 0.01, ***p < 0.001 as determined by paired two-tailed Student’s t test, t = 6.428, df = 4, n = 5 pairs, p = <0.003).

(H) Representative trace of extinction of hyperpolarization response after 5 min of PTX perfusion. Vertical scale bars, 10 mV. Horizontal scale bars, 50 ms. (I)
Representative trace of extinction of depolarization response after 5 min of CNQX/AP5 perfusion. Vertical scale bars, 10 mV. Horizontal scale bars, 50 ms.
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Figure 4. ARCP™"* neurons make functional connections to ARCA9R?/NPY* nayrons, and ARCARP/NPY* haurons include a subpopulation of
ARCP™"* neurons

(A) Top left: representative image of 40x DIC IR and fluorescence of ChR2-mCh ARC viral expression and ARC NPY-GFP expression in acute coronal brain
slices. Scale bar 50 um. Bottom left: schematic of bilateral intracranial injection of Cre-dependent ChR2-mCherry (ChR2-mCh) to the ARC of
Drd1€¢/*;NPYS™/* mice. Right: representative image of 4x DIC IR and fluorescence of ChR2-mCh ARC viral expression and ARC NPY-GFP expression in
acute coronal brain slices. Scale bar 250 um.

(B) Change in membrane potential for light off and on for ChR2 expressing ARCAIRP/NPY* aypressing neurons (*p < 0.05, **p < 0.01, ***p < 0.001 as
determined by paired two tailed Student's t-test, t = 4.038, df = 5, n = 6 pairs). Analysis was conducted in an identical manner to those in Figure 3B.

(C) Change in membrane potential of ARCA9RF/NPY* nayrons that depolarized, hyperpolarized, or had no response to ARCP™'* ChR2 inputs. (*p < 0.05,
**p < 0.01, ***p < 0.001 as determined by paired two tailed Student’s t-test; depolarized: t = 4.149, df = 4, n = 5 pairs; hyperpolarized: t =7.494,df=8,n=9
pairs); No response: t = 0.1774, d f = 16, p = 0.861, n = 12 pairs). Top right: pie chart summary for responses recorded in ARCAIRP/NPY+ heurons (*p <0.05,
**p < 0.01, ***p < 0.001 as determined by paired two tailed Student's t-test, t = 4.149, df = 4, n = 5 pairs). Analysis was conducted in an identical manner to
those in Figure 3C.

(D) Representative whole cell current clamp traces for various responses to light stimulation, three individual traces from the same ARCA9RP/NPY* nayron
shown per response type. For ChR2+, vertical scale bar = 40 mV. For depolarizing, hyperpolarizing, and no response, vertical scale bar = 10 mV. All horizontal
scale bars, 50 ms.

(E) Latency from light onset to response initiation for responding ARCASRPNPY* neyrons. (*p < 0.05, **p < 0.01, ***p < 0.001 as determined by ordinary one-
way ANOVA with Bonferroni post hoc comparison, n = 5-9/group; Fgroue = 1.61(2, 17), p = <0.001. Analysis was conducted in an identical manner to those in
Figure 3E. Error bars represent mean + SEM.
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Figure 4. Continued

(F) Change in membrane potential for hyperpolarizing ARCA9R"NPY* nayrons during baseline and after 5 min from the start of PTX perfusion. (*p < 0.05,
**p < 0.01, ***p < 0.001 as determined by paired two-tailed Student’s ttest, t = 14.2, df = 7, n = 8 pairs, p = <0.001). Analysis was conducted in an identical
manner to those in Figure 3F.

(G) Change in membrane potential for depolarizing ARCAIRP/NPY* heurons during baseline and after 5 min from the start of PTX perfusion. (*p < 0.05,
**p < 0.01, ***p < 0.001 as determined by paired two-tailed Student's t test, t = 5.159, df = 7, n = 8 pairs, p = <0.002). Analysis was conducted in an identical
manner to those in Figure 3F.

(H) Representative trace of extinguishment of depolarization response and then hyperpolarization response of ARCAIRP/NPY+

neurons during baseline and
after 5 min of CNQX/AP5 perfusion, and then subsequent extinguishment of revealed hyperpolarization response following 5 min of CNQX/AP5 and PTX.
Vertical scale bars, 10mV. Horizontal scale bars, 50ms.

(I) Representative trace of extinguishment of hyperpolarization response (left) and depolarization response (right) of ARCAIRP/NPY* nairons during baseline
and after 5 min of PTX or CNQX/AP5 perfusion, respectively.

observed hyperpolarizing and depolarizing responses were because of inputs secreting gamma aminobu-
tyric acid (GABA) or glutamate, respectively, a subgroup of neurons were tested with by bath perfusion of
either 100 uM of the gamma aminobutyric acid (GABA) receptor blocker picrotoxin (PTX) or 20 uM cyan-
quixaline (CNQX) and 50 uM D-(—)-2-Amino-5-phosphonopentanoic acid (AP5) (Figures 3F-3l). Bath perfu-
sion of PTX resulted in a significant reduction in the hyperpolarizing response in all tested neurons
(Figures 3F and 3H). On average, response magnitudes decreased by 10.46 + 1.23 mV, confirming the hy-
perpolarizing inputs observed were GABAergic. Bath perfusion of CNQX and AP5 resulted in a significant
reduction in the depolarizing responses in all tested neurons (Figures 3H and 3I). On average, response
magnitudes decreased by 5.99 + 0.93 mV, confirming the depolarizing inputs observed were because
of glutamatergic inputs.

CAgRP/NPY+ CAgRP/NPY+

ARCP"¥"* neurons make functional connections to AR neurons, and AR

neurons include a subpopulation of ARCP™"* neurons

Given their anatomical location, ARCASRP/NPY* heyrons likely comprised a substantial subgroup of neurons
we recorded from during our initial CRACM experiment (Figure 3). Thus, we hypothesized that some
ARCP™™ neurons may have functional inputs to ARCASRF/NPY* neyrons. To investigate this connection,
we injected an AAV carrying Cre-dependent ChR2-mCherry into the ARC of Drd1®/*;NPYS™/* mice result-
ing in green labeled ARCAIRPNPY* cqls and red labeled ARCP™'* cells. We then performed patch clamp
electrophysiology on GFP labeled ARCAIRF/NFY* neyrons, allowing us to evaluate the presence of func-
tional inputs (Figure 4). We observed viral expression throughout the basomedial hypothalamus, concen-
trated in the ARC and peri-ARC (Figure 4A).

We obtained current clamp recordings from 37 ARCASR*NPY* nayrons in 13 coronal hypothalamic slices from
nine mice. Of these ARCNPY* neurons, we identified six ChR2+ neurons, five neurons with postsynaptic depolar-
izations, nine neurons with postsynaptic hyperpolarizations, and 17 neurons with no discernible response
(Figures 4B-4D). ChR2 expression in ARCASRFNPY* nayrons confirms that a subpopulation of ARCP™™ neurons
is also AgRP/NPY positive in line with previous findings (Zhang and van den Pol, 2016). Based on these findings,
we estimate that at least 16% of ARC*9**/NP"* neyrons co-express Drd1, and roughly 38% of ARCASRF/NFY+
rons tested had observable inputs from ARCP™™ neurons (14% of which were depolarizing and 24% of which
were hyperpolarizing). Light stimulation in ChR2+ ARCASRPNPY* neyrons resulted in a significant change in
peak membrane potential from baseline (Figure 4B), and the latency of the response for these neurons was
0.65 + 0.08 ms (Figure 4E). For ARCAIRP/NPY+ 1 o irons which were classified as nonresponding, light stimulation
did not result in a significant change in peak membrane potential compared to baseline but was significant for
both depolarizing and hyperpolarizing ARCASR*NPY* neyrons (Figure 4C). Latency of the response from onset of
the light stimulus for depolarizing and hyperpolarizing ARCAIR"NPY* neurons was 6.80 + 0.77 ms and 7.98 +
1.15 ms, respectively (Figure 4E). One hyperpolarizing ARCA9”NPY* neuron was observed to have an average
response latency of 16.42 ms, again suggesting the input may have originated from a neuron with an intermediary
connection to an upstream ChR2 expressing neuron. To confirm the observed hyperpolarizing and depolarizing
responses were because of inputs secreting gamma aminobutyric acid (GABA) or glutamate, respectively, a sub-
group of neurons were tested with by bath perfusion of either 100 pM of the gamma aminobutyric acid (GABA)
receptor blocker picrotoxin (PTX) or 20 uM cyanquixaline (CNQX) and 50 uM D-(—)-2-Amino-5-phosphonopen-
tanoic acid (AP5) (Figures 3F-3l). Bath perfusion PTX resulted in a significant reduction in the hyperpolarizing
response in all tested ARCASRF/NPY* neyrons (Figures 4F and 4G). On average, response magnitudes decreased
by 5.84 + 0.41 mV, confirming that the hyperpolarizing inputs from ARCP™'* neurons — ARCASRP/NPY* neyrons
observed were GABAergic. Bath perfusion of CNQX and AP5 resulted in a significant reduction in the

neu-
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depolarizing response in all tested ARCASRPNPY* neyrons (Figures 4F and 4G). On average, response magni-

tudes decreased by 7.27 + 1.41 mV, confirming the depolarizing inputs observed were because of glutamatergic
inputs. In addition, one ARCASRPNPY* neyron had CNQX/APS5 sensitive depolarizing inputs and displayed hyper-
polarizing responses following application of glutamate blockers that were subsequently blocked with PTX (Fig-
ure 4H), indicating that some ARCAIR”NPY* neyrons can receive both depolarizing and hyperpolarizing inputs
from ARCP™'™ neurons.

DISCUSSION
Responses of ARCP""* neurons to signals of metabolic deficit and surplus

We have shown that leptin inhibits ARCP™'* neurons in a comparable manner to responses observed in the
ARCAIRP/NPY* nayronal population. Other patch clamp studies have focused on the effects of small mole-
cules on ARC neurons including leptin (Glaum et al., 1996; Cowley et al., 2001; van den Top et al., 2004,
Vong et al., 2011; Takahashi and Cone, 2005; Hill et al., 2008), ghrelin (Tong et al., 2008; Kohno and
Yada, 2012), DA and DA receptor agonists and antagonists (Zhang and van den Pol, 2016; Alhadeff
et al., 2019), insulin (Mirshamsi et al., 2004; Kohno and Yada, 2012), and glucose (Kohno and Yada, 2012;
Jais et al., 2020). Our results regarding leptin’s action on ARCAIRPNPY* neyrons are in line with previous
studies demonstrating leptin-based inhibition of this neuron subtype (Takahashi and Cone, 2005; Baver
et al., 2014). Similar responses observed in ARCP™'* neurons may be explained partially by incidental tar-
geting of the ARCPr1HAIRP/NPY 1o iron population, which was identified during subsequent CRACM ex-
periments. Interestingly, profiling of the spontaneous firing and membrane properties of ARCP™@'*
revealed that, as a whole, they are less responsive than ARCAIRP/NPY+ o urons to fasting. Others have also
measured the electrophysiological properties of ARC neurons given different experimental treatments,
including fasting (Liu et al., 2012), exercise (Han et al., 2018), high fat diet (HFD) (Baver et al., 2014; Wei
et al., 2015; Jais et al., 2020), and gastric inputs (Alhadeff et al., 2019; Goldstein et al., 2021; Jais et al.,
2020). Ultimately, our results suggest the ARCP™¥'* neuronal population is heterogeneous.

neurons

Connectivity of ARCP™"* and ARCA9RP/NPY* haurons

Our CRACM experiments revealed overlap of ARCP™'* neurons with ARCAIRP/NPY* neyrons, presenting a
potential site of direct regulation by dopaminergic inputs. Interestingly, we identified two subpopulations
of ARCP™'* neurons which had either hyperpolarizing or depolarizing outputs to ARCAIRP/NPY* neyrons.
We consider it unlikely that ARCP™"* — ARCASRP/NPY* nairon connections were in fact AGRP— AgRP or
POMC — AgRP connections, given previous findings on the connectivity of ARC neurons. Studies identified
functional AgRP—POMC connections, but failed to find functional interconnections within AgRP and
POMC populations (i.e., AGRP - AgRP and POMC — POMC) (Atasoy et al., 2012). In addition, no evidence
of POMC — AgRP connectivity has been identified, despite early speculation of feedback loops (Betley
et al., 2013). Thus, ARCP@1* — ARCAIRP/NPY* hourons (i.e., ARCP™®"™ neurons which putatively do not ex-

press AGRP/NPY) represent a unique group of neurons with differential inputs to ARCASRP/NPY* neyrons.

DA signaling in the ARC

Our findings instantiate both direct and indirect mechanisms through which AR neuronal popula-
tions could modulate the ARCAIRP/NPY* circuit. Our CRACM experiments confirm the existence of an
ARCPrdT+AIRP/NPY+ heyronal population, supporting previous findings that Drd1-dependent signaling
can drive direct activation of ARCAIRF/NPY* nayrons (Zhang & van den Pol, 2016). Synapses containing
DA have been localized to the soma of ARCAIRPNPY* naurons (Zhang & van den Pol, 2016); however,
the circumstances that precipitate DA release at these terminals are unknown. Our lab recently found
that mice fed an HFD have increased DA tone in other hypothalamic regions containing Drd1 expressing
neurons (Grippo et al., 2020), and the occurrence of a comparable phenomenon in the ARC remains a
distinct possibility. In one potential model, in response to a palatable diet, DA levels in the ARC would in-
crease, stimulating the Drd1 expressing AgRP neurons, whereas inhibiting POMC neurons via dopamine
receptor 2 (Drd2) signaling (Zhang & van den Pol, 2016). Such signaling could drive increased feeding,
perhaps even in sated animals, but the dopaminergic inputs or the specific molecular pathways underlying
DA receptor signaling in ARC neuron subtypes are unknown.

CDrd1 +

In addition to the ARCPrdTHASRP/NPY* noironal population, we identified two additional groups of

CAgRP/N PY+

ARCP""™ neurons which had inhibitory or excitatory inputs to AR neurons. The circumstances

driving activation of various ARCP™'* subtypes are unknown, and different signals may elicit distinct
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ARCP™* s ARCAIRP/NPY* i 5uts. However, evidence supports DA mediated inhibition of ARCAIRP/NPY+
neurons in response to gastric signals. In experiments performed by Alhadeff et al., intragastric infusions
of nutrients and ethanol increased midbrain DA signaling and inhibited ARCAIRF/NPY* heyrons. Infusion of
a DA receptor antagonist cocktail was shown to dampen these inhibitory responses during reward delivery
(Alhadeff et al., 2019), but the mechanism underlying this DA signaling was not elucidated. These findings
are potentially counterintuitive, given the results presented by Zhang et al., who observed that DA and the
Drd1 selective agonist SKF 38393 excite AgRP neurons (Zhang & van den Pol, 2016). In addition to a multi-
neuronal inhibitory circuit, our work provides another bridge between these results, showing ARCP™@'™
neurons can both activate or inhibit ARCAIRP/NPY* nayrons. This is supported by the growing body of ev-
idence that DA and Drd1 can have differential actions in the same brain region (Trudeau et al., 2014; Miller
etal.,, 2019). For instance, Miller et al. showed different medial amygdala dopamine one receptor (MeApv-
D1R) neurons possess outputs with divergent functional connections, where MeApv-D1R neurons send
excitatory outputs to the dorsal medial region of the ventromedial hypothalamus (VMHdm) and inhibitory
projections to the bed nucleus of the stria terminalis (BNST) (Miller et al., 2019). Further highlighting the
potential complexity of the system, Miller et al. found that the selective Drd1 agonist SKF 81297 increased
the excitability of BNST projecting MeApv-D1R neurons, whereas decreasing the excitability of VMH pro-
jecting MeApv-D1R neurons. Only with retrograde labeling of MeApv-D1R projections were the investiga-
tors ultimately able to distinguish these two subpopulations of Drd1"®/*-tdTomato'®*-labeled neurons in
the same nucleus. An analogous phenomenon may be occurring in populations of ARCP™'* neurons in our
study. ARCP™'* neurons in close proximity may possess differential responses to the same factor, and com-
plete functional characterization of distinct ARCP™'* subpopulations will require segmentation by inputs,
projections, and additional markers.

Limitations of the study

Leptin signaling can have differential effects in different subgroups of ARC neurons. Because this study
focused on leptin’s inhibitory actions, we cannot rule out the possibility that some ARCP™'* neurons would
have had responses to leptin that are not typically detectable in quiescent or hyperpolarized neurons with
membrane potentials below —50mV (Smith et al., 2018). In addition, because of occasional spreading of the
viral infusion along the injection needle track, we cannot rule out that some Drd1 inputs may have origi-
nated from glutaminergic or GABAergic cells above the ARC, which has previously been documented
(Krashes et al., 2014; Suyama and Yada, 2018). Furthermore, this report describes the electrophysiological
properties and functional connections of a specific subset of neurons labeled by Drd1-Cre and NPY-GFP;
besides, although these transgenic systems have been previously used to corroborate the presence of
functional Drd1 and Npy protein or mRNA in labeled neurons (Heusner et al., 2008; van den Pol et al.,
2009; Zhang and van den Pol, 2016; Miller et al., 2019), this study did not validate functional signaling in
the ARC neurons of these mice. Future studies will evaluate the response of ARCP™'* neurons to DA
and selective agonists to further examine the role ARC Drd1 signaling plays in shaping animal behavior
and metabolism.
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ThermoFisher

Cat# 18091050

Experimental models: Organisms/strains

Mouse: Drd1-Cre; Drd1aCre/+
Mouse: NPY-GFP

C578Blé/J

Ai14 TdTomato(Tdt/tdt)

Palmiter Lab, University of Washington
The Jackson Laboratory

The Jackson Laboratory

The Jackson Laboratory

N/A

B¢.FVB-Tg(Npy-hrGFP)1Lowl/

J Stock No: 006417 | NPY-hrGFP ,
NPY-GFP

JAX stock #000664
(https://www.jax.org/strain/000664)
JAX stock #007909
(https://www.jax.org/strain/007909)

Oligonucleotides

Primer: NPY-GFP Common Forward

TAT GTG GAC GGG GCA GAA GAT CCA GG
Primer: NPY-GFP Wild type Reverse

CCC AGC TCA CAT ATT TAT CTA GAG
Primer: NPY-GFP Mutant Reverse

GGT GCG GTT GCC GTA CTG GA
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Integrated DNA Technologies

Integrated DNA Technologies

Integrated DNA Technologies

JAX 0IMR6223

JAX oIMR6224

JAX 0IMR6225

(Continued on next page)
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Continued

REAGENT or RESOURCE SOURCE IDENTIFIER
Primer: Drd1a::CRE Common Forward Integrated DNA Technologies N/A

TTC TGG TAT GGC TTG GAT TG

Primer: Drd1a::CRE Wild type Reverse Integrated DNA Technologies N/A

GTG AGG ATG CGA AAG GAG AA

Primer: Drd1a::CRE Mutant Reverse Integrated DNA Technologies N/A

GGG AAACCATTITCCGGTTATTC

Primer: Ai14 TdTom Wild type Forward Integrated DNA Technologies JAX 0IMR9020

AAG GGA GCT GCA GTG GAG TA
Primer: Ai14 TdTom Wild type Reverse
CCG AAA ATC TGT GGG AAG TC
Primer: Ai14 TdTom Mutant Reverse
GGC ATT AAA GCA GCG TAT CC
Primer: Ai14 TdTom Mutant Forward
CTG TTC CTG TAC GGC ATG G

Integrated DNA Technologies

Integrated DNA Technologies

Integrated DNA Technologies

JAX 0oIMR9021

JAX 0IMR9103

JAX 0oIMR9105

Software and algorithms

MATLAB R2020a

Prism 9

Qlmaging Ocular Software

ImageJ

Clampex Suite with ClampFit 11

LinLab micromanipulator control software

iPython (with Python v3.8.13)

MathWorks

GraphPad Software

Photometrics

NIH

Molecular Devices

Scientifica

IPython development team

https://www.mathworks.com/products/
matlab.html
https://www.graphpad.com/scientific-
software/prism/
https://www.scientifica.uk.com/products/
gimaging-ocular-software
https://imagej.nih.gov/ij/RRID:SCR_003070
https://www.moleculardevices.com/products/
axon-patch-clamp-system/acquisition-and-
analysis-software/pclamp-software-suite
https://www.scientifica.uk.com/products/
scientifica-linlab-2

https://ipython.org/

Other

Stereotaxic apparatus

Standard chow diet (Teklad F6 Rodent Diet)
Standard chow diet (PicoLab Rodent Diet 20 5053)
Compresstome Tissue Slicer

Single Sample Osmometer

ThermoFisher HM 505 EVP

Signal amplifier

Signal digitizer

Fluorsecent LED light source

4 valve solineoid perfusion exchange system,

with hardware controller and 4 channel manifold
Patch electrode headstage

Isofluorane

Ketamine HCI (Ketaset)

ENDURIUM Injector Solid Ceramic blades
Bupivicane-HCI (Sensoricaine-MPF)

Xylazine (AnaSed Injection)

DAPI Fluoromount-G

David Kopf Instruments
Envigo

LabDiet

Precisionary

Advanced Instruments
ThermoFisher

Axon Instruments
Axon Insturments
CoolLED

Automate Scientific

Molecular Devies

Primal Critical Care/Covetrus
Zoetis

Cadance

Fresenius Kabi

Akorn Inc.

Southern Biotech

Model:1900

8664 (production is terminated)

Cat# 0007688

Model: VF-200 with manual micrometer
Model: 3D3

Model: HM 505 EVP

Multiclamp 700B

Axon Digidata 1550B

pE-300

Economy Vlave Pinch System

1-CV7-B

NDC 11695-6777-2
NDC 54771-2013-1
Cat#: EF-INZ10

Cat# NDC63323-464-02
NDC59399-111-50
Cat# OB010020
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RESOURCE AVAILABILITY
Lead contact

Further information and requests should be directed to and will be fulfilled by the Lead Contact, Ali D. Gu-
ler (aguler@virginia.edu).

Materials availability

This study did not generate new unique reagents or mouse lines.

Data and code availability

All data and any additional information required to reanalyze the data reported is available from the Lead
contact upon request.

EXPERIMENTAL MODEL AND SUBJECT DETAILS

All animal experiments were conducted in compliance with the University of Virginia Institutional Animal
Care and Use Committee (IACUC). Animals were provided cotton nesting material (Ancare, Bellmore,
NY) and animal cages were individually ventilated and temperature and humidity controlled, (approx.
40% humidity, 22-24°C). Animals were housed on a 12 hour light/dark cycle, and given water and food
ad libitum, except for approved periods of time during fasting experiments. The following mouse lines
were used: Drd1t™!€®RP2 (Hoysner et al., 2008), GtROSA)26Sortm4(CAG-tdTomatolHze (/o disen et al.,
2010), Tg(Npy-hrGFP)1Lowl (van den Pol et al., 2009). Drd1€"*<"®) (KO) mice and littermates bred for hus-
bandry were raised on standard chow diet PicoLab Rodent Diet 20 5053 (LabDiet, USA) placed on the cage
floor to facilitate access to the food for the Drd1-KO mice. For surgery and confocal imaging experiments,
male and female mice were sacrificed for sample preparation when they were between 14 and 21 weeks
old. For all other experiments, including fasting and leptin experiments, male and female mice ages P31
to P58 were used.

METHOD DETAILS
Mouse diets

Standard chow diet (SCD): PicoLab Rodent Diet 20 5053 (3.07 kcal/gram; 13% fat, 24% protein, 62% carbo-
hydrates; 3.2% sucrose).

Viral expression and stereotaxic surgery

All surgery was performed on male and female mice between 8 and 14 weeks of age using aseptic tech-
nique in compliance with the University of Virginia IACUC. Surgical anesthesia was induced with 5% isoflur-
ane (Isothesia) and then maintained at 2% to 2.5% throughout the procedure. After induction animals were
mounted in a stereotaxic frame (Kopf) with an electric heating pad underneath to maintain body temper-
ature. Veterinary ocular lubricant was used on each animal’s eyes and reapplied as necessary to prevent
dehydration/desiccation. A recombinant AAV was used to express a specific transgene, containing a dou-
ble-floxed inverted open reading frame (DIO cassette). Virus was delivered at 100 nL/min by a microsyringe
pump controller (World Precision Instruments, model Micro 4), via a 10 uL syringe (Hamilton) and 26-gauge
needle (Hamilton). After infusion of the AAV was completed, the syringe was left in place for 10 min, after
which it was retracted 0.2 mm and then left in place for another 10 minutes before being withdrawn
completely. As an analgesic, for 24 hours before and for three days after surgery mice were provided
with 30 mg/kg ibuprofen drinking solution (4.7 mL Children’s Motrin dissolved in 500 mL sterile water).
Mice were then sacrificed for optogenetic experiments 6 to 11 weeks after intracranial injections.

Viral constructs

rAAV2/EF1a-DIO-hChR2(H134R)-mcherry (300nL; diluted to ~1.2 x 10712 viral genomes/ul with sterile
PBS) was injected into the ARC (ML: £ 0.29 mm, AP: - 0.30 mm, DV: —5.75 mm). All coordinates are relative
to bregma (George Paxinos and Keith B. J. Franklin). AAV2 version of in stock vector AAV-EF1a-DIO-
hChR2(H134R)-mCherry vector (Karl Deisseroth) was purchased from UNC Chapel Hill Virus Vector Core
Dr. R Jude Samulski.
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Slice electrophysiology

Acute brain slice preparation methods including Na + spike protocol were adapted from (Ting et al., 2014,
2018). When preparing acute brain slices from surgery animals, mice were IP injected with a mixture of ke-
tamine/xylazine and transcardially perfused with roughly 30mL of ice cold NMDG-ACSF containing in mM:
93 NMDG; 2.5KCl, 1.2 NaH2PO4, 30 NaHCO3, 20 HEPES, and 25 dextrose, 5 sodium ascorbate, 2 thiourea,
3 sodium pyruvate, 10 MgSO4.7H20, 0.5 CaCl2.2H20, saturated with 95% O2 and 5% CO2. The brain was
then rapidly dissected and 300uM sections containing the hypothalamus were taken using a Compres-
stome VF-200 in ice-cold NMDG-ACSF. Slices were incubated in 34°C NMDG-ACSF and after completion
of the Na+ spike protocol (Ting et al., 2018) the slices were transferred to a high HEPES low Ca2+ buffer
holding buffer at 34°C and allowed to come to room temperature where they were held until transfer to
microscope for recording. HEPES buffer contained in mM: 92 NaCl, 2.5 KCI, 1.2 NaH2PO4, 30 NaHCO3,
20 HEPES, and 25 dextrose, 5 sodium ascorbate, 2 thiourea, 3 sodium pyruvate, 10 MgS0O4.7H20, 0.5
CaCl2.2H20, saturated with 95% O2 and 5% CO2. Mice lacking ChR2 expression or which had mistargeting
of the viral infusion, were not included in this study. For non-surgery animals, male and female mice ages
P31 to P58 were decapitated after being deeply anesthetized with isoflurane using the jar drop method.
Brains were rapidly dissected and mounted for slicing in the compresstome slicer. Slices were taken in
an ice cold sucrose cutting solution containing (in mM): 200 sucrose, 26 NaHCO3, 1.25 Na2HPO4, 3.5
KClI, 10 glucose, 3.8 MgClI2, 1.2 MgSO4, pH was adjusted to 7.3 to 7.4 and osmolarity ranged from 299
to 302 mOsm (Whitt et al., 2016). Slices were then transferred to the same high HEPES low Ca2+ holding
buffer described above at 34°C and allowed to come to room temperature where they were held until trans-
fer to microscope for recording. In all experiments slices were allowed to rest for a minimum of 45 minutes
before transfer to a Slicescope 6000 microscope with 4x dry and 40x water immersion Nikon objectives.
For all whole cell current clamp recordings, the bath was superfused with a continuous flow (2.5 mL/min) of
recording aCSF at room temperature (26°C-28°C), containing the following (in mM): 119 NaCl, 2.5KCl, 1.25
NaH2PO4, 24 NaHCO3, 12.5 glucose, 2 mM CaCl2-4H20 and 2 mM MgSO4-7H20, saturated with 95% O2
and 5% CO2 (Ting et al., 2018). For all extracellular solutions, osmolarity ranged from 299 to 302 mOsm and
pH was adjusted with strong HCl and ranged from 7.3 to 7.4. Coronal slices containing the ARC were iden-
tified visually by the shape of the both 3rd ventricle and the presence of medial eminence. To target
ARCASRP/NPYF neyrons for patching, NPY-GFP fluorescence was excited and visualized using a pE-300-
white LED light source and GFP filter set. Images of patched brain regions were taken using Scientifica cam-
era and Ocular imaging software. A Multiclamp 700B amplifier and Digidata 1550B digitizer (Molecular De-
vices) were used to perform all patch clamp experiments. Voltage measurements were digitized at 50 kHz
and bridge balance was monitored closely. All experiments were conducted using 3-6MQ microelectrodes
pulled with a Sutter P97 puller. For all current clamp recordings, the pipette was backfilled with an intracel-
lular solution adapted from (Miller et al., 2019) containing, in mM: 135 K-gluconate, 10 HEPES, 3.5 NaCl, 1
EGTA, 5 Mg-ATP, 0.5 Na3-GTP. For intracellular solution, osmolarity ranged from 290 to 295 and pH was
adjusted with KOH and ranged from 7.3 to 7.4. For each neuron, recordings measuring spontaneous firing
rate were taken each lasting a minimum of 90 seconds. No holding current was used during whole cell re-
cordings of spontaneous firing. Offline the recordings were analyzed using a combination of ClampFit (Mo-
lecular devices) and custom scripts in Matlab (Mathworks) software. Statistical tests were performed in
Prism 9 (Graphpad). Light stimulation consisted of 10ms square pulses of light delivered at 20Hz (10 pulses
total). Light stimulation was delivered by the high (40x) magnification objective to a hexagonal area
approximately 250 um diameter centered on the recorded cell, and the same light intensity was maintained
for all recordings. To report changes in membrane potential and latency in CRACM experiments, 3 to 6
traces (typically 5 or 6 traces) were analyzed. Non-responding cells were confirmed to be healthy by either
observation of normal spontaneous firing or minor current injection to elicit action potentials. For each
trace the absolute peak value reached relative to baseline was identified within the 50ms immediately after
stimulus onset. Results were then averaged for all traces analyzed for that recording. Some neurons spon-
taneously fired action potentials during the pre or post stimulus analysis window, and traces where this
occurred were excluded from analysis, and only cases where the analysis window fell within an inter spike
interval were included. For all experiments involving drug perfusions, recordings were acquired only in sli-
ces previously treated with pure ACSF. After drug perfusion and washout, no more recordings were made
and that slice was discarded. For leptin experiments, only cells with spontaneous firing were chosen for
testing. For CNQX/AP5 experiments, a small holding current (<10pA) was used to hold the cell at approx-
imately 60mV. Firing threshold was calculated using scripts adapted from code made available by Mathieu
Noe on the Mathworks website (Noe, 2021).

¢? CellPress

OPEN ACCESS

iScience 25, 104605, July 15, 2022 17




¢? CellPress

OPEN ACCESS

QUANTIFICATION AND STATISTICAL ANALYSIS

When comparing two groups of normally distributed data, a Student’s two tailed t test was used. To
compare the effects of genotype and fasting within 4 groups, two-way ANOVA test was used. When
data was collected from the same animals across time, a three-way ANOVA test was performed to analyze
time, genotype and fasting effect. In experiments with a single variable and more than two groups, a one-
way ANOVA was performed. Following a significant effect in the ANOVA test, Bonferroni's post hoc com-
parison was used to determine differences between individual data points. Analyses were conducted using
the GraphPad Prism 9 statistical software for Windows. All data are presented as means + standard error of
the mean with p < 0.05 considered statistically significant.

Histology, confocal fluorescence microscopy and image processing

Drd1¢®*: Tdtom o™ *:NPYS™’* mice were IP injected with a mixture of ketamine/xylazine and transcar-
dially perfused with roughly 50mL of ice cold 0.01 M phosphate buffer solution (PBS) followed by 50mL
ice cold freshly prepared 4% paraformaldehyde (PFA) in PBS, pH 7.3-7.4. Brains were immediately
dissected and post-fixed overnight (approximately 20 hours) at 4°C in PFA. Fixed brains were then washed
thoroughly in PBS and transferred into a solution of 30% sucrose in PBS for 36 hours, and then embedded in
cryostat embedding media in tissue cups and frozen by submerging in a beaker containing isopentenyl and
dry ice, and stored at —80°C until sectioning. Brains were then sectioned using a cryostat microtome
(ThermoFisher HM 505 EVP) and 30 um coronal sections of the arcuate were collected and transferred to
PBS. Sections were then mounted with DAPI Fluoromount-G (Southern Biotech). Images were then
collected using a Zeiss LSM780 laser scanning confocal microscope. For post processing confocal micro-
scopy images, no brightness or contrast adjustments were made. To quantify the percentage of AgRP or
Drd1-Cre neurons co-expressing TdTom or GFP, 10x confocal images taken of sections chosen randomly
from consecutive wells, each containing 5 serially collected sections to achieve consistent rostral caudal
spacing. Individual neurons were labeled manually using the ImageJ multipoint tool, and a simple Python
script was used to identify marked GFP and TdTom neurons within a 5 um radius of each other. Each label
was then subsequently verified manually to ensure accurate co-labeling, in the context of DAPI expression
and surrounding marked cells for each channel and group. Arcuate ROl was determined using a combina-
tion of Allen Brain Atlas (both Adult reference atlas and ISH coronal images for NPY mRNA expression
(experiment 717), NPY-GFP fluorescence in the images, and cell density delineating the blood brain barrier
boundary visible through DAPI staining. Finally the ImagedJ ROl manager was used to include only neurons
marked inside the ROI of the arcuate for analysis. For images shown that were collected during patch clamp
experiments using Scientifica camera, the minimum brightness of fluorescent channels (i.e. TdTom or
ChR2-mCH, NPY-GFP) was slightly increased to remove out of focus background light using FlJI/ImageJ
(Schindelin et al., 2012).
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