
INTRODUCTION

The cisterna magna (CM) is the largest subarachnoid cistern be-
tween the arachnoid and pia mater layers; it receives cerebrospinal 
fluid (CSF) from the fourth ventricle [1]. The CSF continuously 
circulates in the cerebral ventricles, subarachnoid space, and spinal 
cord central canal while providing nourishment and protection to, 
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Till date, researchers have been developing animal models of Alzheimer’s disease (AD) in various species to understand the pathological charac-
terization and molecular mechanistic pathways associated with this condition in humans to identify potential therapeutic treatments. A widely 
recognized AD model that mimics the pathology of human AD involves the intracerebroventricular (ICV) injection with streptozotocin (STZ). 
However, ICV injection as an invasive approach has several limitations related to complicated surgical procedures. Therefore, in the present study, 
we created a customized stereotaxic frame using the XperCT-guided system for injecting STZ in cynomolgus monkeys, aiming to establish an 
AD model. The anatomical structures surrounding the cisterna magna (CM) were confirmed using CT/MRI fusion images of monkey brain with 
XperCT, the c-arm cone beam computed tomography. XperCT was used to determine the appropriate direction in which the needle tip should be 
inserted within the CM region. Cerebrospinal fluid (CSF) was collected to confirm the accurate target site when STZ was injected into the CM. 
Cynomolgus monkeys were administered STZ dissolved in artificial CSF once every week for 4 weeks via intracisterna magna (ICM) injection us-
ing XperCT-guided stereotactic system. The molecular mechanisms underlying the progression of STZ-induced AD pathology were analyzed two 
weeks after the final injection. The monkeys subjected to XperCT-based STZ injection via the ICM route showed features of AD pathology, includ-
ing markedly enhanced neuronal loss, synaptic impairment, and tau phosphorylation in the hippocampus. These findings suggest a new approach 
for the construction of neurodegenerative disease models and development of therapeutic strategies.
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and enabling waste removal from, the brain [2]; CSF collection and 
intracisternal injection via suboccipital puncture are convenient 
strategies because they are less invasive and show a minimal risk 
of contamination [3]. Therefore, numerous studies using intra-
cisternal administration of biologics, including adeno-associated 
virus (AAV)-mediated gene delivery and injection of antisense 
oligonucleotides (ASOs), recombinant enzymes, and novel agents 
as promising therapeutic candidates for neurodegenerative dis-
eases, have demonstrated the medical efficacy of this technique 
and pathological mechanisms underlying various neurological 
diseases [4-6].

Intracisternal injection via suboccipital puncture with a manual 
stereotactic (non-stereotactic) and stereotactic method is widely 
used for drug distribution through CSF flow into the brain [7], 
since this method has several advantages. Although this route has 
diverse advantages for direct transport into the brain, the low ac-
curacy of intracisternal injection remains a hurdle in the develop-
ment of safe and reliable techniques for drug delivery. Intracister-
nal injection with a non-stereotactic method in particular requires 
anatomical knowledge and its efficacy depends on the skills and 
experience of the technician because otherwise, several side ef-
fects, including blood contamination, CSF leakage, and brain stem 
damage, can occur [8-10].

Alzheimer’s disease (AD) is a progressive neurodegenerative 
disorder characterized by memory and cognitive decline [11]. 
Accumulation of amyloid-beta plaques and the formation of 
neurofibrillary tangles in the cerebral cortex and hippocampus 
are regarded as typical pathological hallmarks of AD [12, 13]. Fur-
thermore, several abnormalities in brain glucose metabolism have 
been observed in AD patients. Cerebral impairment of insulin sig-
naling and translation of insulin receptors have been recognized 
as early signs of AD progression [14-17].

Streptozotocin (STZ) is a diabetogenic compound generally used 
to establish animal models of diabetes owing to its ability to selec-
tively impair the insulin signaling pathway [18]. Intracerebroven-
tricular (ICV) administration of STZ disrupts the homeostasis of 
brain insulin signaling and defects in cerebral glucose metabolism 
[19]. This is accompanied by behavioral, neuropathological, and 
biochemical changes similar to those observed in the pathology of 
AD [20-22]. However, this technique is invasive and greatly limits 
the generalizability of the results obtained in monkeys. Although 
this technique is invasive method for studying the brain pathology 
in monkeys, there are some technical challenges and limitation to 
overcome unanticipated adverse effects. The ICM administration 
of STZ is also carried out, but much less frequently than ICV ap-
proach.

Therefore, the present study aimed to determine the effects of 

STZ administration in cynomolgus monkeys via the intra-cisterna 
magna (ICM) route using a novel technique for X-ray-based real-
time three-dimensional imaging coupled with the c-arm cone 
beam computed tomography (CBCT) technology, XperCT (Phil-
ips), which can assess three-dimensional images of soft tissue, and 
bone structure; to the best of our knowledge, our study is the first 
to report the use of the XperCT stereotactic system for injecting 
drugs into the brain tissue to establish a monkey model of AD. We 
suggest a new alternative method for the stable and reproducible 
delivery of drugs or molecules in the brains of non-human pri-
mates (NHPs).

MATERIALS AND METHODS

Ethical statement

The experimental procedures using experimental animals were 
approved by the Institutional Animal Care and Use Committee 
of the Korea Research Institute of Bioscience and Biotechnology 
(KRIBB) Institutional Animal Care and Use Committee (Approval 
No. KRIBB-AEC-20253). The experimental procedures were per-
formed in accordance with the national guidelines and in compli-
ance with the Guide for the Care and Use of Laboratory Animals.

Experimental animals

Cynomolgus monkeys (Macaca fascicularis) were obtained from 
Suzhou Xishan Zhongke Laboratory Animal Co. (Suzhou, China); 
they were housed in individual indoor cages at the National 
Primate Research Center (NPRC) of the KRIBB, as described 
previously [23]. Cynomolgus monkeys were fed twice with com-
mercially available monkey feed (Harlan, USA), supplemented 
with various fruits and water ad libitum. The health of the mon-
keys was monitored by the attending veterinarian, consistent with 
the recommendations of the Weatherall Report. Animal health 
monitoring for monkeys was performed via microbiological tests, 
including those for B virus, simian retrovirus (SRV), simian immu-
nodeficiency virus (SIV), simian virus 40 (SV40), and simian T-
cell lymphotropic virus (STLV), as described previously [24]. The 
animals were housed in a temperature-controlled room (24±2℃) 
with 50±5% humidity and a 12-h light/dark cycle.

Intra-cisterna magna (ICM) injection of STZ and CSF  

collection

The cisterna magna is located below the cerebellum, with an in-
tact atlanto-occipital joint (Fig. 1). STZ (2 mg/kg; Sigma-Aldrich, 
St. Louis, MO, USA) was dissolved in artificial CSF (aCSF; Har-
vard Apparatus, Holliston, MA, USA). The custom-built ICM-
stereotaxic frame used in the present study was designed for com-
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patibility between CT and MRI (Fig. 2). All monkeys were initially 
anesthetized via the intraperitoneal injection of a cocktail mixture 
of ketamine (5 mg/kg) and atropine (0.02 mg/kg) and fixed in the 
sphinx position using a custom-built ICM-stereotaxic frame for 
image-guided stereotactic system under isoflurane-induced an-
esthesia (1.5% in 2 L/min oxygen). After confirmation of the cor-
rect needle tip position within the cisterna magna using XperCT 
imaging, CSF was extracted to verify the accurate position of the 
cisterna magna. Subsequently, the tube with the needle tip was 
connected to a Hamilton syringe containing STZ; ICM injections 
were administered once every week for 4 weeks.

MRI

MRI experiments were performed using a 3.0-T MRI scanner 
(Achieva 3.0T, Philips Medical Systems, Best, Netherlands) with an 
8-channel knee coil. Three-dimensional (3D) sagittal T1-weighted 
images were acquired using the turbo field echo sequence with 
the following settings: TR/TE=14/6.8 ms, 128×128 field-of-view 
(FOV), matrix size 256×256, voxel size 0.5×0.5×0.5, and number 
of slices=150. The details of the MRI protocols were the same as 
those described in a previous report [25].

Blood and CSF analysis

Peripheral blood and CSF samples from all cynomolgus mon-
keys were collected, and cell type composition was analyzed using 
a hematology analyzer (Hemavet950; Drew Scientific, Miami Lak-
ers, FL, USA). 

Perfusion and tissue preparation

Two weeks after the final STZ injection, all cynomolgus monkeys 
were transcardially perfused with 500 ml of 100 mM phosphate-
buffered solution (PBS) under deep anesthesia with the intramus-
cular injection of a cocktail of ketamine (5 mg/kg) and atropine 
(0.02 mg/kg). Whole brains were removed from the skull, washed 
with cold PBS, and separated bilaterally. Hippocampal proteins 
were harvested from monkey brains using punches on 4-mm-
thick slices.

Western blot analysis

Protein samples of cynomolgus monkey hippocampi were har-
vested using the PRO-PREP protein extraction solution (Intron 
Biotechnology, Seongnam, Korea). Equal amounts (15 μg) of pro-
tein were separated by electrophoresis on 10~15% SDS-PAGE gels 
and transferred onto nitrocellulose membranes (BD Biosciences, 
Franklin Lakes, NJ, USA). The membranes were blocked by in-
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Fig. 1. Localization of the cisterna magna (CM) in monkey brain. The main anatomical structures surrounding cisterna magna in the monkey brain. 
Representative lateral CT/MRI fusion image showing the upper cervical spine joints, which comprised the occiput (C0), atlas (C1), and axis (C2).
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cubation with blocking buffer (BD Biosciences) and probed with 
the following antibodies overnight at 4℃: anti-β-actin, anti-GFAP 
(Sigma-Aldrich, St. Louis, MO, USA), anti-NeuN, anti-synapto-
physin, anti-PSD95, anti-phospho(p)-tau(S262), anti-p-tau(T181), 
and anti-p-tau(S396) (Abcam, MA, USA). Next, the membranes 
were washed with TBS saline containing 0.1% Tween-20 (TBST) 
and incubated with horseradish peroxidase-conjugated secondary 
antibodies (Cell Signaling, MA, USA) for 1 h at room temperature. 
After washing with TBST, the specific binding was detected using 
a chemiluminescence detection system (Thermo Scientific, MA, 
USA). 

Statistical analysis

The data represent the mean±SD from three independent exper-
iments (n≥3). Experimental differences were tested for statistical 
significance using two-way ANOVA conducted of variance us-
ing GraphPad Prism 9 software (San Diego, CA, USA). Statistical 
significance was set at p<0.05, and is indicated on the graphs using 
asterisks; p-values<0.01 and <0.001 were indicated by two and 
three asterisks, respectively.

RESULTS

T1-weighted MRI images obtained after the intracisternal 

tracer injection reveals the CSF dynamics 

To develop a novel method for intracisternal injection using the 
XperCT-guided stereotactic system, we designed a protocol that 
enables the assessment of real-time updated images during the 
intervention. The animals were fixed in the sphinx position using 
a custom-built ICM-stereotaxic frame under anesthesia (Fig. 3A). 
After registration with the preoperative XperCT reconstruction, 
the planning and guiding needle insertion can be acquired to 
establish the path to the target site, i.e., the cisterna magna (CM). 
To verify the real-time position of the needle after insertion, we 
obtained a new XperCT image and confirmed the target point 
on the postoperative imaging (Fig. 3B). A CSF tracer was used to 
visualize the intracisternal injection through the target point. The 
CSF tracer (100 mM) was slowly injected (25 μl/min) into the CM, 
and brain T1-weighted MRI was performed after injection. Rep-
resentative MRI images of tracer infusion into the CM showed the 
uptake of CSF into the brain parenchyma (Fig. 3C). These results 
suggest that the CSF tracer (injected via the ICM route) flows 
along the CSF circulation pathway and moves along the basement 
membrane of the brain parenchyma.
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Fig. 2. Appearance of the custom-built CT-MRI compatible stereotaxic frame. The customized stereotaxic frame showing the top, side, and three-
dimensional view. Top view shows the position of the extended base plate, the microdrive screw adjustment for the anteroposterior axis, anesthesia mask, 
ear bar, and support plate. Anteroposterior adjustment for adaptor is 150 mm. Side view shows the back strap and the support plates including head, 
body and hip for prone position. Three-dimensional view shows the hinge system, which are angle adjustable to stabilize and maintain the flexion of up-
per cervical spine.
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Effects of STZ administration (via the ICM route) on AD 

pathology-associated features in hippocampus of  

cynomolgus monkeys

To apply the XperCT-guided ICM administration system, we 
selected STZ, which is known to trigger AD pathology in cyno-
molgus monkeys [25-27]. We injected aCSF (vehicle group; n=2) 
and STZ (2 mg/kg; STZ group; n=2) using XperCT-guided ICM 
at weeks 1, 2, 3, and 4 (Table 1). Two weeks after the last ICM-STZ 
administration, all monkeys were sacrificed and further protein 
analysis was performed (Table 2 and Fig. 4A). Given that several 
studies have suggested that STZ successfully triggers AD pathol-
ogy-associated features, such as neuronal loss, synaptic loss, and 
abnormal tau phosphorylation [28-31], we analyzed neuronal loss, 
synaptic loss, and abnormal tau phosphorylation by immunoblot-
ting analysis. STZ-induced neuronal loss was confirmed by assess-
ing the levels of the NeuN protein, a neuronal marker. The NeuN 
protein levels decreased significantly in the STZ-injected group 
(Fig. 4B). In addition, we determined the expression levels of the 
pre- and post-synaptic proteins synaptophysin and PSD95, respec-

tively. The expression levels of synaptophysin and PSD95 in the 
hippocampus decreased in the mice from the STZ-injected group 
(Fig. 4C). We also verified that the phosphorylation the of tau epi-
topes, i.e., the levels of p-Tau(S262), increased significantly in the 
mice from the STZ-injected groups (Fig. 4D), whereas the levels of 
p-Tau(T181) and p-Tau(S396) seemed to be more affected by indi-
vidual differences (Fig. 4E). These results indicate that diverse AD 
pathology-associated features were observed in the hippocampus 
of cynomolgus monkeys injected with STZ via the ICM route.

DISCUSSION

The ICM route of administration has been continuously devel-
oped for enhanced central nervous system (CNS) drug delivery. 
This method is widely used to bypass the blood-brain barrier and 
has distinct advantages for direct delivery into the CNS [32]. An 
alternative to CSF-mediated delivery routes is lumbar intrathecal 
(IT) injection and ICV infusion. However, IT injection via lumbar 
puncture and ICV infusion via cranial puncture are challenging 
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Fig. 3. Application of the custom-built CT-MRI compatible stereotaxic frame. (A) Picture of a monkey anesthetized and immobilized within a stereo-
taxic frame for XperCT scanning using the flat detector C-arm. (B) Representative XperCT image showing the accuracy and precision of the injection 
into the cisterna magna target region. (C) Representative MRI images obtained after the CSF tracer injection into the cisterna magna. The CSF tracer 
used is a gadolinium-based MR contrast agent.
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because of procedural complexity, risk of possible contamination, 
and postoperative complications [33-35]. Lumbar puncture used 
to obtain CSF or for chemotherapy is a highly skilled procedure 
that requires practical experience and specific knowledge of the 
relevant anatomy. In addition, cranial puncture site infections and 
intracerebral hemorrhage after ICV infusion are inherent surgical 
risks. Therefore, ICM administration has a clear advantage, given 
that it is widely used in animal models. In addition, the ICM route 
has been used extensively, particularly in NHPs, because it offers 
the easiest entry into the ventricles of the brain and subarachnoid 
space around the brain and spinal cord, except for craniotomy [36].

Although there are infectious and non-infectious complications 
related to ICM injection, they can be controlled and prevented by 
improving the accuracy of ICM injection using advanced radio-
logic techniques such as X-ray, CT, and MRI [3, 37, 38]. Here, we 
describe the design of an XperCT-guided stereotactic system to 
optimize high-precision and stable CSF collection without mul-
tiple complications. To achieve X-ray-based real-time 3D imaging 
during the ICM targeting procedure, we used a newly developed 
system, the XperCT technology. The XperCT-guided technique 
allows precise planning of access to ensure injection of the drug at 
an appropriate position to avoid brainstem injury [39]. Therefore, 
the XperCT-guided ICM injection technique described herein 
provides evidence to support the wide applicability of the stereo-
taxic procedure of NHPs.

NHPs, including cynomolgus monkeys (Macaca fascicularis ), 
share brain structure and function and are genetically similar to 
humans [40]. Moreover, AD-related natural processes in the brains 
of some aged NHPs are similar to those in humans [41-43]. There-
fore, there is a need for an NHP-based model that reflects the AD 

pathology-associated features observed in humans. To date, sev-
eral groups have developed transgenic monkey models expressing 
human mutant transgenes characteristic of the familial form of 
AD, such as the amyloid-β precursor protein or Tau protein [44, 
45]. Although these transgenic models are valuable tools for study-
ing the molecular mechanisms underlying AD pathogenesis, they 
do not fully replicate certain aspects of the neuropathology of AD. 
Therefore, non-transgenic AD models have become an important 
focus of research. Administration of STZ via the ICV route causes 
the establishment of an insulin-resistant brain state, a prominent 
representative feature of non-transgenic AD models; this feature 
has been proposed as a well-characterized, and is considered an 
appropriate, AD pathology-associated feature [19-22, 29]. How-
ever, a major disadvantage of ICV injection is that it is an invasive 
procedure involving a skin incision and trauma to the brain tissue. 
Earlier studies have confirmed that accurate and reproducible ac-
cess to the CSF using ICM injection ensures the diffusion of the 
drug into the parenchyma and is similar to the diffusion observed 
after ICV injection [46, 47]. Therefore, we previously developed a 
clinically relevant STZ-administered AD model using ICM injec-
tion in monkeys and rats, which is characterized by cerebral dam-
age, disintegration of the neurovascular unit, neuroinflammation, 
amyloid deposition, neuronal loss, and tau phosphorylation [25, 
27, 48]. However, there are some technical challenges and limita-
tions to constructing stable and reproducible AD NHP-based 
models, including high costs and skilled technical infrastructure 
of XperCT. To the best of our knowledge, the present study is the 
first to apply the XperCT-guided system to achieve the stable and 
reproducible establishment of NHP models of AD via intracis-
ternal STZ administration using a custom-built ICM-stereotaxic 
frame. Pathological and molecular changes, such as neuronal loss, 
synaptic impairment, and hyperphosphorylation of Tau, were 
observed in our NHP model of STZ-induced AD. However, other 
typical AD hallmarks, such as astrocyte and microglial activa-
tion, between the animals in the vehicle and STZ groups were not 
significantly different. To overcome the limitations of our results, 
such as low sample size, additional experimental conditions, such 
as the examination of more than two monkeys per group and/

Table 1. Differential count of Leukocytes and Erythrocytes in blood and CSF from cynomolgus monkeys

Leukocytes Erythrocytes

WBC
(103/μl)

Neutrophils
(103/μl)

Lymphocytes
(103/μl)

Monocytes
(103/μl)

Eosinophils
(103/μl)

RBC
(103/μl)

Hb
(g/dl)

Blood
CSF

9.9±4.0
0.0±0.0

6.6±3.9
0.0±0.0

2.7±1.7
0.0±0.0

0.2±0.1
0.0±0.0

0.3±0.2
0.0±0.0

5.5±0.6
0.0±0.0

11.5±1.3
  0.0±0.0

WBC, white blood cell; RBC, red blood cell; Hb, hemoglobin; CSF, cerebrospinal fluid.

Table 2. Summary of NHPs in this study

Group Label Gender
Age 

(years)
Weight 

(kg)
Dose

(mg/kg)

Vehicle

STZ

C1
C2
C3
C4

Female
Female
Female
Female

  6
  7
10
  8

2.9
2.9
3.2
2.8

-

2
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or at various time points, are required. Moreover, in the monkey 
model of AD described in the present study, MRI scans (showing 
prominent ventricular dilation and parenchymal atrophy) and 

evaluation of cognitive function were not performed. Therefore, 
we believe that diverse observations, such as long-term follow-up 
observation of changes in cognitive function [49], brain scans us-
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Fig. 4. STZ (injected via the ICM route)-induced AD pathology in the hippocampus of cynomolgus monkeys. (A) A schematic diagram of the experi-
mental schedule. The expression levels of (B) NeuN, (C) Synaptophysin and PSD95, (D) p-Tau(S262), and (E) p-Tau(T181) and p-Tau(S396) with equal 
amount protein sample (15 μg) of hippocampus in vehicle- or STZ-injected cynomolgus monkeys were determined using western blotting analysis. * 
denotes p<0.05, ** denotes p<0.01, and *** denotes p<0.001.
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ing MRI [50], and AD marker screening from CSF and blood [51] 
are required to obtain more accurate information regarding STZ-
induced AD monkey models.

Taken together, we designed and applied a new alternative 
method, i.e., the XperCT-guided injection method, as a stable and 
reproducible delivery system for administering drugs into the 
brains of NHPs via the ICM route. Our findings suggest that this 
new approach can be applied for the delivery of diverse molecules, 
such as drugs, ASOs, viral vectors, and disease inducers, into brain 
tissues.
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