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ABSTRACT
Sulfasalazine is a commonly used drug for the treatment of rheumatoid arthritis and inflamma-
tory bowel disease. There are several cases of renal injury encompass sulfasalazine administration
in humans. The mechanism of sulfasalazine adverse effects toward kidneys is obscure. Oxidative
stress and its consequences seem to play a role in the sulfasalazine-induced renal injury. The cur-
rent investigation was designed to investigate the effect of sulfasalazine on kidney mitochondria.
Rats received sulfasalazine (400 and 600mg/kg/day, oral) for 14 consecutive days. Afterward, kid-
ney mitochondria were isolated and assessed. Sulfasalazine-induced renal injury was biochem-
ically evident by the increase in serum blood urea nitrogen (BUN), gamma-glutamyl transferase
(c-GT), and creatinine (Cr). Histopathological presentations of the kidney in sulfasalazine-treated
animals revealed by interstitial inflammation, tubular atrophy, and tissue necrosis. Markers of oxi-
dative stress including an increase in reactive oxygen species (ROS) and lipid peroxidation (LPO),
a defect in tissue antioxidant capacity, and glutathione (GSH) depletion were also detected in the
kidney of sulfasalazine-treated groups. Decreased mitochondrial succinate dehydrogenase activity
(SDA), mitochondrial depolarization, mitochondrial GSH depletion, increase in mitochondrial ROS,
LPO, and mitochondrial swelling were also evident in sulfasalazine-treated groups. Current data
suggested that oxidative stress and mitochondrial injury might be involved in the mechanism of
sulfasalazine-induced renal injury.
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Introduction

Sulfasalazine is widely used in the management of
inflammatory bowel diseases and rheumatoid arthritis
in humans [1]. Sulfasalazine is metabolized to sulfapyri-
dine and mesalamine (mesalazine) by bacterial azore-
ductase enzyme in the colon. It is expected that
approximately 10–30% of sulfasalazine is absorbed
unchanged to the systemic circulation [1]. Sulfapyridine
is completely absorbed. On the other hand, 30% of
formed mesalazine reaches circulation, and the rest is
excreted in feces [1].

Although sulfasalazine is generally considered as a
safe medication [2], several cases of renal injury have
been reported with sulfasalazine administration [3–7].
There is no precise mechanism(s) for sulfasalazine-
induced renal injury. Some investigations mentioned
the role of oxidative stress in this complication [8–10].

Mitochondria are recognized as the producers
of the majority of energy need for cellular normal
activity. Many xenobiotics are capable of inducing
mitochondrial injury. Among these, several pharma-
ceuticals are reported to affect mitochondrial func-
tion [11,12]. Energy metabolism disorders can affect
practically any organ. On the other hand, high and
constant dependence of kidney proximal tubular
cells on energy mentions the importance of mito-
chondria in this organ [13–15]. Oxidative stress could
act as a cause or a consequence of mitochondrial
dysfunction [16]. Hence, sulfasalazine-induced oxida-
tive stress might lead to mitochondrial injury and
vice versa.

The current investigation was designed to evaluate
the role of mitochondrial dysfunction in sulfasalazine-
induced kidney injury. In this context, sulfasalazine
was administered to rats and different serum and
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tissue biomarkers along with several mitochondrial
indices have been evaluated.

Materials and methods

Chemicals

Dichlorofluorescein diacetate (DCFH-DA), malondialde-
hyde (MDA), 3-[4,5-dimethylthiazol-2-yl]-2,5-diphenylte-
trazolium bromide (MTT), trichloroacetic acid (TCA),
sulfasalazine, Coomassie brilliant blue, 2,4,6-tripyridyl-s-
triazine (TPTZ), glutathione (GSH), sucrose, D-manni-
tol,3-(N-morpholino) propane sulfonic acid (MOPS),
bovine serum albumin (BSA), rhodamine 123 (Rh-123),
ferric chloride hexahydrate (FeCl3.6H2O), dithiothreitol
(DTT), 6-hydroxy-2,5,7,8-tetramethylchroman-2-carbox-
ylic acid (Trolox), sodium succinate, and thiobarbituric
acid (TBA) were purchased from Sigma (Sigma-Aldrich,
St. Louis, MO). Kits for evaluating biomarkers of renal
injury were obtained from Pars Azmun (Tehran, Iran).
Ethylenediaminetetraacetic acid (EDTA), 5,5-bis-dithio-
nitro benzoic acid (DTNB), 4-(2-hydroxyethyl)-1-piperazi-
neethanesulfonic acid (HEPES), orthophosphoric acid
(OPA), n-butanol, and 2-amino-2-hydroxymethyl-
propane-1,3-diol (Tris) were obtained from Merck
(Darmstadt, Germany). All salts used for making buffer
solutions were of analytical grade and obtained from
Merck (Darmstadt, Germany).

Animals

Male Sprague Dawley rats (n¼ 24) (Animal Breeding
Center, Shiraz University of Medical Sciences, Shiraz,
Iran) weighing 200–250 g were housed in an environ-
mental temperature of 23 ± 1 �C with a 40% of relative
humidity and a 12 L: 12D photoschedule. Rats had free
access to tap water and a normal chow diet. All proce-
dures involving the rats were in accordance with the
guidance for care and use of experimental animals and
were approved by a local ethic committee in Shiraz
University of Medical Sciences, Shiraz, Iran (94–01-
36–9606).

Experimental setup

Animals were randomly allotted into three groups
(n¼ 8). Rats were treated as follows: (1) control (vehicle-
treated), (2) sulfasalazine (400mg/kg/day, oral); and (3)
sulfasalazine (600mg/kg/day, oral). It has been previ-
ously reported that a dose of 600mg/kg/day of sulfa-
salazine for 14 consecutive days caused marked renal
injury in rats [8,10]. At the end of experiments, animals
were anesthetized (ketamine/xylazine; 100/10mg/kg,
i.p.) and their blood and kidney samples were collected.

Serum biochemistry and kidney histopathology

Standard kits and a Mindray BS-200VR auto analyzer
were employed to assess serum gamma-glutamyl trans-
peptidase (c-GT), cratinine (Cr), and blood urea nitrogen
(BUN) [17]. For histopathological assessments, samples
of kidney tissue were fixed in a buffered formalin solu-
tion (0.4% of sodium phosphate monobasic, NaH2PO4,
0.64% of sodium phosphate dibasic, Na2HPO4, and 10%
of formaldehyde in distilled water; pH¼ 7.4). Finally,
paraffin-embedded sections of tissue were prepared
and stained with hematoxylin and eosin (H&E) before
light microscope viewing [18].

Kidney reactive oxygen species (ROS)

Kidney samples (200mg) were homogenized (Heidolph
homogenizer, Germany) in ice-cooled Tris-HCl buffer
(40mM, pH¼ 7.4, 4 �C) (1:10 w/v). Then, 100 mL of tissue
homogenate was mixed with 1mL of Tris-HCl buffer
(40mM, pH¼ 7.4) and 5mL of 20,70-DCFH-DA (final con-
centration of 10mM). The mixture was incubated for
30min at 37 �C (Gyromax

TM

incubator shaker). Finally,
the fluorescence intensity of the samples was assessed
using a FLUOstar OmegaVR multifunctional microplate
reader (kexcitation¼ 485 nm and kemission¼ 525 nm)
[17,19].

Lipid peroxidation in kidney tissue

Thiobarbituric acid reactive substances (TBARS) were
assessed in the kidney as an index of lipid peroxidation.
Briefly, 500 mL of kidney tissue homogenate (10% w/v in
KCl, 1.15%, 4 �C) was added to a reaction mixture con-
sisted of 1mL of TBA (0.375%, w/v) and 3mL of phos-
phoric acid (1% w/v, pH¼ 2). Samples were mixed and
heated in boiling water (100 �C, 45min). Afterward,
2mL of n-butanol was added and vigorously mixed.
Finally, samples were centrifuged (3000�g for 5min)
and the absorbance of developed color in n-butanol
phase was measured at 532 nm using an Ultrospec
2000VR UV spectrophotometer (Uppsala, Sweden) [20].

Kidney glutathione content

The kidney glutathione (GSH) content was assessed by
the method described by Sedlak et al. [21]. Briefly, kid-
ney tissue samples (200mg) were homogenized
(Heidolph homogenizer, Germany) in 8mL of ice-cooled
EDTA solution (20mM, 4 �C). Then, 5ml of the prepared
homogenate was mixed with 4mL of distilled water
(4 �C) and 1mL of TCA (50% w/v). Tubes were centri-
fuged (10,000�g, 4 �C, 25min), then 2mL of the
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supernatant was mixed with 4mL of ice-cooled Tris-HCl
buffer (pH¼ 8.9, 4 �C) and 100mL of Ellman’s reagent
(DTNB, 0.01M in methanol). The absorbance of the
developed yellow color was measured at 412 nm using
an Ultrospec 2000VR UV spectrophotometer (Uppsala,
Sweden) [22].

Ferric reducing antioxidant power (FRAP) of
kidney tissue

FRAP assay measures the change in absorbance at
593 nm due to the formation of a blue colored Fe2þ-tri-
pyridyltriazine compound from the colorless oxidized
Fe3þ form by the action of electron-donating antioxi-
dants [23]. Briefly, the working FRAP reagent was pre-
pared by mixing 10 volumes of 300mmol/L acetate
buffer, pH¼ 3.6, with 1 volume TPTZ (10mmol/L in
40mmol/L hydrochloric acid) and with 1 volume of fer-
ric chloride (20mmol/L). All solutions were used on the
day of preparation. Kidney tissue was homogenized in
ice-cooled Tris buffer (0.25M, containing 0.2M sucrose
and 5mM DTT, pH¼ 7.4). Then, 50mL of tissue hom-
ogenate and 150 mL of deionized water were added to
1.5mL of the FRAP working solution. The reaction
mixture was incubated at 37 �C for 5min. Finally, sam-
ples were centrifuged (13,000�g, 1min) and the
absorbance of developed color was measured at
595 nm by an Ultrospec 2000VR spectrophotometer
(Uppsala, Sweden) [24].

Kidney mitochondria isolation

Rats kidneys were rapidly removed, washed, and
minced in an ice-cold buffer medium (75mM D-manni-
tol, 225mM sucrose, 0.5mM EGTA, 2mM HEPES, 0.1%
of essentially fatty acid-free BSA, pH¼ 7.4). Then,
minced tissues were transported into a fresh buffer in a
proportion of 5mL/g of kidney and homogenized.
Mitochondria were isolated by differential centrifuga-
tion of the kidney homogenate [25,26]. First, unbroken
cells and nuclei were pelleted at 1000�g for 10min at
4 �C; second, the supernatant was centrifuged at
15,000�g for 10min at 4 �C to pellet the mitochondria.
This step was repeated three times using fresh buffer
medium. Final mitochondrial pellets were suspended in
Tris buffer containing 320mM sucrose, 1mM EDTA, and
10mM Tris-HCl, pH¼ 7.4, except for the mitochondrial
samples used to assess ROS production, mitochondrial
depolarization, and mitochondrial swelling, which were
suspended in respiration buffer (320mM sucrose,10mM
Tris, 20mM Mops, 50 lM EGTA, 0.5mM MgCl2, 0.1mM
KH2PO4, and 5mM sodium succinate), MMP assay buffer
(220mM sucrose, 68mM D-mannitol, 10mM KCl, 5mM

KH2PO4, 2mM MgCl2, 50 lM EGTA, and 10mM HEPES)
and swelling buffer (125mM sucrose, 65mM KCl, 10mM
HEPES, pH¼ 7.2) [25,27]. Samples protein concentra-
tions were determined by the Bradford method [26].

Mitochondrial MTT assay

The MTT assay was applied as colorimetric method for
determination of mitochondrial succinate dehydrogen-
ase activity (SDA); as previously described by Mosmann
et al. [28]. Briefly, a mitochondrial suspension (500mg
protein/mL) was incubated with 0.4% of MTT at 37 �C
for 30min. The product of purple formazan crystals was
dissolved in 1mL dimethyl sulfoxide (DMSO) and the
optical density (OD) at 570 nm was measured with an
EPOCH plate reader (Bio-TekVR Instruments, Highland
Park, IL).

Mitochondrial depolarization

Mitochondrial uptake of the cationic fluorescent dye,
Rh-123, has been used for the estimation of mitochon-
drial depolarization [27,29–31]. Rh-123 accumulates in
intact mitochondria by facilitated diffusion. When the
mitochondrion is damaged and depolarized, there is no
facilitated diffusion and the amount of Rh-123 in the
supernatant is increased. In the current investigation,
the mitochondrial fractions (0.5mg protein/mL) were
incubated with 10 mM of Rh-123 in the MMP assay buf-
fer for 30min. Afterward, samples were centrifuged
(15,000�g, 1min, 4 �C) and the fluorescence intensity
of the supernatant was monitored using a FLUOstar
OmegaVR multifunctional microplate reader (kexcitation¼
485 nm and kemission¼ 525 nm) [27,32,33].

ROS in isolated kidney mitochondria

The 20,70-DCFH-DA was used as a fluorescent probe to
assess the mitochondrial ROS measurement in the kid-
ney. Briefly, isolated kidney mitochondria were placed
in respiration buffer containing 320mM sucrose, 10mM
Tris-HCl, 20mM MOPS, 50 lM EGTA, 0.5mM MgCl2,
0.1mM KH2PO4, and 5mM sodium succinate, pH¼ 7.4.
Then, 10 mL of DCFH-DA was added (final concentration,
10lM) to medium and then incubated for 30min. Then,
the fluorescence intensity of DCF in samples was
measured using a FLUOstar OmegaVR multifunctional
microplate reader (kexcitation¼ 485 nm and kemission¼
525 nm) [27].

Mitochondrial swelling

Analysis of mitochondrial swelling after the isolated
mitochondria (0.5mg protein/mL) was estimated
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through changes in light scattering as monitored spec-
trophotometrically at 540 nm (30 �C) as previously
described [27,31]. Briefly, isolated mitochondria were
suspended in swelling buffer containing 70mM sucrose,
230mM D-mannitol, and 3mM HEPES, pH¼ 7.2 [25]. The
absorbance was measured at 540 nm during 70min of
incubation using an EPOCH plate reader (Bio-Tek
InstrumentsVR ). A decrease in absorbance indicates an
increase in mitochondrial swelling [27].

Mitochondrial glutathione (GSH) content

Mitochondrial GSH level was determined with a method
using Ellman’s reagent [21]. Isolated kidney mitochon-
dria were suspended in phosphate buffer (pH¼ 7.4) and
treated with TCA (10% w/v) to extract mitochondrial
glutathione. The mixture was centrifuged (13,000�g,
4 �C for 1min) to remove denatured proteins. The inten-
sity of produced yellow color in the samples was
recorded at 412 nm with an ultraviolet spectrophotom-
eter (Pharmacia Biotech 2000VR , Uppsala, Sweden)
[27,34].

Lipid peroxidation in kidney mitochondria

Thiobarbituric acid-reactive substances (TBARS) test was
used for lipid peroxidation assay in isolated kidney
mitochondria [27]. As previously mentioned, sucrose
interferes with the TBARS assay [27,35]. Hence, isolated
mitochondria were washed once (to remove sucrose) in
ice-cooled MOPS-KCl buffer (50mM MOPS, 100mM KCl,
pH¼ 7.4), and resuspended in MOPS–KCl buffer [27].
Afterward, the mitochondrial suspension was mixed
with twice its volume of 15% of TCA, 0.375% of thiobar-
bituric acid (TBA), 0.24N HCl and 0.5mM of Trolox, and
heated for 15min at 100 �C [27]. After centrifugation
(15,000�g, 10min), the absorbance of the supernatant
at 532 nm was recorded with an EPOCH plate reader
(Bio-TekVR Instruments) [27].

Statistical analysis

Data are given as the mean± SD. Data comparison was
performed by the one-way analysis of variance (ANOVA)
with Tukey’s multiple comparison test as a post hoc.
Differences were considered statistically significant
when p< .05.

Results

The sulfasalazine-induced renal injury was biochemically
evident by the increase in serum BUN, gamma-glutamyl
transpeptidase (c-GT), and creatinine (Cr) in

drug-treated animals (Figure 1). Moreover, it was found
that animals’ weight was lower in sulfasalazine-treated
groups (Figure 2) and an increment in kidney weight
was detected in sulfasalazine-treated rats as compared
with the control group (Figure 2).

The level of oxidative stress markers in kidney was
significantly changed in sulfasalazine-treated animals
(Table 1). Sulfasalazine (400 and 600mg/kg) caused an
increase in kidney ROS formation and lipid peroxidation
(Table 1). Furthermore, renal GSH reservoirs were
depleted and tissue antioxidant capacity defected in
drug-treated rats in comparison with control group
(Table 1). Histopathological presentations of the kidney
in sulfasalazine-treated animals revealed by interstitial
inflammation, tubular atrophy, vascular congestion, and
tissue necrosis (Figure 3 and Table 2).

Mitochondria isolated from sulfasalazine-treated ani-
mals showed marked decrease in SDA (MTT assay)
(Figure 3). Further assessment of kidney mitochondria
derived from sulfasalazine-treated rats revealed a
marked increase in mitochondrial swelling, mitochon-
drial depolarization, and an increase in mitochondrial
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Figure 1. Serum biochemistry of kidney injury biomarkers in
sulfasalazine-treated animals. SSZ: sulfasalazine. Data are
expressed as mean ± SD (n¼ 8). Asterisks indicate significantly
different as compared with control group (��p< .01 and���p< .001).
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ROS level (Figure 4). It was also detected that renal
mitochondrial glutathione stores were decreased in
sulfasalazine-treated animals (Figure 5). sulfasalazine
administration (600mg/kg) also increased mitochondrial
lipid peroxidation in rat kidney (Figure 5).

Discussion

Sulfasalazine is widely administered in a variety of
inflammatory-based diseases. On the other hand, sev-
eral cases of sulfasalazine-induced renal injury have
been reported [2,5,7,36]. Sulfasalazine-induced renal
injury might lead to irreversible renal failure, organ
transplantation, or even patient death [37–39]. There
is no precise mechanism(s) for sulfasalazine-induced
renal injury.

Some investigations indicated the involvement of
oxidative stress and its consequent events in this com-
plication [8,9]. Oxidative stress and its consequences
also seem to be involved in other sulfasalazine side
effects including infertility and hepatic injury [40–42]. In
line with previous investigations, we found that sulfa-
salazine significantly increased oxidative stress bio-
markers in the kidney tissue (Table 1). Oxidative stress

constitutes an important risk factor for tissue damage
and organ dysfunction. Furthermore, an important
interplay exists between oxidative stress and mitochon-
drial function [43]. Oxidative stress is involved in the
activation of several signaling pathways leading to the
activation of transcription factors, gene expression and
induction of apoptosis [44]. Sulfasalazine-induced oxida-
tive stress might contribute to mitochondrial injury
induced by this drug. On the other hand, oxidative
stress might be a cause or a consequence of mitochon-
drial dysfunction [16]. Therefore, sulfasalazine-induced
ROS formation might deteriorate mitochondrial injury
and vice versa.

High and constant dependence of kidney proximal
tubular cells on energy mentions the critical role of
proper mitochondrial function in this organ [13,14].
Sulfasalazine-induced mitochondrial dysfunction might
lead to the energy crisis, tubular cells injury, and defect
in ion and electrolytes reabsorption. The electrolyte
imbalance in case reports of sulfasalazine or mesalazine
[45–48] might be attributed to insufficient ion reabsorp-
tion (an energy dependent process) in the kidney.

As mentioned, sulfasalazine is metabolized to mesa-
lazine and sulfapyridine by bacterial azoreductase
enzymes in the human intestine. The contribution of
the whole molecule of sulfasalazine and/or its each
intestinal metabolite in the renal injury and oxidative
stress induced by this drug is not clear. Some investiga-
tions mentioned that the obstructive nephropathy
induced by sulfasalazine might be associated with sul-
fonamide crystals in the kidney [39]. It has also been
found that sulfasalazine nephrotoxicity might be attrib-
uted to the intratubular precipitation of sulfapyridine
crystals [3]. Hence, sulfapyridine-induced renal injury
might play a role in sulfasalazine-induced renal injury
and mitochondrial dysfunction. On the other hand,
mesalazine (mesalamine) itself is widely administered
against inflammatory bowel disease and rheumatoid
arthritis [49]. Mesalazine administration is also associ-
ated with renal injury [46,50]. The mechanism of mesa-
lazine nephrotoxicity is unknown, but it is presumed to
be similar to that of other salicylates. Salicylates nephro-
toxicity is associated with renal hypoxia, mitochondrial
injury, uncoupling of oxidative phosphorylation, and
inhibition of renal prostaglandin synthesis [51,52].

Table 1. Kidney tissue ROS formation, lipid peroxidation, total antioxidant capacity, and glutathione content.

Treatment
ROS formation

(fluorescent intensity, FI)
Lipid peroxidation (nmol of
TBARS/mg kidney tissue)

GSH (mmol/mg
kidney tissue)

Total antioxidant capacity
(mmol of vitamin C equivalent)

Control 75432 ± 5276 1.71 ± 0.82 71.55 ± 6.22 89.22 ± 11.23
SSZ 400 (mg/kg) 154209 ± 11231� 3.44 ± 0.56� 56.33 ± 3.22� 36.49 ± 6.22�
SSZ 600 (mg/kg) 186532 ± 8638� 2.66 ± 0.61� 42.35 ± 6.27� 41.22 ± 3.44�
Note: Data are shown as mean ± SD (n¼ 8). SSZ: sulfasalazine.
Asterisk(�) indicates significantly different as compared to control group (p< .001).
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Hence, a part of sulfasalazine-induced mitochondrial
injury in the current investigation might be attributed
to the mesalamine as an intestinal metabolite of
sulfasalazine.

The exact mechanism/effect of sulfasalazine-induced
renal injury needs further investigations to be precisely
cleared. It is not determined whether sulfasalazine and/
or its metabolites are responsible for oxidative stress,
mitochondrial dysfunction and renal injury induced by
this drug. In the current investigation, we found that
sulfasalazine administration caused mitochondrial dys-
function in rat kidney. However, the contribution of
sulfasalazine and each of its intestinal metabolites on
kidney mitochondria could not be drawn from these
data. On the other hand, we found that different con-
centrations of sulfasalazine caused toxicity in isolated
kidney mitochondria (data not shown). However, we are

Figure 3. Kidney mitochondrial succinate dehydrogenase activity (SDA) (MTT assay) and photomicrographs of kidney histopatho-
logical changes in sulfasalazine-treated animals. MTT test revealed a significant decrease in mitochondrial SDA in the kidney of
sulfasalazine-treated animals (mean ± SD, n¼ 8, and ���p< .001). Kidney photomicrographs showed tubular atrophy, necrosis,
and interstitial inflammation in sulfasalazine-treated animals (B, C, and D) in comparison with control group (A). A: control
(vehicle-treated), B: sulfasalazine 400mg/kg/day); C and D: sulfasalazine 600mg/kg/day).

Table 2. Renal injury score in sulfasalazine-treated rats.

Treatment
Focal

necrosis
Tubular
atrophy

Interstitial
inflammation

Vascular
congestion

Control – – – –
SSZ 400 (mg/kg) þ þ þ þ
SSZ 600 (mg/kg) þ þ þþ þþ
SSZ: sulfasalazine.
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not able to rule out the role of sulfasalazine metabolites
in kidney mitochondrial injury.

More investigations are needed to reveal the clinical
significance of mitochondrial dysfunction and oxidative
stress in the pathogenesis of sulfasalazine-induced renal
injury. Moreover, the role of each metabolite of sulfa-
salazine and their effect on kidney mitochondria in dif-
ferent experimental models could be the subject of
future investigations.
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Figure 4. Mitochondrial depolarization (A), swelling (B), and ROS formation (C) in the kidney of sulfasalazine-treated animals. SSZ:
sulfasalazine. Data are given as mean ± SD (n¼ 8). Asterisks indicate significantly different as compared with control group
(�p< .05, ��p< .01, and ���p< .001). Superscript “ns” indicates not significant as compared to control group (p> .05).
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