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Abstract

Social and economic systems produce complex and nonlinear relationships in the indicator

variables that describe them. We present a Bayesian methodology to analyze the dynamical

relationships between indicator variables by identifying the nonlinear functions that best

describe their interactions. We search for the ‘best’ explicit functions by fitting data using

Bayesian linear regression on a vast number of models and then comparing their Bayes fac-

tors. The model with the highest Bayes factor, having the best trade-off between explanatory

power and interpretability, is chosen as the ‘best’ model. To be able to compare a vast num-

ber of models, we use conjugate priors, resulting in fast computation times. We check the

robustness of our approach by comparison with more prediction oriented approaches such

as model averaging and neural networks. Our modelling approach is illustrated using the

classical example of how democracy and economic growth relate to each other. We find

that the best dynamical model for democracy suggests that long term democratic increase

is only possible if the economic situation gets better. No robust model explaining economic

development using these two variables was found.

1 Introduction

In recent years, an extensive amount of data describing the state of social and economic sys-

tems has become available. For example, the World Bank collects statistics on global develop-

ment data since 1960, and has made them freely available in the form of indicator variables of

education, health, income, but also pollution, science and technology, government and policy

performances [1]. Data availability has opened up possibilities for a vast number of studies on

evolution of the political, economical and sociological aspects of global development. Some

examples include: causes of economic growth [2]; impact of democracy on health, schooling

and development [3, 4]; globalization and changes in societal values [5]; and relationships

between liberalism, post-materialism and freedom [6]. Studies of social systems often consider

different scales—e.g. community, municipality, states, and countries,— but address a common
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fundamental question: is it possible to extract the underlying essential relationships and devel-

opment patterns of indicator variables from time series data [7]? Knowing such relationships

would constitute a significative step towards interpreting, predicting and possibly controlling,

social and economical development.

Linear and non-linear interactions between indicator variables are common in social sys-

tems [8–10], but time series data are often noisy and incomplete, posing significant challenges

in the identification of such fundamental relationships.

Let us take as an example the extensively studied, and hotly debated, relationship between

democracy (D) and economic development (G) measured as GDP per capita [11–15]. In our

study, time series data for D is based on the Freedom House political rights and civil liberties

scores [16–18], weighted by the human-rights-performance, taking values between zero and

one. The World Bank provides time series data of G in U.S. dollar and in total we include data

for 174 countries from 1981 and 2006, for a total of 3445 data points, averaging 19 data

points per country. The dynamic relationship underlying these data can be conveniently repre-

sented as a vector field in the (D, G) state space, as shown in Fig 1. We obtain this visual

Fig 1. Naive approximation of the non-linear dynamics relationship between democracy (D) and log GDP per capita (G). The average change of all

data points in the G andD directions is calculated in the state space of 100 equally sized regions visualized using an interpolating stream-slice plot. Where

there are no lines, there is no data available.

https://doi.org/10.1371/journal.pone.0196355.g001
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representation by computing the change of all data points in the G and D directions, we then

divide the state space into 100 equally sized regions (10 by 10), average the changes in the data

points within each area, and finally visualize the resulting vectors using an interpolating

stream-slice plot. Although this is a naive approximation, Fig 1 provides a picture of the non-

linear nature of the democracy-GDP relationship.

It still remains unclear how much of the observed pattern in Fig 1 is due to a genuine rela-

tionship between the indicators and how much is random noise in data. Such aspect as non-

linearity and noise in the data significantly lowers the accuracy of the equation-based statistical

models that one would traditionally use to fit data.

Within the fast-growing field of machine learning, artificial neural networks (ANN) are a

simple, useful and accurate tool for modeling non-linear and complex systems, even when the

available data is noisy [19–21]. Based on nonparametric estimations, this method can serve as

a universal approximator [22], enabling fitting of data without constraints and guidance from

theory, and is widely used in forecasting, modeling and classification. Since the 1990s, neural

networks have been applied in fields as diverse as medical diagnosis [23], forecasting ground-

water levels [24], speech recognition [25, 26], and species determination in biology [27].

Recently, the nonlinearities characterizing social-economical systems have lead researchers in

this area to turn to machine learning techniques [28]. Models obtained with ANN and similar

prediction-oriented methods accurately reproduce empirical patterns. However results from

ANNs essentially remain black boxes [29], making it difficult to translate from a fitted model

to insights into the relationships between indicators.

Recently, Ranganthan et al. [15] introduced an approach to analyze time series data of social

indicators that starts to bridge the gap between black-box machine learning algorithms and

traditional statistical models by finding coupling functions [30] of the dynamical socio-eco-

nomics interactions. Coupling functions are used for studying dynamics in many applications,

such as: chemistry [31–33]; cardiorespiratory physiology [34, 35]; neural science [36]; commu-

nications [37]; and social science [3, 15, 38–41]. Ranganthan et al. [15] developed a Bayesian

algorithm to trade-off between high explanatory power and complexity when selecting the best

polynomial model to fit data. With this approach they were able to identify non-linear, dynam-

ical relationships between indicator variables. In particular, when studying the relationship

between democracy and economic development they found the best function to describe

changes in democracy to be

dD
dt
¼ 0:11G3 � 0:067

D
G
: ð1Þ

According to this expression, democracy increases once GDP per capita has reached a certain

threshold that depends on the democracy level itself. The best model for GDP per capita was

dG
dt
¼ 0:014þ 0:0064DG � 0:02G; ð2Þ

telling us that most of the change in GDP would be explained by a positive constant which is

decreased in richer but less democratic countries. Their approach has been extended to prob-

lems with more than two variables, and used to analyze human development [15, 42, 43], the

environment [44], democracy [3] and school segregation [40].

The aim of this paper is twofold. On the one hand, we improve on the approach of Ran-

ganthan et al. [15] to fit equation-based ‘best models’, through Bayesian linear regression and

now on all tested possible model combinations. In particular, by adopting a mathematical con-

venient and practical class of priors, we are able to get closed form expressions for the the mar-

ginal likelihood of each model, to accurately compare a large number of models (while in [15]
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this number was limited to one model per number of terms in model), and to significantly

speed up computational time. Furthermore, the novel aspect of assessing all potential models

allows us to rank them and to discuss the relative importance and robustness of different linear

and non-linear terms and their combinations by studying how often they recur. On the other

hand, we compare our improved approach, i.e. the (1) Bayesian-selected ‘best model’, with two

other approaches for modelling time series in social economical systems, i.e. (2) model averag-

ing (over a subset of models obtained with our Bayesian approach) and (3) artificial neural net-

works. Our ultimate aim is to select the best models distinguishing genuine relationships

between indicator variables from random noise, retaining prediction estimates and in the

meantime the highest explanatory power.

The paper is structured as follows. In the methods section (2) we describe the general

framework we use to represent time series data (2.1), and the three approaches we consider to

fit these data: our improved Bayesian-selected best model (2.2), Bayesian model averaging

(2.3) and neural networks (2.4). In section 3 we report the results obtained by applying these

three approaches on a case study, the relationship between democracy and GDP per capita. In

section 4 we compare our Bayesian best model approach to the other two, discuss pros and

cons, and compare our results on democracy and GDP with other studies.

2 Methods

2.1 Representation of time series data

We assume the social systems we investigate are described by n indicator variables, as democ-

racy and GDP per capita in the example above (where n = 2). Each individual entity m in this

system, e.g. a country, a state, a city, provides a discrete time series for each indicator variable

xi(t), i 2 [1, 2, . . ., n] during a time period T. Here, we interpret these individual time series as

realizations of paths of the same global system, but starting from different initial conditions. In

other words, by this we mean that we assume that all entities within the investigated social sys-

tem is governed by the same dynamical relations between indicator variables and their individ-

ual time series are stochastically realizations of the dynamics staring from different initial

conditions. This corresponds with discarding the individual, possibly large, differences

between entities, assuming their evolution is affected only by their position in the indicators

state space (x1, x2, . . ., xn). These assumptions enable us to fit the individual time series to

obtain a global model for the dynamical changes in the indicator variables. In particular, we

aim at giving an accurate estimate of global indicators’ changes between time t and t + 1

depending only on their value at time t, i.e. on their position in the state space.

2.2 Bayesian best model

The Bayesian ‘best model’ selection we propose here fits time series data for the indicator vari-

ables to a model constituted by a system of n ordinary differential equations

dx1

dt
¼ f1ðx1; x2; :::; xnÞ þ �1

dx2

dt
¼ f2ðx1; x2; :::; xnÞ þ �2

..

.

dxn
dt

¼ fnðx1; x2; :::; xnÞ þ �n:

ð3Þ
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Here, f1, . . ., fn are unknown coupling functions of the indicator variables and we assume

uncorrelated random noise terms �i. The selection process takes the three following steps: (1)

Define all the possible model configurations; (2) fit the data to these configurations through

Bayesian regression; and (3) compare model configurations and choose the best suitable

model. Notice that although for notation convenience we write these equations in continuous

time, we actually fit difference equations as available data is often reported at discrete times.

Step 1: Possible model configurations. To enhance interpretability, we choose to approx-

imate the functions fi with polynomials consisting of linear and non-linear combinations of

the indicator variables. Typically, we use terms up to order three and define a model configura-

tion Mi as any subset of the coefficients of such combination. Including a considerable

amount of non-linear terms allows for multi-stable states which are frequently found in social

systems [15, 45]. For example, in a model with n = 2 our preliminary choice of functions is:

f ðx1; x2Þ ¼ a0 þ
a1

1þ x1

þ
a2

1þ x2

þ a3x1 þ a4x2

þ
a5

ð1þ x1Þð1þ x2Þ
þ a6

x1

1þ x2

þ a7

x2

1þ x1

þa8x1x2 þ a9x2
1
þ a10x2

2
þ

a11

ð1þ x1Þ
2

þ
a12

ð1þ x2Þ
2
þ a13x

3

1
þ a14x

3

2
þ

a15

ð1þ x1Þ
3

þ
a16

ð1þ x2Þ
3
;

ð4Þ

and a model configuration Mi would be any subset of the coefficients {a0, . . ., a16} for a total

of 217 = 131,072 configurations. This choice follows [15], but we have rescaled the variables to

take values between zero and one and included a +1 in terms with denominators to avoid sin-

gularities. The chosen functional form of fi offers the highest degree of flexibility for systems

with relatively small n, but it may be adjusted by adding or removing terms. We have tested

our Bayesian framework on normalized input variables, in a setup without variables in denom-

inators. The resulting ‘best models’ provided similar dynamics, but we argue our proposed

model configurations are better for interpretation.

Step 2: Fit data to model configurations. In this step we obtain the coefficient values by

applying Bayesian linear regression [46, 47] on all the possible model configurations. The

Bayesian linear regression practically consists in (1) assigning prior distributions to the

unknown coefficients in each configuration; (2) Get the likelihood of the coefficients given the

data; (3) Determine the posterior distribution of the coefficients by combining the priors and

the likelihood using Bayes theorem [47].

In standard linear regression, one fits n response variables y = x(t + 1) − x(t) to the explana-

tory variables X. The explanatory variables X is a n × p design matrix consisting of linear and

nonlinear terms in the tested model configuration Mi, where n is the number of observations

and p is the number of terms in the tested model configuration. The model for the response

variable is typically divided into two components, deterministic and gaussian noise:

y ¼ Xbþ � ð5Þ

where β is a p × 1 vector of slope coefficients and � is a n × 1 vector of gaussian noise. For the

different model configurations Mi (Eq 4) we consider p 2 [1, . . ., 17], being the number of

terms in the investigated model. For example, the one model where all terms is included, we

have β = (a0, a1, . . ., a16)> and p = 17 (Eq 4).
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A common way of finding an approximation of the unknown slope coefficients b 2 Rp is

finding maximum likelihood estimates b̂MLE through [47]:

b̂ MLE ¼ ðX
TXÞ� 1XTy: ð6Þ

In principle, by evaluating the log-likelihood, i.e. the logarithm of the probability of observ-

ing the data given model parameters of model Mi, we could find the model that best repre-

sents data. The likelihood in our setting is [46]

PðyjX; b; s2Þ ¼ NðXb; s2IÞ ð7Þ

where σ2 is the regression variance. However, by definition the likelihood increases with the

number of terms in the model, which would give us overcomplicated and difficult to interpret

equations.

Our approach faces this problem by using a Bayesian approach and assigning prior distri-

butions p(β, σ2) on the coefficients β and σ2. The priors are assigned only on the coefficients of

the assumed prior model configurations, later after all of the data is presented, the model coef-

ficients are updated. Since we introduce all of the available data at the same time, the priors are

used once in our modelling approach and are assumed to be the same for all the different enti-

ties (countries in our case) since they are assumed to be different realisations of the same social

system. Combining prior knowledge and the likelihood of the data using Bayes theorem gives

us the posterior distribution of coefficients [46]:

pðb; s2jy;XÞ ¼
PðyjX; b; s2Þpðb;s2Þ

pðyjXÞ
: ð8Þ

A flat prior distribution p(β, σ2) would give us the maximum likelihood estimate (6), assum-

ing that the MLE lies within the range of the prior. This approach was for example used in

[15]: in their implementation, they first found the model configurations with the highest log

likelihood and then numerically calculated the marginal likelihood using Monte Carlo tech-

niques for those models.

Here, we use a Normal Inverse Gamma (NIG) distributed prior with parameters (m0,V0,

a0, b0):

pðb;s2Þ ¼ NIGðm0;V0; a0; b0Þ

¼
ba0

0 s� 2ðaþðk=2Þþ1Þ

ð2pÞ
k=2
jV0j

1=2
Gða0Þ

� exp
2b0 � ðb � m0Þ

0V� 1

0
ðb � m0Þ

2s2

� �
ð9Þ

This choice has the double advantage of adjusting the punishment of overcomplicated

models (more about this later) and, since it is a conjugate prior, of allowing for closed form cal-

culations. Indeed, combining the likelihood with the NIG prior gives a NIG posterior distribu-

tion with updated parameters (m�, V�, a�, b�) [46],

m� ¼ ðV0 þ XTXÞ� 1
ðV0m0 þ XTyÞ

V� ¼ V0 þ XTX

a� ¼ a0 þ n=2

b� ¼ b0 þ
1

2
ðmT

0
V0m0 þ yTy � mT

�
V�m�Þ:

ð10Þ

The best coefficients β and σ2 would then be given by the posterior mean, b̂ ¼ m� respec-

tively s2 ¼
b�

a�� 1
for a� > 0.
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A similar but simpler choice for the prior which is commonly used is the Zellner g-prior

[48], specified by

m0 ¼ 0

V0 ¼
1

g
ðXTXÞ

a0 ! 0

b0 ! 0

ð11Þ

This prior features convenient choices of the hyper-parameters, hence utilizing fewer

parameters by letting a and b going to zero, but retains the same essential features of the NIG

prior. The parameters are set to be very small, but can’t be set to zero because this would brake

down Eq (15).

We choose the data dependent unit information prior g = "number of data points" [49],

which effectively provides the same amount of information as one observation: the b̂MLE has

precision (XT X)−1/σ2 and can be interpreted as the amount of information contained in n
observations. The unit information prior is then (XT X)−1/(nσ2), i.e. “one-nth” of the precision

[50]. By using the same g-prior for all model configurations Mi we therefore punish all over-

complicated configurations in the same way. Moreover, this choice of g also puts more weight

on the data and less on the prior when there is a lot of data available.

Another possible assumption on the prior distribution is to put the covariances of the expla-

nation variables to zero,

m0 ¼ 0

V0 ¼ diag
1

g
XTX

� �

� I

a0 ! 0

b0 ! 0

ð12Þ

where I is the identity matrix. This makes the prior behave like in ridge regression, by adding

small values, inversely proportional to the variance of each explanation variable, on the diago-

nal entities of XT X. This choice of prior penalizes the least efficient parameters i.e. explanation

variables with the most variance the most, and overcome ill-conditioned problems by punish-

ing model configurations with collinearities. This assumption is motivated since we potentially

use highly collinear explanation variables in some of the model configurations

e.g. 1

ð1þx1Þ
þ 1

ð1þx1Þ
2 þ

1

ð1þx1Þ
3 which can cause highly unstable estimations b̂ [51]. Since we are

looking for models with high explanatory power, collinear terms are especially unwanted,

since they do not add to the understanding i.e. we want simple models without two terms

describing similar behavior.

We tested both the standard g-prior (Eq 11) and an updated g prior (Eq 12) on our example

with democracy and log GDP per capita. Models with low number of terms got the same best

model configurations both for democracy and log GDP per capita, but using the standard g-

prior, collinear terms dominated the models using more terms, especially for log GDP per cap-

ita. Using Eq (4) as our preliminary choice of functions, with many possible collinearities,

thereby leads up to choose g (Eq 12).
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The posterior mean of the coefficient β then becomes

b̂ ¼ ðXTX þ diag
1

g
XTX

� �

� IÞ� 1
ðXTyÞ: ð13Þ

Notice that as g!1, b̂ tends to the maximum log likelihood estimate. Conversely, g! 0

would force the posterior towards the prior distribution making the inference impossible.

Step 3: Comparing model configurations. Once we fit each model configuration Mi to

the same dataset by using the same g-prior, we compare them by using their marginal likeli-

hood to punish over complicated models, i.e those with many terms, by taking account for the

uncertainty in the model parameters. The marginal likelihood pðy;XjMiÞ, is a measure of the

probability of observing the data under the hypothesis that the model configuration Mi is

true. This probability, also referred to as the model evidence [52], is calculated by integrating

over the parameters in the model:

pðy;XjMiÞ ¼

Z Z

pðy;Xjbi; s
2Þpðb;s2Þdbids2 ð14Þ

In our conjugate setting this integral can be computed analytically and the marginal likeli-

hood for Mi is [46]:

pðy;XjMiÞ ¼
1

ð2pÞ
n=2

ffiffiffiffiffiffiffiffi
jVi

0
j

jVi
�
j

s

�
ba0

0

b�
a� �

Gða�Þ
Gða0Þ

: ð15Þ

The intuition behind how the marginal likelihood punishes over-complicated models is the

following; when the model complexity goes up, we spread out the prior over more terms and

thereby have to perform integration over both ‘good’ and ‘bad’ terms, resulting in lower prior

mass on the ‘good’ terms resulting in a lowered marginal likelihood. The marginal likelihood

is also affected by our g parameter.

To compare two configurations Mi and Mj we use the Bayes factor. The Bayes factor is the

posterior odds divided by the prior odds, which is equal to the quotent of the marginal likeli-

hoods (Eq 15):

BFðMi;MjÞ ¼
jVj

0j
1=2
jVi
�
j
1=2
ðbj
�
Þ
a�

jVi
0
j
1=2
jVj
�j

1=2
ðbi
�
Þ
a�
: ð16Þ

The higher the Bayes factor, the better the model Mi is compared to Mj. In our study we

compare all model configurations to the constant change model Mconst i.e. constant change

between times t and t + 1. By comparing all models to this benchmark model we can rank all

possible models.

Additionally, we perform a visual comparison by plotting the dynamical changes in the

phase space as described by each configuration, and compare the coefficient of determination

(R2) of different model configurations. The R2 value gives us the proportion of the total varia-

tion in the data picked up by our models. The R2 value is computed by

R2 ¼ 1 �

P
iðfi � �yÞ2

P
iðyi � �yÞ2

: ð17Þ

where �y is the mean change and yi is data points. Therefore a higher R2 value corresponds to a

higher explanatory power of the given configuration.
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2.3 Bayesian model averaging

Bayesian model averaging weights the obtained model configurations by their marginal likeli-

hood and combines them into an ‘average’ model [53, 54]. This process integrates information

from different models, providing a way of handling uncertainty and reducing the risk of overes-

timation [53, 55–57]. In this way, the uncertainty in model selection is treated in the same way

as parameter uncertainty within a single model. In what follows we will compare the perfor-

mances of three Bayesian average models obtained by combining the 1%, 10%, and 50% of the

highest marginal likelihood configurations obtained with the process described in section 2.2.

2.4 Artificial neural network

We use the Matlab neural network package fitnet [58] to get a nonparametric estimate of the

dynamical evolution of indicators that we can use as a benchmark to compare our Bayesian

approach. fitnet is a feedforward neural network using a tan-sigmoid transfer function and a

linear transfer function in the output layer [58]. In this paper, we choose to use one single hid-

den layer and to vary the number of neurons to adjust for the level of fit of the network (see

Fig 2).

In order to find a suitable number of neurons, not underestimating nor overestimating the

network, we perform K-fold cross validation [59]. We use five folds and find the mean R2 val-

ues for 1000 neural networks using 1-10 neurons (for each of the five folds). It is worth

Fig 2. Diagram of an feed-forward neural network with one hidden layer. This figure shows a generic feed forward

neural network with one hidden layer. The neural network uses n input variables and produce one output variable

after passing through the network.

https://doi.org/10.1371/journal.pone.0196355.g002
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pointing out that since we assumed Gaussian noise above, the R2 is related directly to likeli-

hood of the model. The neural network model with the best cross-validated number of neu-

rons (highest R2) is called the ‘best neuron network model’. After a suitable number of

neurons is chosen, we train the neural networks using 70% of the available data, and then vali-

dating and testing the model using 15% respectively. We compare our ‘best’ neural network

model with two additional neural networks, namely one neural network model using only one

neuron, representing an underestimating model and a model using ten neurons representing

an overestimated model.

2.5 Surrogate data testing

To test the validity of the coupling functions we used surrogate data testing [60–62]. We gener-

ate surrogate data using the best model configurations of each coupling function and use boot-

strapped initial data from the original dataset. The validity of the model from the original data

is strengthen if we can reproduce the models generated from the surrogate data and thereby

provide evidence that it was not just created by chance.

Specifically, the initial surrogate data is generated for 248 (number of countries and other

sub-regions in the original data sets, including those regions without any data) countries using

random sampling from our original data with replacement. We then apply the coupling func-

tions i.e. best explicit functions, with corresponding noise terms, to simulate the changes the

investigated indicator variables, producing data for an additional data 25 time-steps.

3 Results: Democracy vs. log GDP per capita

We now apply the three approaches to the same case study: the relationship between democ-

racy (D) and log GDP per capita (G). Formally, the relationship between D and G takes the

form of two coupled differential equations:

dD
dt

¼ fDðD;GÞ þ �D

dG
dt

¼ fGðD;GÞ þ �G

ð18Þ

Firstly, we are interested in testing each approach for extracting the dynamical features of the

coupled change in Democracy and log GDP per capita, i.e. the best fit of fD and fG to the time

series data. We focus on the selection of the best functional form for fD and fG through our

Bayesian best model approach. Secondly, we cross-compare the performances of the three

approaches and we analyze the recurrence of single and combined terms in the functions fD
and fG extracted by the Bayesian best model. This allows us to assess the robustness of our

approach and to see to what extent it trades-off between accuracy and interpretability.

3.1 Best fit Bayesian models

We start from the general n = 2 model described by Eq (4). The model configurations are

defined by subsets of the coefficients [a0, . . ., a16]. All possible combinations of these coeffi-

cients would give a total of 217 model configurations. For simplicity and interpretability, we

will restrict our analysis to model configurations with a maximum of 5 terms, for a total of
P5

k¼1
17

k

� �
¼ 9; 401 investigated configurations M.

The best 1 to 5 term models M for democracy fD(D, G) and log GDP per capita fG(D, G)

extracted by our approach are shown in Table 1 and ranked according to the logarithm of the
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Bayes factor (Eq 16) with respect to a constant model MC , and to the coefficient of determina-

tion R2 (Eq 17).

Except for the one-term model, all models for democracy include both democracy and log

GDP per capita. The one-term model depends only on D, indicating that democracy typically

grows with a rate that slows down as democracy itself increases. The best two-terms model can

be rewritten in the form D(0.18G − 0.15D) suggesting a threshold at D = 1.2G. When D> 1.2G
democracy decreases and when D< 1.2G democracy increases.

The best model for the change in democracy has three terms

fDðD;GÞ ¼ 0:16DG � 0:14D2 þ
0:01

ð1þ DÞ3
; ð19Þ

which is a combination of the one-terms and the two-terms models. In particular, the two first

terms 0.16DG − 0.14D2 indicate the existence of a threshold at D = 1.14G as in the two-term

model, but with updated coefficients. The four- and five-term models have a larger Bayes fac-

tor than the one- and two-term models, but are not as good as the three-term model,

Table 1. Comparison of best models for democracy and log GDP per capita. The main three groups of rows corre-

spond to the three tested approaches, each shaded sub-row corresponds to the best model for the corresponding

approach. For the Bayesian best model, columns display (left to right): the top 1-5 terms models, their log Bayes factor

(BF), their configuration ranking (out of 9401), and R2 value. We report the R2 values for the average models and feed-

forward Neural Network models.

Democracy

Model: fD(D, G) logðBFðM;MconstÞÞ Rank R2

0.013/(1 + D)3 12.6 8397 0.7%

0.18DG − 0.15D2 47.4 251 3.0%

0.16DG − 0.14D2 + 0.01/(1 + D)3 54.0 1 3.6%

0.34D − 0.5D/(1 + G) + 0.03/(1 + G)3 − 0.09D3 52.9 4 3.9%

0.2DG − 0.09D/(1 + G) − 0.05G3 + 0.02/(1 + D)2 − 0.1D3 50.3 41 4.0%

Average model (1 procent) - - 3.8%

Average model (10 procent) - - 3.8%

Average model (50 procent) - - 3.5%

Neural Network (1 Neuron) - - 3.6%

Neural Network (4 Neurons) - - 4.1%

Neural Network (10 Neurons) - - 4.7%

log GDP per capita

Model: fG(D, G) logðBFðM;MconstÞÞ Rank R2

0.011 0.0 360 0.0%

0.02D + 0.01/(1 + D)3 8.2 1 0.7%

0.06D2 + 0.01/(1 + D)3 − 0.05D3 4.8 21 0.9%

0.0005G3 + 0.06D2 + 0.01/(1 + D)3 − 0.05D3 0.6 248 0.9%

0.35 + 0.01D/(1 + G) − 1.5/(1 + G)2 − 0.14G2 + 1.21/(1 + G)3 0.3 279 1.5%

Average model (1 procent) - - 0.7%

Average model (10 procent) - - 1.0%

Average model (50 procent) - - 0.9%

Neural Network (1 Neuron) - - 0.5%

Neural Network (6 Neurons) - - 1.8%

Neural Network (10 Neurons) - - 2.2%

https://doi.org/10.1371/journal.pone.0196355.t001
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indicating that our approach successfully trades-off between accuracy and complexity in fitting

this indicator.

For the log GDP per capita, the best model with only one term gives a constant rate of eco-

nomic growth of 1.1% per year. Model configurations with two and three terms depend only

on democracy, while models with four and five terms include both democracy and log GDP

per capita. In terms of Bayes factor, the best model has two terms

fGðD;GÞ ¼ 0:008Dþ
0:005

ð1þ DÞ3
: ð20Þ

This model suggests that a potential driver of change in log GDP per capita is democracy.

The first term indicates that log GDP per capita increases when democracy increases. The sec-

ond term is also positive but gives a bigger contribution when democracy levels are low. As a

result, GDP grows slowest when D = 0.116, a level corresponding to rather undemocratic

countries such as Burundi, Dominican Republic, Hungary in 1981, or Angola and Guinea in

2006. As D increases past this level the economy grows more rapidly.

3.2 Comparison of the three methods

Overall, our approach identifies two best models for democracy and GDP both featuring a rel-

atively low amount of terms, which would make them easy to interpret. However, while the

measures for the goodness of fit data are high in the case of democracy, this is not the case for

GDP. This might indicate our modelling approach is not suitable for describing GDP data.

Therefore, we first compare our best model to the fits given by the Bayesian average model and

the neural network, and then investigate how often certain terms appear in the best 100 models

extracted with our Bayesian approach.

The simplest way of comparing the three considered approaches is through the coefficient

of determination R2 (see Table 1). Our Bayesian best model for democracy has a R2 of 3.6%,

the best model obtained by model averaging is obtained by including the 10% top configura-

tions and has a R2 of 3.8%. The best neural network model (four neurons) gives the best fit for

the democracy dataset, with a R2 of 4.1%, but does not provide equations that we can easily

interpret. Interestingly, the R2 value of our Bayesian best model is very close to the R2 of the

best neural network, supporting the claim that our Bayesian best model is close to the best pos-

sible fit to the given data set, with the additional advantage that it provides an explicit form for

fD. In the table we also include neural network models with one and ten neurons for compari-

son with to an under-, respectively over-trained neural networks.

We can visualize our models using two dimensional heat maps. In Fig 3(a)–3(c) we plot the

best one-, three- and five-terms models respectively for democracy. A visual comparison of the

three- (Eq 19) and five-terms models shows that the extra complexity of the latter does not sig-

nificantly change the predicted dynamics. The average models (shown in Fig 3(d)–3(f)) show a

similar dynamics to the Bayesian best model. The non-parametric neural network models in

Fig 3(g)–3(i) also show a similar behavior. The consistency of the pattern found in the change

in democracy using these three different approaches suggests that, even though the R2 are rela-

tively small, these models reflect a genuine relationship between democracy and GDP over the

past 30 years.

The Bayesian best model for log GDP per capita (Eq 20) has a R2 of 0.7%, which is signifi-

cantly lower then for our best model for democracy. Similarly, the best average model (10%)

has an R2 of 1%. The best neural network model (six neurons) has an R2 of 1.8%, which is

twice as large as the one found for the Bayesian best model. Such big difference, combined

with an extremely low R2, casts serious doubt on the reliability of the log GDP per capita
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model. Moreover, the best one-term model for log GDP per capita is the 1.1% constant change

model and is ranked 360 out of 9401 models. This high rank of the constant change model tells

us that even the simplest model, not including democracy nor GDP per capita, is deemed to be

almost as good as our ‘best model’, thereby weakening our belief in our model of GDP per

capita.

A visual comparison of the Bayesian best model for log GDP (Fig 4b) with models with less

and more terms (Fig 4a and 4c), with the average models (Fig 4(d)–4(f)), and with neural

Fig 3. Change in democracy (D). The three top figures in black (Fig 3 a,b,c) are visualizations of the changes in democracy for best models with one (Fig 3 a), three (Fig 3

b) and five (Fig 3 c) terms. The three figures in the vertical middle (Fig 3 d,e,f) represents 1% (Fig 3 d), 10% (Fig 3 e) and 50% model averaging models. The three figures at

the bottom is representations of feedforward neural networks with 1 (Fig 3 g), 4 (Fig 3 h) and 10 (Fig 3 i) neurons in the hidden layer.

https://doi.org/10.1371/journal.pone.0196355.g003

Bayesian dynamical systems, model averaging and neural networks modelling of socio-economic indicators

PLOS ONE | https://doi.org/10.1371/journal.pone.0196355 May 9, 2018 13 / 23

https://doi.org/10.1371/journal.pone.0196355.g003
https://doi.org/10.1371/journal.pone.0196355


network models (Fig 4(g)–4(i)) reveals significant differences between models found with dif-

ferent approaches. The average models are similar to the Bayesian best model, featuring a

slightly more complex dynamics. The best (6 neurons) neural network model shows similari-

ties with the 5-term Bayesian best model, but not with the highest-ranked two-terms model.

Taken together, these results question the validity and reliability of Eq (20) as a model for the

change of GDP per capita.

Fig 4. Change in log GDP per capita (G). The three top figures (Fig 4 a,b,c) are visualizations of the changes in G per capita for best models with one (Fig 4 a), two (Fig 4

b) and five (Fig 4 c) terms. The three figures in the vertical middle (Fig 4 d,e,f) represents 1% (Fig 4 d), 10% (Fig 4 e) and 50% model averaging models. The three figures at

the bottom is representations of feedforward neural networks with 1 (Fig 4 g), 6 (Fig 4 h) and 10 (Fig 4 i) neurons in the hidden layer.

https://doi.org/10.1371/journal.pone.0196355.g004
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Finally, we test the robustness of our Bayesian best models by comparing all 9401 possible

one- to five-term configurations. We argue that terms that appear repeatedly in different

highly-ranked models are more likely to be a robust description of the data. In Table 2 we

report the eight most frequent terms among the top ranked 100 model configurations for both

democracy and log GDP per capita. The frequency of two-terms combinations are also pre-

sented, showing how likely it is for two particular terms to appear together. If two terms appear

together frequently then we infer that this combination of terms is more robust.

For democracy, the terms DG and −D2, appear in both the best two-term and three-term

models, and are the two most frequent terms among the 100 configurations with highest Bayes

factor. We use 100 configuration to test if the terms are robust for the *1% of tested models

to see if the terms in the best models are present still when we look beyond only the best mod-

els. The term DG is involved in 82% of these models. Half of these models include the term

−D2, while the other half include the term −D3. These two self-limiting terms, −D2 and −D3,

never appear together in the same model and clearly play the same role in fitting the data. This

recurrence supports our belief that the democracy model extracted within our approach cap-

tures a genuine aspect of the relationship between democracy and GDP.

The third term in Eq (19), 1/(1 + D)3, does not appear as frequently and does not have as

big impact on the change in democracy as the other two terms. This seems to suggest that the

most robust description of the relationship between the rate of change of democracy and

Table 2. Robustness of terms for democracy (D) and log GDP per capita (G). The three columns furthest to the left shows the most eight most frequently recurring

terms among the top 100 models for (D) and (G). The columns to the right of show how often the terms appear in combination to each other. Red bars means a positive

sign on the term and blue bars negative.

Democracy

Frequency per term Frequency of combination

Term model Procent −D2 −D3 � D
ð1þGÞ −D 1

ð1þDÞ3
D 1

ð1þDÞ2

DG 0.82 0.41 0.41 0.30 0.25 0.17 0.18 0.00

−D2 0.50 0.00 0.30 0.17 0.07 0.09 0.08

−D3 0.49 0.17 0.08 0.12 0.05 0.08

−D/(1 + G) 0.48 0.00 0.07 0.09 0.17

−D 0.25 0.04 0.06 0.00

1/(1 + D)3 0.19 0.04 0.02

D 0.19 0.01

1/(1 + D)2 0.17

log GDP per capita

Frequency per term Frequency of combination

Term model Procent D 1

ð1þDÞ3
G

ð1þDÞ D2 1

ð1þDÞ2
1

ð1þGÞ3
1

ð1þDÞ

D/(1 + G) 0.40 0.00 0.11 0.08 0.01 0.08 0.03 0.04

D 0.32 0.10 0.06 0.00 0.06 0.06 0.03

1/(1 + D)3 0.23 0.02 0.03 0.00 0.01 0.00

G/(1 + D) 0.16 0.02 0.02 0.03 0.01

D2 0.16 0.02 0.03 0.02

1/(1 + D)2 0.16 0.01 0.00

1/(1 + G)3 0.13 0.00

1/(1 + D) 0.11

https://doi.org/10.1371/journal.pone.0196355.t002
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GDP is

dD
dt

� Dð0:18G � 0:15DÞ: ð21Þ

Although this model differs from the best model in Eq (19), this functional form combines

highest R2 value, highest model ranking, robust combination of terms, and highest interpret-

ability, which makes it the most explanatory and robust model for democracy.

For log GDP per capita (Eq 20), the terms D and 1/(1 + D)3 are found in only the 32% and

23% of the 100 top-ranked configurations. The most frequent term, D/(1 + G), is found in 40%

of the top 100 configurations. There are few consistent pairings of terms among the top 100

models, i.e. D together with 1/(1 + D)3 (10%) and D/(1 + G) with 1/(1 + D)3 (11%), while the

other combinations are evenly distributed. This seems to further indicate that the best model

for log GDP per capita is not reliable in describing the available data.

Our chosen best models for democracy and log GDP per capita are stable with respect to

reasonable changes in the g-prior’s parameter g. In particular, our approach returns the same

‘best models’ for both D (Eq 19) and G (Eq 20), which are found at g = 3445, but with changed

configurations’ ranking. For example, by doubling g (g = 2 × 3445 = 7890) complicated models

get punished more harshly and are thereby ranked lower. Halving g (g = 3445/2 = 1722.5) also

gives us the same ‘best models’, but complicated models are less punished. Instead, we obtain

significantly different models when the parameter g gets very large (g = 10100) or very small

(g< 300). In these extreme cases, the Bayesian selection favors respectively the one-term

model presented in Table 1, and models with many terms, even though these terms are not

consistent with our best one- to five-term models in Table 1.

3.3 Surrogate data testing

Even the best model for the changes in democracy (Eq 19) explains only a small part of the

dynamics. A way to further investigate how robustly we can detect such a weak signal in noisy

data is using surrogate data. We generated surrogate data using Eq (21) for the changes in

democracy and Eq (20) for changes in log GDP per capita. The surrogate data is generated

with the same number of initial countries and time steps as in the original data and all other

parameters are chosen to be consistent with the methodology presented in section 2.2. We

sampled the initial values for the surrogate data set from the initial values in the original data.

We use noise terms derived directly from empirical data (s2
D ¼ 0:08, s2

G ¼ 0:02).

Even though we used a two term model (Eq 21) to generate data for democracy to fit the

model we found that the following four term model, from the first fitting of surrogate data,

was a typical best model for democracy,

dD
dt
¼ 0:186DG � 0:154D2 þ

0:208

ð1þ DÞ3
�

0:181

ð1þ DÞ2
: ð22Þ

The fact that the resulting model is very similar, albeit with extra terms, provides additional

evidence that our method is robust in the presence of noise. There were, however, additional

spurious terms in the best models which may help us better understand our results. In particu-

lar, it is interesting to note, that the term 1/(1 + D)3 in Eq (22) also arose in the overall best

model (Eq 19). This strengthens our belief that our final model (i.e. Eq 21) for the dynamics in

democracy is more parsimonious than a model including 1/(1 + D)3. It is plausible that these

two latter terms is simply an artifact arising from our choice of prior i.e., the parameter g is set

to small (see the discussion in the end of section 3.2), rather than a genuine statistical

relationship.
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We also performed inference on the 1000 best model found for changes in democracy,

using 1000 different sets of surrogate data. We found that the most frequent best model (609

out of 1000) was,

dD
dt
� DG � D3 þ

1

ð1þ DÞ3
�

1

ð1þ DÞ2
; ð23Þ

Note that we get the same model as in Eq (22), with the difference that D2 is exchanged

with D3. Table 3 shows the frequency of occurrence of the different terms, and how often these

terms are found in the same model configuration within the top 100 models, for all 1000 surro-

gate data sets, for both democracy and log GDP per capita. For democracy, the best explicit

models and the most frequent top configurations were found to be robust—with just small dif-

ferences in coefficient values. The fact that the terms D2 is exchanged with D3—note that D2

and D3 is very similar when D 2 [0, 1], with D3 is picked more frequently then D2 together

with DG in models with more terms— indicates that the terms should be interpreted in quali-

tative terms, rather than in terms of their specific exponents.

For log GDP per capita, the best models changed a lot for every realization. The term D and

1/(1 + D)3 shows up as the most frequent and the fifth most frequent terms in Table 3. How-

ever, the distribution of the top terms is very flat, indicating that the terms show up relatively

equally among the best models. This further supports our previous conclusion that change in

GDP can not be reliably modeled by democracy.

4 Discussion

In this paper, we accomplish two main goals. First, we improve upon the approach proposed

in [15] by fitting data to equation-based ‘best models’ through Bayesian linear regression. Sec-

ond, we develop a way of testing the robustness of the obtained models by comparing our

Table 3. Robustness of terms (surrogate data) for democracy (D) and log GDP per capita (G). The three columns furthest to the left shows the most eight most fre-

quently recurring terms among the top 100 models for (D) and (G) for 1000 generated surrogate data sets. The columns to the right of show how often the terms appear in

combination to each other. Red bars means a positive sign on the term and blue bars negative.

Democracy

Frequency per term Frequency of combination

Term in model Procent DG 1/(1 + D)3 −D/(1 + G) D −1/(1 + D)

−D3 0.75 0.50 0.41 0.23 0.19 0.19

DG 0.62 0.39 0.05 0.11 0.19

1/(1 + D)3 0.56 0.15 0.11 0.16

−D/(1 + G) 0.35 0.14 0.08

D 0.30 0.07

−1/(1 + D) 0.28

Log GDP per capita

Frequency per term Frequency of combination

Term in model Procent D2 D/(1 + G) Const 1/(1 + D)3 1/(1 + D)2

D 0.29 0.01 0.01 0.02 0.08 0.07

D2 0.27 0.02 0.06 0.02 0.03

D/(1 + G) 0.24 0.01 0.07 0.05

Const 0.22 0.02 0.01

1/(1 + D)3 0.20 0.00

1/(1 + D)2 0.18

https://doi.org/10.1371/journal.pone.0196355.t003
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method with two prediction-oriented methods: model averaging and neural networks. We dis-

cuss these two points in turn.

The strength of the approach developed in [15] is that it provides relationships between the

variables, log GDP and Democracy in this case. They chose a two-term model (Eq 1) as the

best model for democracy. Interestingly, their model displays the same threshold behavior as

our best model for democracy (Eq 19). Our Fig 3 has clear similarities with the heat map of

change in democracy presented in Fig 3a in [15] for all three modelling methods used in our

paper. So even though we find different explicit expressions for the change in democracy, the

overall dynamics is similar. The only visual difference is that our model gives a higher value

for democracy, where the change is zero, for the low GDP per capita region. However, the

terms selected are not the same as in our model. The primary reason for this difference is

because we use more data: 174 countries instead of 74, and rescaled the indicator variables.

Moreover, although being a convenient way of fitting equation-based ‘best models’ to data,

their use of uniform flat priors makes analytical calculations not attainable for the posterior

distributions. For this reason, they had to turn to numerical estimations, which caused loss of

information and prevented them from studying and comparing all possible models, to check

the robustness of the terms chosen. Furthermore, we argue that our final expression Eq (21) is

not only checked for robustness (Table 2), it is also easier to interpret than the final expression

in [15]. For these reasons, we argue that our model is a better description of the dynamics of

democracy and log GDP per capita.

In our approach, we use Bayesian linear regression and a mathematically convenient prior

[46, 48]. This choice allows us to get closed form expressions for the marginal likelihoods and

to significantly lower the computational burden. As a result, we can quickly compare and rank

all model configurations, and study the frequency of single and combined terms in different

models, thus performing an accurate analysis of the robustness of our ‘best model’.

Social systems often display nonlinear interactions between indicator variables [8–10],

making their study an interesting challenge. For example, Fig 1 shows a clearly nonlinear rela-

tion between democracy (D) and log GDP per capita (G). Here, we had the general goal of

modelling this relation by distinguishing genuine interactions from noise. Fig 5 shows the best

relationship between democracy and log GDP per capita we can extract by applying our meth-

odology. According to this plot, and thus our methodology, once noise is filtered out D and G
are connected by a simple threshold relationship. Moreover, we can extend our estimates of

the dynamics in areas of the state space (D, G) where we have no data measured.

Our method relies on us comparing our explanation-oriented model with more predictive-

oriented alternatives such as artificial neural networks. Artificial neural networks can be seen

as universal estimators [22] and are widely used to study nonlinear systems appearing in

social-economical systems [28]. Here we used ANNs as a benchmark to assess if the tradeoff

between interpretability and predictive power is satisfactory. In our example of democracy and

GDP per capita we found our modelling approach to give satisfactory results for democracy,

but we also concluded the best model for GDP per capita was insufficient. We also used a

Bayesian model-averaging approach as benchmark to account for model uncertainties in our

‘best models’.

In the social sciences, it is common that models have low statistical power, because of their

inherent complexity of the system and high levels of noise. Both the model for democracy and

the model for log GDP have low R2. In the case of changes in democracy, by subjecting the

original equation-based model to a sequence of comparisons—first to model averages, second

to neural networks and finally surrogate data, from the equation itself—we are able to increase

our confidence in the model as a description of the underlying system dynamics. We find that

the exponents used for modelling the data, i.e. comparing D2 or D3, can be exchanged, but the
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overall negative and positive feedbacks captured by (Eq 19) are a robust feature of the data.

Despite the low R2 of around 4% we have captured the underlying relationships. In contrast,

when we subjected the GDP model (which has R2 of around 1%) to the same battery of tests, it

repeatedly failed to give robust results. The techniques we have presented here, thus provide a

way of interrogating and increasing our confidence in a model, even when it provides very

weak explanatory power in a statistical sense.

A question that always arises in study like the one about the choice of priors. We choose to

mimic a non-informative prior by setting the shape and rate parameters to be very small. This

choice is common, and used for example in [63], but we have to be careful when using these

choices when performing inference, since it can be sensitive to the small values, as implied in

[64]. In our application, we can not see any problems regarding this, but users of our method-

ology should be aware of these potential complications.

Fig 5. Relation between democracy and GDP per capita. Dynamics of the relation between democracy (D) and (G), in USD, using best models, Eq (19)

(D) and Eq (20) (G), displayed using linear interpolated streamline plot.

https://doi.org/10.1371/journal.pone.0196355.g005
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Having benchmarks of neural networks and model averages to compare an equation-based

model with is especially important if we wish to move up in dimensionality i.e. when studying

multivariate coupling functions arising when studying systems with more than two indicator

variables [65, 66]. Adding variables into our social system makes them harder to visualize

using two-dimensional heat maps, as we did in Figs 3 and 4. With three-variables models we

could visualize the relations between indicators and compare models using three-dimensional

plots, but if we want to go even further up in dimensionality [3, 42] we might need to assume

that some variables are held constant—assuming that there are interactional terms to these

additional variables. This would make the global relations harder to study. Providing explicit

equation-based models and a way to test their robustness, our Bayesian-based approach is a

valuable tool for understanding the relationships underlying complex social systems.
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34. Kralemann B, Frühwirth M, Pikovsky A, Rosenblum M, Kenner T, Schaefer J, et al. In vivo cardiac

phase response curve elucidates human respiratory heart rate variability. Nature communications.

2013; 4:2418. https://doi.org/10.1038/ncomms3418 PMID: 23995013

35. Iatsenko D, Bernjak A, Stankovski T, Shiogai Y, Owen-Lynch PJ, Clarkson P, et al. Evolution of cardio-

respiratory interactions with age. Phil Trans R Soc A. 2013; 371(1997):20110622. https://doi.org/10.

1098/rsta.2011.0622 PMID: 23858485

36. Stankovski T, Ticcinelli V, McClintock PV, Stefanovska A. Neural cross-frequency coupling functions.

Frontiers in systems neuroscience. 2017; 11:33. https://doi.org/10.3389/fnsys.2017.00033 PMID:

28663726

Bayesian dynamical systems, model averaging and neural networks modelling of socio-economic indicators

PLOS ONE | https://doi.org/10.1371/journal.pone.0196355 May 9, 2018 21 / 23

https://doi.org/10.1017/S0007123404000225
https://doi.org/10.1371/journal.pone.0086468
http://www.ncbi.nlm.nih.gov/pubmed/24466110
http://www.freedomhouse.org
http://www.humanrightsdata.com/p/data-documentation.html
http://www.humanrightsdata.com/p/data-documentation.html
https://doi.org/10.1016/S0304-3800(99)00092-7
https://doi.org/10.1016/0893-6080(89)90020-8
https://doi.org/10.1016/j.cgh.2011.09.014
https://doi.org/10.1016/j.cgh.2011.09.014
http://www.ncbi.nlm.nih.gov/pubmed/21963957
https://doi.org/10.1016/j.engappai.2012.02.009
https://doi.org/10.1109/MSP.2012.2205597
https://doi.org/10.1109/TASL.2011.2134090
https://doi.org/10.1017/S0007485308005750
https://doi.org/10.1017/S0007485308005750
http://www.ncbi.nlm.nih.gov/pubmed/18423077
https://doi.org/10.1126/science.346.6213.1063
http://www.ncbi.nlm.nih.gov/pubmed/25430759
https://doi.org/10.1103/RevModPhys.89.045001
https://doi.org/10.1103/RevModPhys.89.045001
https://doi.org/10.1103/PhysRevLett.99.064101
http://www.ncbi.nlm.nih.gov/pubmed/17930830
https://doi.org/10.1126/science.1140858
https://doi.org/10.1126/science.1140858
http://www.ncbi.nlm.nih.gov/pubmed/17525302
https://doi.org/10.1103/PhysRevLett.96.194101
http://www.ncbi.nlm.nih.gov/pubmed/16803103
https://doi.org/10.1038/ncomms3418
http://www.ncbi.nlm.nih.gov/pubmed/23995013
https://doi.org/10.1098/rsta.2011.0622
https://doi.org/10.1098/rsta.2011.0622
http://www.ncbi.nlm.nih.gov/pubmed/23858485
https://doi.org/10.3389/fnsys.2017.00033
http://www.ncbi.nlm.nih.gov/pubmed/28663726
https://doi.org/10.1371/journal.pone.0196355


37. Stankovski T, McClintock PV, Stefanovska A. Coupling functions enable secure communications. Phys-

ical Review X. 2014; 4(1):011026. https://doi.org/10.1103/PhysRevX.4.011026

38. Ranganathan S, Nicolis SC, Spaiser V, Sumpter DJ. Understanding democracy and development traps

using a data-driven approach. Big data. 2015; 3(1):22–33. https://doi.org/10.1089/big.2014.0066 PMID:

26487983

39. Spaiser V, Ranganathan S, Swain RB, Sumpter DJ. The sustainable development oxymoron: quantify-

ing and modelling the incompatibility of sustainable development goals. International Journal of Sustain-

able Development & World Ecology. 2017; 24(6):457–470. https://doi.org/10.1080/13504509.2016.

1235624

40. Spaiser V, Hedström P, Ranganathan S, Jansson K, Nordvik MK, Sumpter DJ. Identifying complex

dynamics in social systems: A new methodological approach applied to study school segregation.

Sociological Methods & Research. 2016; p. 0049124116626174.

41. Ranganathan S, Bali Swain R, Sumpter DJ. The Demographic Transition and Economic Growth: A

Dynamical Systems Model. Palgrave Communications. 2015; 1. https://doi.org/10.1057/palcomms.

2015.33

42. Ranganathan S, Nicolis SC, Spaiser V, Sumpter DJ. Understanding democracy and development traps

using a data-driven approach. Big data. 2015; 3(1):22–33. https://doi.org/10.1089/big.2014.0066 PMID:

26487983

43. Ranganathan S, Swain RB, Sumpter DJ. The demographic transition and economic growth: implica-

tions for development policy. Palgrave Communications. 2015; 1:15033. https://doi.org/10.1057/

palcomms.2015.33

44. Spaiser V, Ranganathan S, Swain RB, Sumpter DJ. The sustainable development oxymoron: quantify-

ing and modelling the incompatibility of sustainable development goals. International Journal of Sustain-

able Development & World Ecology. 2017; 24(6):457–470. https://doi.org/10.1080/13504509.2016.

1235624

45. Epstein JM. Nonlinear dynamics, mathematical biology, and social science. Westview Press; 1997.

46. Denison DG. Bayesian methods for nonlinear classification and regression. vol. 386. John Wiley &

Sons; 2002.

47. Gelman A, Carlin JB, Stern HS, Dunson DB, Vehtari A, Rubin DB. Bayesian data analysis. vol. 2. CRC

press Boca Raton, FL; 2014.

48. Liang F, Paulo R, Molina G, Clyde MA, Berger JO. Mixtures of g priors for Bayesian variable selection.

Journal of the American Statistical Association. 2008; 103(481):410–423. https://doi.org/10.1198/

016214507000001337

49. Kass RE, Wasserman L. A reference Bayesian test for nested hypotheses and its relationship to the

Schwarz criterion. Journal of the american statistical association. 1995; 90(431):928–934. https://doi.

org/10.1080/01621459.1995.10476592

50. Hoff PD. A first course in Bayesian statistical methods. Springer Science & Business Media; 2009.

51. Wold S, Ruhe A, Wold H, Dunn W III. The collinearity problem in linear regression. The partial least

squares (PLS) approach to generalized inverses. SIAM Journal on Scientific and Statistical Computing.

1984; 5(3):735–743. https://doi.org/10.1137/0905052

52. Skilling J, et al. Nested sampling for general Bayesian computation. Bayesian analysis. 2006; 1(4):833–

859. https://doi.org/10.1214/06-BA127

53. Raftery AE, Madigan D, Hoeting JA. Bayesian model averaging for linear regression models. Journal of

the American Statistical Association. 1997; 92(437):179–191. https://doi.org/10.1080/01621459.1997.

10473615

54. Moral-Benito E. Model averaging in economics: An overview. Journal of Economic Surveys. 2015; 29

(1):46–75. https://doi.org/10.1111/joes.12044

55. Hoeting JA, Madigan D, Raftery AE, Volinsky CT. Bayesian model averaging. In: Proceedings of the

AAAI Workshop on Integrating Multiple Learned Models. vol. 335. Citeseer; 1998. p. 77–83.

56. Wintle BA, McCarthy MA, Volinsky CT, Kavanagh RP. The use of Bayesian model averaging to better

represent uncertainty in ecological models. Conservation Biology. 2003; 17(6):1579–1590. https://doi.

org/10.1111/j.1523-1739.2003.00614.x

57. Raftery AE, Gneiting T, Balabdaoui F, Polakowski M. Using Bayesian model averaging to calibrate fore-

cast ensembles. Monthly weather review. 2005; 133(5):1155–1174. https://doi.org/10.1175/MWR2906.1

58. The MathWorks, Matlab (fitnet);. Available from: https://se.mathworks.com/help/nnet/ref/fitnet.html

[cited 11.2016].

59. Kohavi R, et al. A study of cross-validation and bootstrap for accuracy estimation and model selection.

In: Ijcai. vol. 14. Montreal, Canada; 1995. p. 1137–1145.

Bayesian dynamical systems, model averaging and neural networks modelling of socio-economic indicators

PLOS ONE | https://doi.org/10.1371/journal.pone.0196355 May 9, 2018 22 / 23

https://doi.org/10.1103/PhysRevX.4.011026
https://doi.org/10.1089/big.2014.0066
http://www.ncbi.nlm.nih.gov/pubmed/26487983
https://doi.org/10.1080/13504509.2016.1235624
https://doi.org/10.1080/13504509.2016.1235624
https://doi.org/10.1057/palcomms.2015.33
https://doi.org/10.1057/palcomms.2015.33
https://doi.org/10.1089/big.2014.0066
http://www.ncbi.nlm.nih.gov/pubmed/26487983
https://doi.org/10.1057/palcomms.2015.33
https://doi.org/10.1057/palcomms.2015.33
https://doi.org/10.1080/13504509.2016.1235624
https://doi.org/10.1080/13504509.2016.1235624
https://doi.org/10.1198/016214507000001337
https://doi.org/10.1198/016214507000001337
https://doi.org/10.1080/01621459.1995.10476592
https://doi.org/10.1080/01621459.1995.10476592
https://doi.org/10.1137/0905052
https://doi.org/10.1214/06-BA127
https://doi.org/10.1080/01621459.1997.10473615
https://doi.org/10.1080/01621459.1997.10473615
https://doi.org/10.1111/joes.12044
https://doi.org/10.1111/j.1523-1739.2003.00614.x
https://doi.org/10.1111/j.1523-1739.2003.00614.x
https://doi.org/10.1175/MWR2906.1
https://se.mathworks.com/help/nnet/ref/fitnet.html
https://doi.org/10.1371/journal.pone.0196355


60. Theiler J, Eubank S, Longtin A, Galdrikian B, Farmer JD. Testing for nonlinearity in time series: the

method of surrogate data. Physica D: Nonlinear Phenomena. 1992; 58(1-4):77–94. https://doi.org/10.

1016/0167-2789(92)90102-S

61. Schreiber T, Schmitz A. Improved surrogate data for nonlinearity tests. Physical Review Letters. 1996;

77(4):635. https://doi.org/10.1103/PhysRevLett.77.635 PMID: 10062864

62. Schreiber T, Schmitz A. Surrogate time series. Physica D: Nonlinear Phenomena. 2000; 142(3-4):346–

382. https://doi.org/10.1016/S0167-2789(00)00043-9

63. Spiegelhalter DJ, Abrams KR, Myles JP. Bayesian approaches to clinical trials and health-care evalua-

tion. vol. 13. John Wiley & Sons; 2004.

64. Gelman A, et al. Prior distributions for variance parameters in hierarchical models (comment on article

by Browne and Draper). Bayesian analysis. 2006; 1(3):515–534. https://doi.org/10.1214/06-BA117A

65. Kralemann B, Pikovsky A, Rosenblum M. Reconstructing effective phase connectivity of oscillator net-

works from observations. New Journal of Physics. 2014; 16(8):085013. https://doi.org/10.1088/1367-

2630/16/8/085013

66. Stankovski T, Ticcinelli V, McClintock PV, Stefanovska A. Coupling functions in networks of oscillators.

New Journal of Physics. 2015; 17(3):035002. https://doi.org/10.1088/1367-2630/17/3/035002

Bayesian dynamical systems, model averaging and neural networks modelling of socio-economic indicators

PLOS ONE | https://doi.org/10.1371/journal.pone.0196355 May 9, 2018 23 / 23

https://doi.org/10.1016/0167-2789(92)90102-S
https://doi.org/10.1016/0167-2789(92)90102-S
https://doi.org/10.1103/PhysRevLett.77.635
http://www.ncbi.nlm.nih.gov/pubmed/10062864
https://doi.org/10.1016/S0167-2789(00)00043-9
https://doi.org/10.1214/06-BA117A
https://doi.org/10.1088/1367-2630/16/8/085013
https://doi.org/10.1088/1367-2630/16/8/085013
https://doi.org/10.1088/1367-2630/17/3/035002
https://doi.org/10.1371/journal.pone.0196355

