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AMPLE clusters and truncates ab initio protein structure

predictions, producing search models for molecular replace-

ment. Here, an interesting degree of complementarity is

shown between targets solved using the different ab initio

modelling programs QUARK and ROSETTA. Search models

derived from either program collectively solve almost all of

the all-helical targets in the test set. Initial solutions produced

by Phaser after only 5 min perform surprisingly well,

improving the prospects for in situ structure solution by

AMPLE during synchrotron visits. Taken together, the results

show the potential for AMPLE to run more quickly and

successfully solve more targets than previously suspected.
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1. Introduction

Molecular replacement (MR) is by far the most popular route

to the solution of the phase problem, accounting for over 70%

of the structures deposited in the Protein Data Bank (PDB;

Rose et al., 2012) in recent years. In MR, phasing information

is derived by placing a search model in the unit cell of the

target to approximate its crystal lattice (Rossmann & Blow,

1962). The search model is typically an existing structure that

is homologous and thus structurally resembles the target or

an edited version thereof. Alternatively, homology modelling

may produce an explicit prediction of the target structure for

use as a search model. Either way, truly novel folds, that have

not previously been structurally characterized, are generally

rendered intractable for MR.

Key to broadening the applicability of MR is the exploita-

tion of modelling approaches that can deal with targets whose

folds are not, or are only poorly, represented in the PDB. One

route is to model and place small fragments, such as isolated

�-helices or characteristic motifs, whose local structure can

be reliably predicted irrespective of the overall fold context

(Rodrı́guez et al., 2009, 2012; Sammito et al., 2013). This

approach, as implemented in ARCIMBOLDO, has achieved

conspicuous successes but requires very significant computing

resources. A second route is to use ab initio protein models as

delivered by programs such as ROSETTA (Shortle et al., 1998;

Simons et al., 1997, 1999), I-TASSER (Zhang, 2008; Roy et al.,

2010; Wu et al., 2007) or QUARK (Xu & Zhang, 2012). These

programs attempt to predict the entire structure of the target

and generally function in two steps. Firstly, a rapid, fragment-

assembly step operating on a reduced protein representation

produces so-called ‘decoys’. Clusters of decoys represent

candidate fold predictions which can then be subjected to a

second step, an all-atom refinement which entails much

greater CPU demands. All-atom ab initio predictions have

succeeded in MR (Qian et al., 2007; Das & Baker, 2009), but
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their computational needs prevent broader adoption. As an

alternative, we have explored the use of the more quickly

obtained decoys as search models. Using our method for

decoy clustering and graded truncation, we showed that

decoys solve more than 40% of a nonredundant set of small

protein structures (Bibby et al., 2012).

Ab initio methods for protein structure prediction are

an active area of research, with iterative fragment-based

approaches (Zhang & Skolnick, 2013) and new contact-based

methods (Marks et al., 2012) both pushing the size limit of

tractable proteins. Here, we explore models produced by

QUARK (Xu & Zhang, 2012), a new fragment-based

approach that differs from ROSETTA in several important

ways. For example, QUARK uses fragments of a size range of

1–20 residues, while ROSETTA typically employs only frag-

ments of three or nine residues. Furthermore, the force field

used differs, with that of QUARK combining both physical

and knowledge-based energy terms. Finally, and of particular

note, its novel collection of contacts based on distance profiles

helps to pack the medium-to-long-range residue interactions

(Xu & Zhang, 2013). Recent assessments have shown

QUARK to be one of the best-performing methods in its class

(Kinch et al., 2011; Tai et al., 2014). We find that QUARK

solves an overlapping but distinctly complementary set of

targets compared with previous work using ROSETTA (Bibby

et al., 2012). We also demonstrate that more recent versions

of Phaser (McCoy et al., 2005, 2007; Storoni et al., 2004) and

SHELXE (Sheldrick, 2008; Usón et al., 2007; Thorn & Shel-

drick, 2013), two key components of the AMPLE pipeline,

produce significantly improved results. Finally, and unexpect-

edly, the imposition of a 5 min limit on Phaser degrades the

success rate by less than 10%.

2. Materials and methods

2.1. Materials

For ease of comparison with previous results, we used our

previously published set of 295 nonredundant protein targets

(Bibby et al., 2012; Supplementary Table S1). The selection

criteria for these were a length of 40–120 residues, a resolution

of better than 2.2 Å, an absence of bound metal or cofactor

and R � 0.25, Rfree � 0.35. They were grouped into three

classes, all-�, all-� and mixed ��, as described previously.

2.2. Methods

For each sequence, QUARK (Xu & Zhang, 2012) produced

5000 individual structures. In the terminology of ab initio

modelling, these low-resolution, rapidly obtained predictions

are known as decoys. Briefly, the software first generated a set

of structural fragments with lengths from one to 20 amino

acids at each position of the query sequence. These fragments

were used to assemble the ab initio models by replica-

exchange Monte Carlo (REMC) simulations under the guide

of a generic, atomic-level knowledge-based force field with

consideration of various sequence-specific predicted structural

features, including secondary-structure type, solvent accessi-

bility and �-turn propensity. For each query, QUARK ran

ten independent REMC simulations starting from different

random numbers. In each run, 50 decoys were selected from

each of the ten low-temperature trajectories, resulting in 5000

decoys. The decoys lacked the explicit side chains that a full,

CPU-intensive modelling would add. PDB structures with a

sequence identity of >30% to the target or detectable by PSI-

BLAST (a criterion used by most of the ab initio folding

benchmark tests; Zhang et al., 2003; Simons et al., 2001) were

excluded from the fragment library.

Processing of decoys into search models used the AMPLE

pipeline (Bibby et al., 2012). Briefly, decoys were clustered

using SPICKER (Zhang & Skolnick, 2004) and centroid

structures representing the three largest clusters were used

to generate ensembles containing structural neighbours. Side

chains were added to the ensembles using SCRWL (Canutescu

et al., 2003; Krivov et al., 2009). The structural diversity within

each ensemble predicts the deviation from the true structure

(Qian et al., 2007; Bibby et al., 2012), and therefore the

variance along the chain was quantified with THESEUS

(Theobald & Wuttke, 2006) and used to derive up to 20

progressively more truncated versions of each ensemble. A

sub-clustering step, collecting up to 30 near-centroid structures

at 1, 2 and 3 Å r.m.s.d. thresholds, produced more structurally

homogeneous ensembles from these results. After treatment

of side chains in three different ways (all retained; only more

easily predicted side chains retained and others trimmed to

polyalanine; all trimmed to polyalanine) these subclusters

became the set of search models. Hundreds of distinct search

models may be produced for a single target. They are dealt

with by MrBUMP (Keegan & Winn, 2008). In this work, only

Phaser (McCoy et al., 2005, 2007; Storoni et al., 2004) was used

for MR solution. Automated density modification and main-

chain tracing with SHELXE (Sheldrick, 2008; Usón et al.,

2007; Thorn & Sheldrick, 2013) was used to detect successful

solutions as having a CC value of �25 and a mean traced

chain-fragment length of �10. For Phaser, default parameters

were used with the exception of the estimated r.m.s.d. error

(see below). For SHELXE, the following options were used:

15 cycles of autotracing (-a15), searching for �-helices (-q),

pruning for optimization of the CC for the input model (-o),

the time factor for the helix and peptide search (-t3) and the

‘free-lunch’ option to add missing data up to 1.0 Å resolution

if the data resolution was 1.8 Å or better (-e1.0). All other

options were set to their default values. Mean phase error

(MPE) values were calculated using CPHASEMATCH from

the CCP4 suite (Winn et al., 2011). Here, focusing on overall

success rates, AMPLE terminated after finding the first

success.

For comparison with published data, QUARK-derived

search models were run with Phaser 2.3.0 and SHELXE 2012

(Run 1). The estimated r.m.s.d. error of the search models was

set to 0.1 Å, as previously (Bibby et al., 2012), or to 1.2 Å (Run

2 alone). QUARK-derived search models were also run with

Phaser 2.5.4 and SHELXE 2013 (Run 3). Since MR is typically

the slowest step in AMPLE, a requested time limit of 5 min

for Phaser (KILL TIME 300 flag) was also tested (Run 4). In
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practice, since Phaser is only terminated at certain points in

the code, this most commonly stops Phaser after 10–20 min.

3. Results and discussion

3.1. Overall performance of QUARK models

ROSETTA-derived search models processed with Phaser

previously solved 126 of the 295 targets. The result for the

QUARK set, using the same Phaser and SHELXE versions

and operating parameters, is 100/295 (Run 1). As previously

(Bibby et al., 2012), when producing the QUARK models

homologous fragments were excluded to treat each target as if

it were a novel fold. For comparison we also tested providing

Phaser with a 1.2 Å estimated r.m.s. error in the search models

(Run 2), as opposed to the 0.1 Å value employed in Run 1.

This dramatically reduced the success rate to 70/295 and thus

the value of 0.1 Å was used for all of the remaining runs. We

then tested the success of the QUARK models using the latest

versions of Phaser and SHELXE (Run 3) and found a steep

increase in success to 126 of the 295 cases (Fig. 1).

In this work, success is defined by SHELXE (Sheldrick,

2008; Usón et al., 2007; Thorn & Sheldrick, 2013) criteria: a CC

value of �25 and a mean traced chain-fragment length of�10.

The work of Thorn & Sheldrick (2013) suggested that a CC

of �25 and native data to better than 2.5 Å resolution are

invariably indicative of success. Since we are benchmarking

against known crystal structures, mean phase errors (MPEs)

for successful and failing search models can be calculated

(Fig. 2). The vast majority of the cases defined as successful by

the SHELXE criteria indeed have a low

MPE. However, in a handful of cases,

totalling only seven search models

across all of Runs 1–4, solutions classi-

fied as successful have an MPE of >75�.

Four of these seven false positives relate

to PDB entry 2fu2 which, although

reported to have a resolution limit of

2.1 Å, diffracted anisotropically to only

2.6 Å in the worst direction. This

potentially explains the poor quality of

the solutions despite the SHELXE

statistics. PDB entry 2qyw (twice) and

one search model for PDB entry 3n3f

gave the other false positives, and no

obvious explanation for the failure of

the criteria in these cases is evident.

However, three such cases in a set of

1117 (Fig. 2) is a very low failure rate of

the SHELXE-based success criteria and

we note that these three cases only

marginally passed either the CC or the

mean traced chain-length criteria.

The MPE plot (Fig. 2) also reveals

several targets that have a relatively low

MPE but failed to meet the SHELXE

scoring criteria. Several cases were

examined in more detail: PDB entries

1vjk (MPE = 63.2�) and 2rff (62.4�) from

Run 1, 3oiz (63.5�) from Run 3 and 1xak

(70�) from Run 4. Of these, 1vjk and

3oiz could be easily improved upon

through further cycles of SHELXE,

achieving MPE values of 28.7� (CC =

36.1, average chain length = 71) and

36.2� (CC = 47.6, average chain length =

46.5), respectively. The MPE for 2rff

and 1vjk could not be improved by

further cycles of SHELXE. However, in

both cases the partial C� trace produced

by SHELXE was correct when

compared with the deposited structure
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Figure 1
Numbers of targets solved with QUARK-derived search models under various conditions compared
with previous results (Bibby et al., 2012). The small numbers at the top left of the columns indicate
the run numbers referred to in the text.

Figure 2
Comparison of SHELXE CC and mean phase error for Runs 1–4 combined. Each point represents
a search model and the values are either those of the successful solution or those of the highest
failing CC score. Symbols distinguish SHELXE traces that do or do not exceed a mean traced chain-
fragment length of 10. In all cases 15 cycles of auto-tracing were invoked in SHELXE. Each cycle
included 20 iterations of density modification.



for these targets using the CSYMMATCH program from the

CCP4 suite.

The significant methodological differences between

ROSETTA and QUARK led us to assess their performance

across target classes and, thereby, their complementarity to

increase the overall success rate of AMPLE (Fig. 3). Using the

same versions of Phaser and SHELXE, 16 QUARK (Run 1)

and 42 ROSETTA successes were uniquely achieved by

each program. Jointly, ROSETTA and QUARK successes

amounted to 142 targets (48% of the total, compared with

43% reported for ROSETTA alone). Interestingly, the same

QUARK-derived search models were significantly more

successful with more recent versions of Phaser and SHELXE

(Run 3), solving 29 targets that were not previously solved

with ROSETTA. This illustrates how the AMPLE pipeline

continuously combines advances in various methodologies

to deliver the best performance for automated MR. All runs

considered, AMPLE solved 54% of targets, up from 43% with

only ROSETTA models (Bibby et al., 2012).

The search models from QUARK predictions performed

similarly across secondary-structure classes as the ROSETTA-

derived search models (Fig. 4). In our test set there are 77

all-�, 44 all-� and 174 �� targets. Particularly noticeable is the

poor performance of both programs with all-� targets. The two

all-� targets previously solved were also solved by a QUARK-

derived search model, but no further successes were added. In

contrast, 60 all-� targets solved previously with Phaser (Bibby

et al., 2012) were complemented by four additional successes

from QUARK (Run 1), taking the success rate between the

two runs to 83%. Remarkably, including Run 3, with modern

versions of Phaser and SHELXE, adds a further seven targets

solved at least once between Runs 1 and 3 here and previous

results (Bibby et al., 2012): thus, very nearly all of the all-�
targets in the set (92%) were solved at least once. In the ��
class, it is notable how the complementarity with QUARK is

focused in the larger target-size range above 100 residues

or so. As previously (Bibby et al., 2012), success close to the

upper size limit should encourage the application of AMPLE

to larger targets.

Structure solution was achieved across a broad range of

diffraction resolutions in the test set. The lowest resolution

success was at 2.1 Å (PDB entry 3kw6). The highest resolution

target (PDB entry 1ejg, 0.54 Å) was solved in both the original

ROSETTA run and in Run 3 here. In general, low solvent

content corresponds to higher resolution, and in our tests in

all runs the solved structures had a solvent-content fraction

ranging from 10.5 to 70.8%. The mean solvent contents for

the sets of solutions solved by ROSETTA and each of the

QUARK run solutions were around 46%, compared with a

mean solvent content in the whole target set of 45%. Thus, in

the ranges explored, resolution and solvent content do not

appear to have been an influence on solubility in our test set

when using ROSETTA-derived or QUARK-derived models.

However, a more extensive set of tests over a wider range of

resolutions would be needed in order to obtain a clearer

picture of the relevance or otherwise of these factors.

12 targets in the test set contained two molecules per

asymmetric unit and the rest contained a single molecule.

Interestingly, Run 3 was the most successful for these targets,

solving 11 of the 12 targets; ROSETTA, Run 1 and Run 4

could solve eight, while Run 2 could solve seven. This suggests

that use of the latest versions of Phaser and SHELXE may be

particularly important in these cases.

3.2. Results from faster Phaser runs

The MR step is computationally demanding in AMPLE,

accounting for around 33% of the runtime on average. For

successful cases in Run 3, runtimes averaged about 48 h per

target with pre-calculated QUARK models so, although

AMPLE allows parallelization on clusters and multi-core
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Figure 4
Chain lengths and secondary-structure classes of targets uniquely solved
using either QUARK-derived (Run 1) or ROSETTA-derived search
models (18 and 42 cases, respectively; Bibby et al., 2012).

Figure 3
Venn diagram illustrating successful solutions using QUARK-derived
search models (Runs 1 and 3) compared with previous results (Bibby et
al., 2012).



machines, there is nevertheless an incentive to explore ways of

speeding up its operation. Phaser regularly outputs its current

best result during operation and the KILL TIME flag allows

runs to be terminated after a user-specified time. The results

show that requesting that Phaser limit the CPU time to 5 min

(in practice, up to 30 min; see x2) has a surprisingly small

impact on performance (Fig. 1), with the successfully solved

targets only decreasing from 125 to 114. Interestingly, only 103

targets are shared between the long and short Phaser results

(Runs 3 and 4, respectively). Supplementary Fig. S1 shows no

obvious systematic differences in the characteristics of targets

solved exclusively in the shorter run although, unexpectedly,

two all-� targets, which are generally harder to solve, were

among them. The average time spent running Phaser in

successful cases in Run 3 is approximately 16 h per target, with

an average of 18 search models tested before a solution is

found. In Run 4, the average time spent running Phaser in

successful cases drops to 5 h per target, with an average of

25 search models tested before a solution is found. Thus,

although more search models have to be tested in the short

Phaser run, on average a similar overall per-target success rate

is achieved in a distinctly shorter time. More elegant options

for limiting Phaser runtimes based on restricting the number

of trial orientations or solutions will be explored in future

work.

4. Concluding remarks

The exploitation of unconventional sources of search models

is an appealing route to enhancing the applicability of the MR

method for structure solution. Given the increased rates of

protein crystallization provided by nanodispensing instru-

mentation and the accelerated speed of data collection at

modern synchrotrons, the demand for purely computational

phasing approaches that can offer full automation is becoming

ever more pressing. These results show that different ab initio

methods are complementary in terms of the targets solved

in our benchmarking set. Between earlier results and the

comparable QUARK results presented here (both Runs 1 and

3 combined), 159 of 295 targets (54%) were solved. Although

differing in the software used, it is remarkable that 93% of the

all-� targets in the set are demonstrably soluble using either

ROSETTA-derived models (Bibby et al., 2012) or QUARK

models (Runs 1 or 3). Thus, almost all small helical proteins

can potentially be solved using ab initio models from the

current generation of modelling software. Contrariwise, the

disappointing results for all-� targets using both ROSETTA

and QUARK (5%) suggest there is still a need for significant

improvements to ab initio methods for this class of targets.

The time-limited Phaser results suggest that an impatient

AMPLE user may achieve good results in a shorter time than

previously envisaged. Such quick AMPLE runs could, for

example, aid in situ structure solution of new folds during

diffraction data collection at synchrotrons.

The complementarity of targets solved with ROSETTA or

QUARK shows that, computational resources allowing, these

programs should be used jointly. AMPLE’s approach requires

access to the set of decoy structures rather than the selected

fold predictions currently available from some ab initio

modelling servers. Currently, ROSETTA is distributed for

local use and QUARK is freely available for online server

submission, with results including both final models and

trajectories of folding decoys. Use of the server eliminates the

requirement for AMPLE MR of a local installation of ab initio

modelling software. QUARK decoys can be used in AMPLE

from the command line using the ‘-quark_models’ flag.

Alternatively, the CCP4i interface for AMPLE provides a

link to the QUARK server, where users can generate the

decoys.tar.gz file that is subsequently employed for search-

model generation and MR. A local version of QUARK should

become available in the near future.
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