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Abstract: Secretory proteins play important roles in the cross-talk of individual functional units,
including cells. Since secretory proteins are essential for signal transduction, they are closely related
with disease development, including metabolic and neural diseases. In metabolic diseases, adipokines,
myokines, and hepatokines are secreted from respective organs under specific environmental
conditions, and play roles in glucose homeostasis, angiogenesis, and inflammation. In neural diseases,
astrocytes and microglia cells secrete cytokines and chemokines that play roles in neurotoxic and
neuroprotective responses. Mass spectrometry-based secretome profiling is a powerful strategy to
identify and characterize secretory proteins. This strategy involves stepwise processes such as the
collection of conditioned medium (CM) containing secretome proteins and concentration of the CM,
peptide preparation, mass analysis, database search, and filtering of secretory proteins; each step
requires certain conditions to obtain reliable results. Proteomic analysis of extracellular vesicles has
become a new research focus for understanding the additional extracellular functions of intracellular
proteins. Here, we provide a review of the insights obtained from secretome analyses with regard to
disease mechanisms, and highlight the future prospects of this technology. Continued research in this
field is expected to provide valuable information on cell-to-cell communication and uncover new
pathological mechanisms.
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1. Introduction

The secretome represents proteins that are secreted from biological units such as organs and cells.
Secretory proteins have recently been shown to play important roles in the cross-talk of individual
functional units, including facilitating communication between cells [1–3]. Since secretory proteins
are essential for signal transduction from one locale to another to coordinate biological activities,
especially membrane receptor-dependent signal transduction, they are broadly involved in several
aspects of biological regulation [4]. In particular, secretory factor-mediated signal transduction largely
determines the general cellular fate such as proliferation, growth, migration, and metabolic regulation.
In addition to inter- and intra-cellular communication and signal transduction, secretory proteins also
play a myriad of functions ranging from roles in the immune system to acting as neurotransmitters in
the nervous system [5,6], and have also been suggested to be involved in the building and maintenance
of cell membranes [7]. Some secretory proteins have been suggested to act as effectors on pathogens
and carry motifs of host cells to avoid detection by the host immune system [8]. The secretory protein
structure typically includes an N-terminal and hydrophobic signal peptide, and the proteins are
processed via the endoplasmic reticulum (ER) and Golgi apparatus before their eventual secretion
into the extracellular space via the classical, non-classical, or exosomal pathways. Furthermore,
because these secretory proteins are released into blood plasma, studies of plasma proteins have been
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of interest [9,10]. Therefore, secretory proteins are widely accepted to play important roles in biological
responses and homeostasis of the whole body.

Secretomics is a sub-field of proteomics that represents a powerful strategy for characterizing
and quantifying proteins secreted by a given cell under specific conditions. Secretomics is based
on two major proteomics workflows: in-solution digestion coupled with LC-MS/MS, and SDS-gel
fractionation/in-gel digestion/LC-MS/MS [11–13]. Recently, condition-dependent secretome studies
have been adopted to discover disease-specific biomarkers or secretory signal regulators. Here,
we provide an overview on progress in secretomics techniques, and highlight secretory factors that
have been identified with these techniques showing a strong relation to diseases.

2. Overview and Challenges of Secretomics Techniques

The majority of secretome studies in mammalian cells are performed in vitro by first culturing cells
of interest in serum-supplemented medium to obtain a sufficient number of cells for evaluation. In this
regard, selection of a suitable cell model is an essential factor for determining the composition of the cell
secretome that, along with subsequent steps, will result in a reliable proteomic analysis. After culturing
in appropriate media, the cells must then be carefully washed with sterile buffered saline to remove any
serum contamination, followed by incubation in serum-free medium for certain times depending on
the experimental purpose in consideration of maintaining cellular viability. The conditioned medium
(CM) containing secreted proteins is generally collected and concentrated for the next step using
centrifugal filters. This step can also eliminate contaminant components from the culture medium as
well as serum by the addition of buffered saline or ammonium bicarbonate solution [14]. In addition
to these conventional techniques, other methods of secretome analysis include the use of resin for
cleaning up DNA and concentrating secretory protein mixtures [15] or direct digestion of CM proteins
after denaturation using urea and HEPES [6].

After preparation of the secreted proteins, two major proteomics workflows are typically
applied to analyze the secretome profiles: in-solution tryptic digestion coupled with LC-MS/MS
and SDS-PAGE/in-gel digestion/LC-MS/MS [11,12]. In-solution digestion includes a traditional
reduction-alkylation-digestion method, filter-aided sample preparation (FASP), and thermal
denaturation-based digestion. Selection of the most appropriate method can be determined according
to the biochemical features of the proteomes. Reduction agents include dithiothreitol (DTT),
Tris(2-carboxyethyl)phosphine, beta-mercaptorthanol, and alkylation agents, including iodoacetamide,
iodoacetic acid, chloroacetamide, and acrylamide [16].

For example, FASP would be selected for a proteome including membrane proteins or cytokine
proteins because it uses SDS and urea [17]. Thermal denaturation-based digestion is also suitable for
such a proteome because the high temperature required (90 ◦C) is helpful for denaturing the proteins [18].
In-gel digestion is applicable for high salt-containing protein samples because the salts can be eliminated
in the process of electrophoresis [19]. Moreover, in-gel digestion provides high peptide purity,
although the extraction efficacy of peptides from the polyacrylamide gel can be low, requiring a relatively
larger amount of proteins [20]. In addition, before injection of peptide samples to an LC-MS/MS system,
a desalting step using C18 spin tips might be necessary since a high salt concentration will influence
the LC results, especially in a trap column, by increasing the pressure [21,22]. The trap column
should contain a trap cartridge to remove remaining salts from the samples [23]. There are several
conditions that must be considered when applying LC for peptide separation. C18 separation columns
are generally selected for reverse-phase chromatography, and both a loading column and separation
column are installed [24,25]. There are also diverse specifications of a C18 separation column for
nano-LC. C18 columns are available with diverse particle sizes, column diameters, and column lengths;
a separation column with a particle size of 2–5 µm and a diameter of 75 µm is generally selected for
peptide separation [14,24,26]. Because the column is run at a flow rate of 200–300 nL/min with high
back-pressure, the column length and temperature must be optimized to increase the resolution [27].
Use of a column temperature-controlled MS inlet increases the resolution and reproducibility, and allows
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for the use of even longer columns and/or smaller particle sizes because elevated temperatures lower
the viscosity and reduce the overall back-pressure [27,28]. Because secretomes typically contain
low-abundant proteins, high-resolution reverse-phase chromatography can help reaching a greater
depth of secretome analysis [6,29]. High-resolution chromatography can be achieved using a smaller
particle size and longer column length (e.g., 50 cm); this setup allows running longer gradient times
for MS, and thus improve resolution and sensitivity [27,30].

After mass analysis, mass raw files are converted to appropriate file formats such as MGF
or mzXML, and then compared to a protein database using specially developed search engines,
including Mascot, SEQUEST, PEAKS DB, ProteinPilot, pFind, Andromeda, OMSSA, and X!Tandem [31].
Some of the essential search parameters include mass tolerance, miscleavage, digestive enzyme site,
fixed (or static) modification, and variable (or dynamic) modifications. Next, quantitative analysis
is carried out using label-free or labeling methods. Label-free methods such as those based on
an XIC, spectral count, or fragment ion intensity have advantages of being easy to use and providing
relatively good accuracy, with reproducible results in biochemical experiments [32–35]. However,
labeling methods such as a tandem mass tag, SILAC, iTRAQ, and TMT are widely used as they provide
relatively more accurate quantitative results than label-free methods [36–40].

There are three main methods used to filter secretory proteins from the total identified proteins.
First, proteins can be generally identified from Gene Ontology Cellular Components terms of the
extracellular region using bioinformatics software such as DAVID bioinformatics resources [41].
Second, secretory proteins are identified based on signal sequence prediction using SignalP and
SecretomeP tools [42,43]. The optimal search method and score values should be considered when
using these tools. Candidate secreted proteins are indicated by the software with scores values that are
calculated according to a prediction model [44]. The secretion of vesicles has also been reported to be
involved in the secretome; thus, the ExoCarta exosome database can be selected to screen for putative
vesicle-derived proteins [45,46].

2.1. Cell Culture-based Secretomics

Most secretome studies are performed using a cell culture system. Figure 1 provides a general
schematic workflow for a cell secretome study. These studies have provided interesting results
contributing to new insights and research directions in diverse fields. Cell culture is a relatively easy
method for harvesting secretomes by discriminating expected contaminants such as serum-originated
proteins, and for mimicking pathophysiological conditions such as hypoxia, diabetes, and anti-cancer
drug treatment [47–49]. After culturing cells to appropriate confluence, incubation using serum-free
medium is essential to harvest the secretome so as to avoid contamination of serum components [47,48].
However, it has been proposed that a serum-free medium might further contaminate the cell secretory
protein profile owing to poor cell viability, thereby reducing the level of capture of the true physiological
secretome [47,50]. Depending on the cell type studied, the length of incubation in serum-free medium
can vary, which might dramatically influence the secretome profiles [51]. Some cells such as cancer cell
lines are very tolerant to serum-free medium, whereas others such as primary cells are more sensitive,
which could increase the rate of cell death and the consequent release of intracellular proteins [52].
Therefore, measurement of cellular viability before harvesting the CM is essential for secretome studies
with a cell culture system. There are additional options to overcome contaminants from serum that can
be labeled or genetically manipulated [53,54]. There is a dual SILAC labeling strategy can exclude
unlabeled proteins from serum or cells used for stimulation [53]. Alternatively, another approach
involves the selective enrichment of secretory proteins from CM by metabolic marking of newly
synthesized glycoproteins via bioorthogonal click chemistry [54]. Only a few studies have attempted
to survey the secretome in vivo or ex vivo to date, either by analyzing the secretome of tissue explants
without isolating individual cells, or using microdialysis devices [5,55,56].
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The new secretory factors identified from cell culture-based secretomics have been reported that
are related with diverse disease including metabolic disease, cancer, and neurodegenerative diseases.
Irisin has been identified from CM of skeletal muscle cells using LC-MS/MS analysis [57]. Irisin regulates
diverse metabolic features, which is discussed in Section 3.1.2. By LC-MS/MS analysis of adipocyte CM,
the chemokine ligand 12 (CXCL12) was newly identified as an adipocyte-derived chemotactic factor that
has a role in the accumulation of macrophages and production of proinflammatory cytokines in white
adipose tissue [58]. Secretomic analysis of skeletal muscle CM under the palmitate induced-insulin
resistance revealed that annexin A1 is a new myokine. Following in vitro and in vivo functional study,
annexin A1 was identified to play a protective role in the palmitate-induced insulin resistance of
L6-myotubes via PKC-theta modulation as well as improved systemic insulin sensitivity in mice fed
with a high-fat diet [14]. The hypoxia-induced glioma secretome analysis by LC-MS/MS reported
that stanniocalcin 1 (STC1) and stanniocalcin 2 (STC2) have a role in the induction of glioma cell
migration in a hypoxia-dependent manner [59]. Neuroregulatory proteins have been also identified
and characterized by comparative secretomic analysis of human bone marrow mesenchymal stem
cells, adipose tissue derived stem cells and human umbilical cord perivascular cells [60]. Also,
therapeutic benefits of CM from mesenchymal stem cells on Parkinson’s disease (PD) has been reported
based on secretomic analysis and subsequent functional characterization [61]. In summary, secretomic
analysis to discover new regulatory factors are in progress and their application is being expended.

2.2. Extracellular Vesicle (EV)-Based Secretomics

Some non-classical secretion mechanisms have been reported with regards to the release of
intracellular proteins by cells [62]. Several researchers have proposed mechanisms involving the export
of some intracellular proteins to the extracellular compartment, where these proteins usually perform
additional extracellular functions that differ from their intracellular roles [63]. Such extracellularly
secreted proteins generally exist in Extracellular Vesicles (EVs), a general term to refer to all
types of secreted vesicles. EVs are broadly classified into exosomes, microvesicles, and apoptotic
bodies according to their cellular origin, size, marker proteins, and functions [64]. Exosomes are
nanometer-sized vesicles of endocytic origin that form by inward budding of the limiting membrane of
multivesicular endosomes, and were recently shown to facilitate intercellular communication processes
between cells in close proximity as well as between more distant cells [64,65]. Diverse cell types such
as immune cells, cancer cells, and nerve cells actively secrete EVs along with their own components.
EVs stimulate specific responses, including the antigen-presenting response, anti-tumoral immune
response, anti-immune response, and myelin formation response according to their molecular contents
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including cytokines, mRNAs, miRNAs, and lipids [66]. However, the exact role of exosomes is
still not clear. Thus, EVs including exosomes are coming into the light of proteomics since they are
increasingly targeted in the field of biomedical sciences given elucidation of their various biological
and physiological functions.

There are several methods for EVs preparation that are applicable to proteomics, such as
ultracentrifugation, immuno-affinity capture, and gel filtration [67–69]. Ultracentrifugation-dependent
EVs preparation has been the most common method applied because it results in a relatively high
yield and is easy to apply [67]. Ultracentrifugation-dependent EVs preparation usually consists of
a series of centrifugation cycles with different degrees of centrifugal force and duration to isolate EVs
from the secretome based on their density differences [70]. Before the start of ultracentrifugation,
a cleaning step is usually carried out to eliminate the CM of large contaminants, including cell debris,
using 1000–2000× g centrifugation. The sample is then spiked with protease inhibitors to prevent the
degradation of vesicle proteins [70,71]. Next, multiple ultracentrifugation steps are carried out with
a typical centrifugal force ranging from ~100,000 to 120,000× g [70]. During each ultracentrifugation
step, pellets are taken for the next step; the final pellets are considered to be the EVs, which are
resuspended in an appropriate buffer such as HEPES-buffered saline or PBS [72].

Density-gradient ultracentrifugation has certain advantages in terms of preventing non-vesicular
protein contaminants that can be introduced with the conventional ultracentrifugation method [73].
Density-gradient ultracentrifugation involves a high-density solution such as iodixanol: a discontinuous
iodixanol gradient (i.e., 40%, 20%, 10%, and 5% w/v) is generated in ultracentrifugation tubes by
sequential layering, and the CM is overlaid on this gradient [74]. Ultracentrifugation is then carried out
at 100,000× g for 16 h at 4 ◦C [74]. Each milliliter of the fraction is diluted with a basal buffer such as
PBS and then centrifuged again at 100,000× g for 2 h at 4 ◦C, and the resulting pellets are resuspended
in PBS [74]. Some exosome preparation kits have also recently been developed, such as ExoQuick and
ExoSpin, which are simple and easy to use with reliable results [74,75]. Table 1 is the summary of
secretomics techniques.

Table 1. Summary of secretomics techniques.

Category Method Advantage Disadvantage Application

Digestion in-solution digestion

- simple process
- relatively higher

proteome coverage
due to no
gel-extraction step

- decontamination
(desalting) step

- low digestion efficacy
of
hydrophobic proteins

- proteomes containing
low abundant proteins such
as blood plasma, CSF

in-gel digestion

- visualization
of proteins

- high digestion
efficacy for
hydrophobic
proteins by SDS

- decontaminated
during
gel separation-

- time consuming
- loss of proteins

during destaining
- low resolving power to

separated proteins
- low digestion efficacy

& yield
- restricted

sample throughput

- proteomes containing
high abundant proteins with
containing SDS or other
chemical contaminants
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Table 1. Cont.

Category Method Advantage Disadvantage Application

Quantitative
analysis

Label-free

- reflect native
condition without
chemical modification

- lower cost

- low accuracy
in quantification

- no
multiplexed analysis

- variation on
sample preparation

- proteomes containing
low abundant proteins

- stimulation dependent
cellular proteomes

Label

- multiplexed analysis
- no variation in

sample preparation
- diminished

running time
- high accuracy in

quantification with
high
protein coverage

- complex
sample preparation

- increase
sample amount

- incomplete labeling
- high cost
- not native condition

(artificial) by chemical
labeling such as SILAC

- proteomes containing
high abundant proteins such
as tissue proteomes

EV preparation

Ultracentrifugation

- easy to apply
- proteomics &

RNA-seq
study compatible

- high yield

- time consuming
- contaminant proteins

& nucleic acid may
be pelleted

-

Density gradient

- high purity
- RNA-seq

study compatible

- time consuming
- complex process -

Immuno-affinity
capture

- easy to apply
- no

chemical contamination
- no need

for instruments
- proteomics &

RNA-seq
study compatible

- low yield
- small volume only
- high reagent cost

-

Gel filtration

- fast & easy
- easy to apply due to

single kit
- high purity

- low concentrated prep
- enrichment

step required
-

3. Role of Secretory Proteins in Diverse Diseases

3.1. Metabolic Diseases

3.1.1. Adipokines

Over 200 adipokines were identified in secretome analyses of adipocytes [76]. Leptin is
a representative adipokine that plays a major role as an inflammatory factor in metabolic disorders.
The systemic levels of leptin are also positively correlated with body mass index, and are associated
with the development of insulin resistance [77]. Leptin has also been shown to affect metabolic
signaling pathways of the skeletal muscle: treatment of L6 skeletal muscle cells with recombinant
leptin reduced phosphorylation of the insulin receptor substrate-1 and consequently impaired glucose
uptake. This observation indicated that leptin promotes insulin resistance [78]. However, other studies
showed conflicting results in which leptin increased glucose uptake in other skeletal muscle cells;
therefore, further studies are needed to clearly elucidate the function of leptin on the human skeletal
muscle [78].

Adiponectin is widely known as a beneficial adipokine because its plasma and protein
expression levels are inversely correlated with body weight and abdominal obesity in humans [79].
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Adiponectin was also shown to enhance insulin sensitivity in the skeletal muscle, along with
elevation of fatty acid oxidation and glucose uptake by activation of AMP-activated protein kinase
(AMPK), p38, and peroxisome proliferator-activated receptor (PPAR)-α in skeletal muscle cells [80].
Moreover, adiponectin knockout mice exhibit obese and insulin-resistant phenotypes, whereas systemic
administration of adiponectin could improve their insulin sensitivity; these molecular features were
also reproducible in human myotubes. Together, these observations indicate that impairment of
adiponectin function in the skeletal muscle of obese T2D patients contributes to the development of
insulin resistance [81].

Under a pathological condition such as severe obesity, the adipose tissue synthesizes and secretes
several pro-inflammatory cytokines, which aggravate insulin resistance and the systemic inflammatory
status. For example, the tumor necrosis factor-alpha (TNF-α) expression level was shown to be
highly increased in adipocytes in a study of obese human subjects [82]. Interestingly, when TNF-α
was inhibited by a neutralizing antibody or genetic manipulation, different obesity model mice
showed improved insulin sensitivity [83,84]. Similarly, adipose tissue derived interleukin (IL)-1b [85],
monocyte chemotactic protein-1 (MCP-1) [86], and chemerin [87] affect local (or systemic) inflammation.
Taken together, these findings indicate that the adipose tissue can secrete both beneficial and harmful
ligands in a context-dependent manner; thus, a multiple-targeted approach should be considered as
the next step in development of an adipokine-based therapeutic strategy for metabolic syndrome.

3.1.2. Myokines

IL-6 is a well-known myokine and popular focus of research into disease mechanisms, particularly in
relation to inflammation. IL-6 has been dubbed an “exercise factor” through which skeletal muscles
communicate to the peripheral organs. In humans, increased circulating concentrations of IL-6 are
known to be affected by both the intensity and duration of skeletal muscle contractions [88]. In vitro
experiments with cultured cells showed that IL-6 treatment increases glucose uptake through the AMPK
and phosphatidylinosotol 3-kinase (PI3K) pathways [89]. IL-6 treatment was also shown to upregulate
glucose uptake regardless of insulin stimulation and glycogen synthesis in healthy myotubes [90].
In humans, IL-6 increases hepatic glucose production and induces whole-body lipolysis [90].

Another important myokine is brain-derived neurotrophic factor (BDNF), which is a member
of the neurotrophic factor family. BDNF is also considered to be an exercise factor since its levels
are increased as a result of both acute and chronic aerobic exercise [91]. BDNF treatment reduced
blood glucose levels in diabetic model mice, and chronic BDNF infusion improved glucose uptake
and metabolism in the brown adipose tissue and skeletal muscle of rodents [92]. BDNF was also
reported to increase the phosphorylation of AMPK and acetyl-CoA carboxylase (ACC) and to enhance
fat oxidation in the skeletal muscle [93].

Irisin is a fragment of fibronectin type III domain-containing protein 5 (FNDC5) that was recently
reported to act as a myokine, although its origin and function are controversial. Irisin plasma levels
are increased by diverse types of exercises; thus, it is also considered to be an exercise hormone.
Irisin treatment to L6 myotubes resulted in increased glucose uptake in a dose-dependent manner,
which was mediated by activation of both AMPK and ACC. Irisin treatment of primary myocytes also
upregulated the expression of PGC-1α4, a specific isoform associated with muscle hypertrophy [94].
Another study showed that irisin treatment upregulated insulin-like growth factor-1 expression and
downregulated myostatin expression, suggesting a role in growth of the skeletal muscle [94]. In vivo,
administration of irisin to high-fat diet (HFD)-fed mice decreased the fasting blood glucose level,
and improved glucose and insulin tolerance; the same effects were detected in obese and HFD-fed
mice with FNDC5 overexpression [95]. Irisin released from the skeletal muscle during exercise acts
directly on the bone by increasing the cortical bone mineral density, bone perimeter, and polar moment
of inertia in mice [96].

Follistatin-like-1 (FSTL-1) is a myokine of the follistatin family that was first identified as
a secreted protein from C2C12 mouse myotubes [97]. FSTL-1 is also considered to be an exercise
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factor since its circulating plasma level is increased in humans following an acute bout of aerobic
exercise [98]. Treatment of FSTL-1 to L6 rat myotubes induced glucose uptake via activation of AMPK
and calcium calmodulin kinase. Moreover, the FSTL-1-mediated glucose uptake was accompanied
by overexpression of glucose transporter 4 (GLUT4) and translocation of GLUT4 to the plasma
membrane [99]. Although the exercise factor IL-15 shows similar induction of glucose uptake,
this pathway is mediated by the Janus kinase–signal transducer and activation of transcription protein
3 pathway [100]. IL-8 is another exercise-dependent myokine that was also reported as a glucose
uptake-inducing factor in C2C12 cells [89]; however, IL-8 is primarily associated with angiogenesis
and inflammation [101].

3.1.3. Hepatokines

Fibroblast growth factor 21 (FGF21) belongs to the FGF superfamily and is a key mediator
of fatty acid oxidation and lipid metabolism. In contrast to autocrine/paracrine FGF, FGF21 does
not have a heparin sulfate-binding domain, and is thus readily released into the circulation and
predominantly acts systemically [102]. A transcript-level analysis showed that FGF21 is largely
expressed in the pancreas, brown and white adipose tissue, and liver [103]; however, a liver-specific
knockout animal study suggested that the liver is the primary source of circulating FGF21 [104].
Moreover, both hepatic and circulating FGF21 levels are elevated in patients with NAFLD and
steatohepatitis [105]. Mechanistically, fatty acid-induced PPAR-α activation and ER stress can explain
this increase in FGF21 levels in NAFLD [106]. However, contrasting pharmacological effects of
FGF21 were observed, resulting in decreased hepatic triglyceride and plasma triglyceride levels,
which were associated with weight reduction resulting from increased energy expenditure in ob/ob
and HFD-induced obese mice [107]. To explain this apparent contradiction, the authors proposed
that increased FGF21 levels represent a protective response against fatty liver disease. A similar
phenomenon was observed in the context of alcohol-induced steatosis. The degree of alcoholic fatty
liver was enhanced in liver-specific Fgf21 knockout mice [108]; however, alcohol treatment increased
the hepatic FGF21 expression level both in vitro and in vivo [109]. In summary, physiological and
pharmacological studies support that FGF21 is induced in hepatocytes by fatty acid or alcohol to
alleviate liver damage.

Fetuin-A is an important hepatokine regulating systemic metabolism. Fetuin-A is a phosphorylated
glycoprotein that is primarily synthesized by hepatocytes, and was originally characterized as a potent
inhibitor of the insulin receptor tyrosine kinase in the liver and skeletal muscle [110]. Fetuin-A knockout
mice show increased basal and insulin-stimulated phosphorylation of insulin receptor and improved
insulin sensitivity, suggesting that fetuin-A might have a major role in regulating insulin sensitivity [111].
Numerous studies have shown that fetuin-A treatment accelerates systemic inflammatory cytokine
levels while reducing adiponectin expression [112]. In line with these findings, fetuin-A levels are
increased in patients with NAFLD [113]. Fetuin-A expression seems to be increased by NF-κB and
ERK activation, suggesting that inflammatory stimulation itself is an important factor for fetuin-A
expression [114]. In turn, fetuin-A acts as an endogenous ligand for Toll-like receptor 4, which is
an important pathway for the development of systemic inflammation [115]. By contrast, Li et al. [116]
claimed that fetuin-A confers long-lasting protection against lethal systemic inflammation by inhibiting
the late pro-inflammatory pathway. Nevertheless, further studies are required to understand the exact
role of fetuin-A in the development and progression of inflammation.

Selenoprotein P (SeP) is mainly synthesized in the liver and appears to show upregulated
expression in the liver of patients with T2D, NFALD, and cardiovascular disease [117]. Using serial
analysis of gene expression and DNA chip analysis, Misu et al. [118] demonstrated that hepatic SeP
mRNA expression is correlated with insulin resistance status in humans. Moreover, purified SeP
treatment significantly impaired insulin-mediated AKT phosphorylation in hepatocytes and systemic
insulin sensitivity, whereas knockdown of SeP in the liver improved glucose intolerance. A similar study
was performed with SeP neutralizing antibodies to inhibit SeP function, confirming the improvement
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of insulin secretion and glucose sensitivity in T2D model mice [119]. Although SeP knockout mice
have increased adiponectin levels [120], it is still unclear whether SeP acts as an endocrine factor,
such as acting directly on the adipose tissue to modulate adiponectin expression. A tissue-specific
SeP receptor knockout study is needed to determine whether there is cross-talk between SeP and the
adipokine adiponectin.

3.2. Vascular Diseases

Vascular diseases are conditions that affect vasculature, including arteries and/or veins of the
circulatory system. pathological changes of vascular endothelial cells by inflammation play an important
role in the development of vascular and heart disease, one group analyzed secretory proteins under
TNF-α treatment using LC-MS/MS method [121]. In this study, cytoskeleton and cytoskeleton-binding
proteins (tubulin, actin, cofilin, vimentin, elongation factor-1a), membrane-associated proteins involved
in intracellular transport (caveolin, annexins), and protein folding (calnexin, calreticulin, isomerase,
chaperones) were identified. Also, it has been reported that endothelial progenitor cells (EPCs) derived
secretory factors promoted cortical vascular repair after cerebral ischemia [122]. To identify protein
candidates, proteome array with EPCs conditioned media has been conducted [123]. As a result,
38 proteins were detected in the media and the author proved that angiogenin is a critical factor for
increasing endothelial proliferation. Another study characterized proangiogenic factor thymidine
phosphorylase (TP), also known as platelet-derived endothelial cell growth factor (PD-ECGF) in
secretome of EPCs throughout comprehensive MALDI-TOF/TOF mass approach [124]. Currently,
the relationship between vascular disease progression and these secretory proteins are not elucidated
yet. It would be a good approach whether regulation of these proteins can alleviate inflammation
mediated vascular diseases.

Vascular smooth muscle cell (VSMC) dysfunction causes major types of vascular disease such as
atherosclerosis and hypertension. Recent study identified 349 proteins from VSMC derived microvesicle
and exosome [125]. Importantly, the authors of this study compared secreted proteins profile between
quiescent and activated VSMCs. Exosomes from activated VSMCs showed increased proteins related
to stress response and cell growth regulation (Stat-3, Hsp-70, Peptidyl-prolyl cis–trans isomerase A,
Glyceraldehyde-3-phosphate dehydrogenase, Cofilin-2). This observation suggests that exosomes
from activated VSMCs can contribute to induction of inflammation and vascular remodeling. Also,
aortic smooth muscle cells (ASMC) secretome was analyzed by ESI-MS/MS and the authors identified
Hsp-90 as a ROS induced secretory factor [126]. Although these data are promising, pathological
effects of these protein candidates are required to be verified in vivo system in the future.

3.3. Neural Diseases

3.3.1. Non-Neuronal Cells: Astrocytes and Microglia

Neurons are well-recognized as an important cell population for receiving and transmitting
information in the nervous system; however, non-neuronal cell types such as astrocytes and glia are
also essential for proper regulation of the nervous system [127]. Importantly, these cells secrete many
kinds of proteins that play pivotal physiological and pathological roles in the nervous system, and their
abnormal regulation has been associated with the development of various neurodegenerative diseases,
including amyotrophic lateral sclerosis and Alzheimer’s disease (AD) [128]. Based on this concept,
analysis of the astrocyte and glial secretome would provide essential information about the potential
of these cells and their secreted proteins as diagnostic agents or therapeutics for neurological diseases.

Numerous studies have now provided a comprehensive profile of astrocyte-derived cytokines
and secretory proteins [129–131]. Han et al. [130] used a murine astrocyte cell line for proteomic
and secretomic analysis with a combined two-step digestion and filter-aided sample preparation
method, and almost 6000 unique protein groups were identified from the CM of astrocytes. Many of
these proteins correlated with well-known astrocyte-mediated cell-to-cell communication pathways
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such as focal adhesion, extracellular matrix-receptor interaction, and endocytosis. Interestingly,
Kyoto Encyclopedia of Genes and Genomes pathway analysis identified that many of the proteins
are related to axon guidance, calcium homeostasis, and development of synaptic circuits, which have
also been associated with several neurological disorders [132]. To obtain the astrocyte secretome
profiles under pathological conditions, Keene et al. [131] analyzed the CM from primary astrocytes
treated with inflammatory cytokines to mimic the neuro-inflammatory conditions associated with
neurological disorders such as AD and Parkinson’s disease (PD). They found that IL-6, nitric oxide
production, cyclooxygenase-2, and nerve growth factor secretion levels increased in the media in
response to cytokine treatment. An independent study also demonstrated that human astrocytes
produce IL-1β, IL-1ra, TNF-α, IP-10 (CXCL10), and MIP-1α (CCL3) after cytokine treatment [133].
These observations suggest that astrocyte-derived cytokines and chemokines play an important
pro-inflammatory (neurotoxic) and neuroprotective role in inflammation-induced neurological disease.

As resident immune cells of the brain, the microglia mediate key functions to support and
initiate an immune response to pathogens and damage. Moreover, microglia can regulate neural
development and neuronal cell restoration in both healthy and pathological conditions [134]. Microglial
activation induces morphological alterations, which consequently changes the surface receptors.
Cumulative evidence also points to aging-induced changes in microglial secretory proteins, which is
consistent with the concept of a microglia-derived senescence-associated secretory phenotype [135].
Consistently, microglia derived from aged mice exhibit increased basal or lipopolysaccharide-induced
expression of TNF-α, IL-1β, and IL-6. Although these cytokines promote clearance of amyloid beta
peptide (Aβ) by the microglia in the early stage, therefore protecting against the development of AD,
chronic exposure of pro-inflammatory cytokines would suppress the expression of genes involved in
Aβ clearance and thus promote the progression of AD [136]. Finally, both beneficial and deleterious
functions of microglia-derived cytokines have been reported in the context of prion diseases [137],
suggesting that further study is needed to determine the specific factor(s) in addition to exposure time
contributing to the microglial activation-induced progression of neurological diseases.

3.3.2. Neural Stem Cells (NSCs)

NSCs are self-renewing, multipotent cells that generate neurons, astrocytes, and glia of the
central nervous system. In addition to generation of new graft-derived neurons and glial cells,
accumulating evidence indicates that NSC transplants can improve central nervous system diseases,
including animal models of multiple sclerosis, AD, and spinal cord injury, by secreting proteins such
as growth factors, cytokines, chemokines, metabolites, and bioactive lipids [138].

Yashura et al. [139] used an immortalized human NSC line (HB1.F3) to identify the
secreted neurotrophic factors and determine their neuroprotective effects against neurotoxicity.
The HB1.F3-derived culture media clearly decreased the degree of 6-OHDA-induced neurotoxicity
in vitro. ELISA further demonstrated that stem cell factor and BDNF play important roles in the
neuroprotection mechanism. Likewise, NSC transplantation in 6-OHDA-induced experimental PD
rats improved behavioral recovery and protected against dopaminergic depletion by increasing
the level of glial cell line-derived neurotrophic factor [140]. Demyelination refers to damage to
the myelin layer, which is most commonly represented by multiple sclerosis as a demyelinating
disease of the CNS. Cuprizone-induced toxicity has been established as an animal model to
study demyelination [141]. Transplanted NSCs in this model induced oligodendrocyte progenitor
cell proliferation and enhanced remyelination via secretion of platelet-derived growth factor-AA
(PDGF-AA), FGF-2, leukemia inhibitory factor, and ciliary neurotrophic factor [142].

Severino et al. [143] adopted a more systematic approach to analyze the NSC secretome using
a shotgun LC-MS/MS method. Several of the identified proteins were related to extracellular matrix
and cell-adhesion functions, indicating that this type of analysis may have a limitation to characterize
soluble factors with established neurotrophic properties. To overcome this problem, they used
a commercially available targeted ELISA kit to detect the expression of well-known cytokines and
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chemokines, and identified a potential role for chemokine (C-C motif) ligand 2 (CCL2, also known as
MCP) in neural differentiation.

3.4. Extracellular Vesicles

Extracellular vesicles (EVs) contain proteins and other cellular origin, being used as early
pathological condition detection maker in central nervous system (CNS) diseases. Indeed, EVs had
been included high level of total Tau, P-T181, P-S396-tau, and Aβ1-42 from fifty-seven Alzheimer’s
disease (AD) patients [144]. In particular, several studies have been reported that profiling of
RNA expression patterns altered in neurological disorder EVs such as autism spectrum disorder
(ASD) [145,146]. In cancer research, Kosaka and colleague reported that EVs mediated interaction of
alternation of pathological disorders based on lung cancer and chronic obstructive pulmonary disease
(COPD) [147]. Altogether, EVs are strongly involved not only in pathophysiological roles in various
human diseases but also provide information for therapeutic potential biomarker.

4. Summary and Perspectives

Secretory factors including cytokines such as adipokines, myokines, hepatokines, and EVs are key
factors of the secretome, and since their important roles in various diseases are increasingly becoming
recognized, the popularity of secretomics analysis is on the rise. Cell-based secretome studies can yield
reliable results through diverse and long-term studies, but there are important considerations with
regards to secretome preparation. Therefore, optimized and standardized conditions of primary cells
are needed for secretome studies, as well as methods for analyzing the secretome at the tissue level,
which could provide more direct and reliable results that exclude artifacts. Studies focused on EVs
have also recently begun to attract attention.

One of the major challenges of secretomics is the inherent sensitivity of the mass spectrometer
to cover the wide dynamic range for the low abundance of genuine secreted proteins over the
high abundant proteins derived from the serum, which is essential for standard maintenance of
the sample [148]. High-resolution mass spectrometers such as Q-Exactive HF, in combination with
the optimized sample preparation schemes to enrich newly synthesized secreted proteins facilitate
identification of low-level secreted protein from the optimized CM for cell growth [47,149–152].
Advances in the sensitivity of secretome analysis have enabled identifying samples that are highly
susceptible to the media condition such as stem cells [153] and primary cells [154], as well as to compare
the secreted protein profiles between serum-free and serum-containing CM [47]. Cell-to-cell and
organ-to-organ interactions are generally considered to be mediated by ligand-receptor pathways;
however, vesicle-mediated interaction is now increasingly recognized. Thus, secretomics research
represents a step beyond conventional MS-based proteomics, and is expected to develop into an essential
field for understanding inter-cellular and inter-organ signaling, while providing key insight into
pathological mechanisms.
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Abbreviations

CM conditioned medium
EVs Extracellular vesicles
T2D Type 2 diabetes
AMPK AMP-activated protein kinase
L6 Immortalized rat skeletal muscle cell line
IL-6 Interleukin 6
ER endoplasmic reticulum
PI3K phosphatidylinosotol 3-kinase
BDNF Brain-derived neurotrophic factor
C2C12 Immortalized mouse myoblast cell line
ACC Acetyl-CoA carboxylase
HFD high fat diet
PGC Peroxisome proliferator-activated receptor gamma coactivator
NAFLD nonalcoholic fatty liver disease
FGF21 Fibroblast growth factor 21
GLUT4 glucose transporter 4
FASP filter-aided sample preparation
TNF-α tumor necrosis factor-alpha
MCP monocyte chemotactic protein
FNDC5 Fibronectin type III domain-containing protein 5
IP-10 Interferon gamma-induced protein 10
FSTL-1 Follistatin-like-1
GLUT4 Glucose transporter 4
MIP Macrophage inflammatory protein
SeP Selenoprotein P
NSC Neural stem cell
LC-MS/MS Liquid Chromatography with tandem mass spectrometry
SILAC stable isotope labeling by amino acids in cell culture
iTRAQ isobaric tags for relative and absolute quantification
TMT tandem mass tag
IL-1β interleukin 1 beta
VSMC vascular smooth muscle cell
EPC endothelial progenitor cells
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