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ABSTRACT Genotyping-by-sequencing (GBS) has emerged as a useful genomic approach for exploring
genome-wide genetic variation. However, GBS commonly samples a genome unevenly and can generate a
substantial amount of missing data. These technical features would limit the power of various GBS-based
genetic and genomic analyses. Here we present software called IgCoverage for in silico evaluation of
genomic coverage through GBS with an individual or pair of restriction enzymes on one sequenced ge-
nome, and report a new set of 21 restriction enzyme combinations that can be applied to enhance GBS
applications. These enzyme combinations were developed through an application of IgCoverage on 22
plant, animal, and fungus species with sequenced genomes, and some of them were empirically evaluated
with different runs of Illumina MiSeq sequencing in 12 plant species. The in silico analysis of 22 organisms
revealed up to eight times more genome coverage for the new combinations consisted of pairing four- or
five-cutter restriction enzymes than the commonly used enzyme combination PstI + MspI. The empirical
evaluation of the new enzyme combination (HinfI + HpyCH4IV) in 12 plant species showed 1.7–6 times
more genome coverage than PstI + MspI, and 2.3 times more genome coverage in dicots than monocots.
Also, the SNP genotyping in 12 Arabidopsis and 12 rice plants revealed that HinfI + HpyCH4IV generated 7
and 1.3 times more SNPs (with 0–16.7% missing observations) than PstI +MspI, respectively. These findings
demonstrate that these novel enzyme combinations can be utilized to increase genome sampling and
improve SNP genotyping in various GBS applications.
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Genotyping-by-sequencing (GBS) has emerged as a useful genomic
approach for exploring genetic variation and performing association
mapping on a genome-wide scale (Huang et al. 2009; Elshire et al. 2011;
Fu and Peterson 2011; Poland and Rife 2012), thanks to the advances
in next-generation sequencing technologies (Metzker 2010). The GBS

approach is a combined one-step process of SNP marker discovery and
genotyping through genome reduction with restriction enzymes (RE)
(Altshuler et al. 2000; van Orsouw et al. 2007) and SNP calls with or
without a sequenced genome (Elshire et al. 2011; Fu and Peterson 2011).
This approach has displayed a major advantage of being rapid, high
throughput, and cost-effective for genome-wide analysis of genetic var-
iation and association mapping (Davey et al. 2011; Poland and Rife
2012; Fu et al. 2014). However, GBS usually samples a genome unevenly
(Beissinger et al. 2013; Schilling et al. 2014) and can generate SNP data
with a large proportion of missing observations across assayed samples
(Marchini and Howie 2010; Rutkoski et al. 2013; Fu 2014). These tech-
nical features would limit the power of various GBS-based genetic and
genomic analyses (Pool et al. 2010; Nielsen et al. 2011; Crawford and
Lazzaro 2012).

Efforts have been made to recover information from GBS SNP data
with missing observations. Several imputation methods based on row
averages, row medians, and data correlation (Little and Rubin 1987;
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Horton and Kleinman 2007; Carpenter and Kenward 2013) have been
applied to infer missing genotypes for a genetic analysis (Troyanskaya
et al. 2001; Iwata and Jannink 2010; Weigel et al. 2010). Specific efforts
to impute unordered SNP genotype data have also been made using
regression-based methods such as Random Forest (Breiman 2001;
Stekhoven and Bühlmann 2011) and principal component analysis-
based tools (Stacklies et al. 2007) with the hope of improving genomic
selection (Poland et al. 2012b; Rutkoski et al. 2013). These efforts help
to regain some missing information, particularly from those datasets
with fewer than 30% observations missing, but the information gain is
less ideal (Fu 2014; Huang et al. 2014) as someGBS applications could
generate up to 90% missing data in SNP genotyping (Elshire et al.
2011; Fu and Peterson 2011).

Research into efficient genome sampling by various REs for genome
reduction has helped to develop different GBS protocols (Elshire et al.
2011; Fu and Peterson 2011; Peterson et al. 2012; Poland et al. 2012a;
Sonah et al. 2013; Peterson et al. 2014). Specifically, Elshire et al. (2011)
presented a GBS protocol using a methylation-sensitive RE, ApeKI,
followed by the release of the two-enzyme (PstI + MspI) protocol by
Poland et al. (2012a) and the double digest RADseq protocol by Peterson
et al. (2012). The two-enzyme protocol has good technical merit and
has gained popularity in application for generating high-density
genetic maps (Poland et al. 2012a), but alternative protocols also exist
(Andrews et al. 2014; Puritz et al. 2014). Overall, these efforts have
enhanced the genome sampling of the GBS approach, particularly
with the double-digest protocols (Peterson et al. 2012; Poland et al.
2012a). However, these GBS protocols may not have adequate ge-
nome sampling for high-density mapping, nor sufficiently reduce
missing data (Beissinger et al. 2013; Schilling et al. 2014; Sims et al.
2014). Further efforts have been made to improve the GBS efficiency
in genome sampling (De Donato et al. 2013; Heffelfinger et al. 2014;
Schilling et al. 2014; Peterson et al. 2014), particularly with the use of
more effective enzyme combinations (Hamblin and Rabbi 2014).

We conducted a search for better RE combinations for GBS appli-
cations with the goal of increasing genome sampling and improving
SNP genotyping. Our search focused on the development of software,
IgCoverage, for in silico evaluation of genomic coverage through GBS
with an individual or a pair of REs on one sequenced genome, and had a
larger scope with 70 RE combinations and 22model organisms than the
previous efforts (Poland et al. 2012a; Peterson et al. 2012). The specific
objective of this search was to explore a new set of RE combinations for
improving GBS applications through in silico analyses of 22 organisms
and empirical evaluations in some plant species. It was our hope that this
exploration would generate a list of candidate RE combinations for
broader GBS application in different species, and provide some useful
tools for further searches for specific RE combinations for GBS appli-
cations in a species of particular interest.

MATERIALS AND METHODS
Our search for new RE combinations with increased genome sampling
for a GBS application was done through comparisons of genome
coverages of a species obtained by the new RE combinations and the
commonly used RE pair PstI +MspI, either from an in silico analysis or
empirical validation. In this study, we defined the genome coverage as
the proportional genome covered by DNA fragments digested by a RE
or RE pair. To avoid confusion, we named IgC and EgC as the genome
coverages of a species estimated from the in silico analysis and empirical
validation, respectively. Specifically, the search had five major interac-
tive components through in silico analysis and empirical evaluation
(Figure 1). They are (C1) in silico analysis of IgC for single REs, (C2)
designing RE pairs, (C3) in silico analysis of IgC for RE pairs, (C4)

empirical verification of IgC for some RE pairs on plant species, and
(C5) further empirical verification for some RE pairs on individual
plants. The details of each major step are described below.

C1: in silico analysis of IgC for individual REs
The in silico search for informative REs started with the selection of
60 REs (Supporting Information, Table S1) by considering the en-
zyme usage, recognition site and length, methylation sensitivity,
active temperature, and unit cost. The majority of the selected en-
zymes were four- to six-cutters (or site-recognition), and more than
half were methylation sensitive. For each enzyme, we performed in
silico cuts of sequenced genomes of four plant species with se-
quenced genomes (Arabidopsis thaliana; Oryza sativa, rice; Zea
mays, maize; Glycine max, soybean) (Table S2). This was done
through the development and application of specific software,
IgCoverage (File S1), to calculate the IgC as the total DNA fragments
of different lengths (100–600 bp) as the ratio of the total fragment
length over the sequenced genome of reported sequence length (as
shown in Table S2). We considered a wider range of fragment lengths
(100–600 bp) than the current GBS protocols (200–400 bp), mainly
for relative IgC comparison and possible technical advances in future
NGS platforms for GBS applications. The shell script IgCoverage1RE.
sh in IgCoverage was run in a combination of 60 enzymes and four
plant genomes. These IgC results (Table 1) were used to guide the
development of new RE combinations for new two-enzyme GBS
protocols as described below.

The software IgCoverage (File S1) was specifically developed and
tested for in silico evaluation of expected genome coverage through
GBS with an individual or a pair of REs on one sequenced genome.
Two shell scripts, IgCoverage1RE.sh and IgCoverage2RE.sh, were
written to calculate IgC values for an individual or a pair of REs,
respectively. Both functions carry several major steps. First, the
genome-sequence files in FASTA format of a species were down-
loaded from the NCBI database (Table S2). These FASTA files were
renamed according to their respective chromosomes and used as
input files. Second, the recognition sequence and cutting position of
each RE was obtained as an input file and used to scan over a
chromosome for the recognition site positions. Third, for each chro-
mosome, DNA fragments were defined based on the positions of
recognition sites. Four fragment metrics were recorded: the total
number of DNA fragments, the total length of all DNA fragments,
the number of DNA fragments of lengths 100–600 bp, and the total
length of the DNA fragments within 100–600 bp. Fourth, a sum-
mation of the four fragment metrics over all the chromosomes was
made for the whole genome. IgC was calculated for the species. The
four fragment metrics and IgC value were saved as output. Fifth, the
second to fourth steps were repeated for other REs, and an output
file with four fragment metrics and IgC for each enzyme was gen-
erated. This script was rerun for each species.

C2: development of new RE combinations
A total of 70 RE combinations (Table S3) were designed for in silico and
empirical evaluations based on their genome coverage and/or SNP
genotyping. These enzymes were paired or selected with the following
considerations. First, we focused on two-enzyme GBS protocols with
dual-indexing of sequencing runs, and pairs of enzymes were selected,
as opposed to single enzymes. Second, enzymes needed to be readily
available from a common supplier, capable of generating sticky (over-
hanging) ends for efficient ligation of adapters, and, preferably, to have
compatible reaction buffers and the same incubation temperature to
allow for simultaneous digestion. Third, we reasoned that the enzymes
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with shorter recognition sites would generate more, shorter fragments
and that more fragments would lead to higher genome coverage. Thus,
enzyme combinations with shorter recognition sites were favored and
the following combinations were chosen: 40 5 + 4 bp, 25 6 + 4 bp, two
4 + 4 bp, and one 5 + 5 bp (Table S3). In addition, two RE combinations
with longer recognition sites were selected: one 6 + 6 bp and one 6 + 8
bp (Table S3). For comparison, six RE combinations were also selected
from previously published works (Vos et al. 1995; Maughan et al. 2009;
Fu and Peterson 2012; Peterson et al. 2012; Poland et al. 2012a), in-
cluding two long recognition site enzyme pairs, 6 + 6 bp and 8 + 6 bp.
Fourth, plant genomes vary in overall GC content (�Smarda et al. 2014).
Methylation of cytosine bases can also inhibit the ability of certain
enzymes to cut DNA and could reduce the number of potential cut
sites. Thus, some RE combinations were selected to address the vari-
ability in the GC content of the enzymes’ recognition sites (low, equal,
and high, relative to the AT content). There were 47 enzyme combi-
nations with at least one enzyme being methylation sensitive, as in-
dicated in the supplier’s literature. Fifth, the enzymes were also favored
if displaying high in silico IgC values in four model plant species (Table
1), and with even digestion patterns and/or large proportions of frag-
ments less than 600 bp from in vitro tests over five plant species [rice,
maize, soybean, wheat (Triticum aestivum), flax (Linum usitatissiu-
mum)]. The in vitro digestions were conducted with 24 single REs
and 23 RE combinations at 37� for 3 hr using 10 units of each enzyme
and 100 ng of genomic DNA with the optimum buffer. Digests were
separated on a 2% agarose gel at 100 V for 2 h and visualized by stain
with GelRed (Biotium, Hayward, CA, USA) postrun.

C3: in silico analysis of IgC for RE pairs
The in silico search for promising RE pairs had several steps. First, we
downloaded 18 additional genome sequences from the NCBI database
to enlarge the scope of the species assay (Table S2). Second, the shell
script IgCoverage2RE.sh in IgCoverage (File S1) was applied to perform
the in silico analysis of double-enzyme cutting of a sequenced genome
for each RE combination. Specifically, IgCoverage2RE.sh simulated the
digestion of the genome with two REs, and calculated the IgC value
of the generated DNA fragments of different ends and with lengths
100–600 bp. Note that we considered only the DNA fragments of
different ends and lengths within 100–600 bp as these fragments are
likely sequenced in the current GBS protocols. The IgCoverage2RE.sh

script was run for 70 RE combinations in one species and the run was
repeated for the other 21 assayed species (Table S2). Third, we also
assessed the distribution of the DNA fragments with different ends and
lengths within 100–600 bp generated in silico by certain enzyme com-
binations on some plant genomes, and compared the abundance of DNA
fragments generated by these RE combinations at particular genomic
regions. Note that IgCoverage2RE.sh differs from IgCoverage1RE.sh
mainly in that the former considers the cutting positions by two enzymes
over a chromosome and only the DNA fragments of different ends for
the IgC estimation.

C4: empirical verification on plant species
The IgC verification was performed for three enzyme combinations
(PstI + MspI = PM, AvaII + BfaI = AB, and HinfI + HpyCH4IV =
HH) on 12 plant species (Table 3). PM was the GBS reference RE
pair and used for control, while AB and HH were selected to rep-
resent the enzyme combinations with the moderate and the high IgC
values, respectively (see Table S3).

The HH pair was selected, as opposed to other RE pairs with higher
IgC values, as it seemed to have the best combination of genome
coverage, enzyme cost, and practical efficiency for verification on plant
species. For example, HpyCH4IV has a 50% GC-content recognition
site (ACGT) compared to the AT-rich MseI site (TTAA) and thus is
more likely to avoid noncoding AT-rich regions (Haberer et al. 2005),
especially in large, AT-rich genomes of cereals (�Smarda et al. 2014). The
other RE pairs have different incubation temperatures (e.g., CviAII at
25�, HinfI and DdeI 37�, TfiI 65�, and ApeKI 75�), requiring some
modification of the current GBS protocols. Some of these pairs, such
asMluCI/HinfI, had higher IgC values for 22 species, but relatively lower
IgC values in plant species. Also, BfaI has a short shelf life and strict
storage requirements, increasing its overall cost for a routine GBS use.

Sixmonocots (maize; rice; Elymus lanceolatus, northern wheatgrass;
Aegilops umbellulata, goat-grass; Pseudoroegneria spicata, bluebunch
wheatgrass; and Agropyron cristatum, crested wheatgrass) and six di-
cots (Arabidopsis; soybean; Linum grandiflorum, red flax; Carthamus
tinctorius, safflower; Pisum sativum, pea; and Sinapis alba, yellow mus-
tard) were selected to represent both model and nonmodel plant ge-
nomes of variable size. An individual plant with young leaf tissue
collected from our previous genetic diversity research was selected to
represent its species. DNA was extracted from leaf tissue and the same

Figure 1 Procedures used to explore new
REs for GBS application. A flow chart for
exploring restriction enzyme (RE) pairs for
a genome-by-sequencing (GBS) application
to increase genome coverage of a species
through in silico analysis and empirical vali-
dation. The genome coverage is measured
by the proportion of the genome covered
by a selected set of DNA fragments digested
with a RE or RE pair. IgC and EgC are the
genome coverages of a species estimated from
in silico analysis and empirical validation, re-
spectively. Two shell scripts (IgCoverage1RE.sh
and IgCoverage2RE.sh) are part of software
IgCoverage developed for this study.
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n Table 1 The in silico genome coverages (IgC; %) of four plant species by DNA fragments of different lengths (100–600 bp) obtained
from in silico digestions with 60 individual restriction enzymes

Arabidopsis Soybean Rice Maize

Enzyme SL Count IgC Count IgC Count IgC Count IgC Mean SD

CviAII 4 249,612 56.7 2,266,324 60.7 1,030,613 79.0 4,817,820 59.6 64.0 10.1
CviKI-1 4 376,984 67.3 2,648,781 61.9 1,150,523 58.9 6,059,914 53.9 60.5 5.6
NlaIII 4 249,639 56.7 2,266,718 60.8 945,109 62.2 4,818,313 59.6 59.8 2.3
MluCI 4 360,972 64.7 2,790,706 57.9 969,836 56.2 4,546,748 54.1 58.2 4.6
CviRI 4 244,853 54.9 2,194,161 58.9 914,234 60.1 4,668,840 58.6 58.1 2.2
MseI 4 349,553 65.9 2,583,144 58.7 821,137 51.2 3,442,333 43.4 54.8 9.7
AluI 4 253,157 55.7 1,410,267 41.0 765,561 53.7 4,481,014 56.5 51.7 7.2
DpnI 4 230,319 52.6 1,256,292 38.6 680,477 49.4 3,833,020 51.2 47.9 6.4
HinfI 5 247,146 55.7 1,432,238 43.6 526,686 39.7 3,730,642 50.4 47.4 7.1
Hpy188I 5 224,589 51.4 1,181,936 35.8 574,679 42.6 3,713,268 48.5 44.6 6.9
DdeI 5 187,752 44.6 1,304,502 39.3 491,752 37.8 3,621,546 49.2 42.7 5.2
BfaI 4 143,863 36.0 1,200,979 36.5 585,600 43.5 3,499,202 47.8 41.0 5.7
TaqI 4 172,656 41.6 638,273 19.9 510,683 37.5 3,315,820 44.3 35.8 11.0
HpyCH4III 5 150,724 37.7 782,320 25.0 530,653 40.1 2,520,324 36.1 34.7 6.7
RsaI 4 117,822 30.2 785,561 25.3 528,208 39.5 2,434,929 35.5 32.6 6.2
TfiI 5 165,612 40.1 822,062 26.9 291,725 23.2 1,693,916 25.2 28.8 7.6
HaeIII 4 41,199 11.0 498,808 15.1 464,330 33.0 3,238,709 40.6 24.9 14.2
Fnu4HI 5 65,979 16.8 368,604 11.5 479,530 32.9 2,810,234 35.0 24.1 11.6
HpyCH4IV 4 107,461 27.1 544,678 16.9 342,538 26.3 1,565,649 22.7 23.3 4.6
Sau96I 5 39,880 10.8 483,707 15.0 355,928 26.9 2,817,258 37.3 22.5 12.0
ScrFI 5 38,190 10.0 289,281 9.2 350,643 25.9 2,680,165 34.3 19.9 12.3
MspI 4 46,464 11.6 187,972 5.8 378,091 25.9 2,464,695 30.8 18.5 11.8
ApeKI 5 45,865 12.0 257,226 8.3 338,090 25.2 1,771,780 24.6 17.5 8.6
Tsp45I 5 50,386 13.5 385,719 12.7 200,604 16.6 1,249,590 18.8 15.4 2.8
HhaI 4 12,350 3.4 145,999 4.3 285,864 19.5 2,179,751 26.9 13.5 11.6
BstNI 5 21,241 5.7 183,781 5.9 183,039 14.8 1,582,998 22.1 12.1 7.9
AvaII 5 22,727 6.3 241,494 7.8 144,992 11.8 1,395,284 20.0 11.5 6.2
AccII 4 13,101 3.4 114,394 3.2 247,293 16.2 1,539,695 19.4 10.6 8.5
Hpy99I 5 19,497 4.8 55,184 1.6 207,880 13.8 1,401,069 18.2 9.6 7.7
SspI 6 44,863 11.4 493,702 15.5 92,294 7.3 213,496 3.3 9.4 5.3
BstYI 6 41,760 11.1 189,122 6.3 105,736 8.7 621,055 9.9 9.0 2.0
NciI 5 6272 1.7 55,716 1.9 125,439 9.4 973,572 13.3 6.5 5.7
PsiI 6 30,444 8.0 333,631 10.6 54,716 4.3 127,778 2.0 6.2 3.8
BsrFI 6 5528 1.4 16,387 0.5 122,510 8.9 413,772 6.2 4.3 4.0
EcoT22I 6 9536 2.6 141,415 4.6 46,432 3.9 163,998 2.4 3.4 1.0
NsiI 6 9536 2.6 141,415 4.6 46,432 3.9 163,998 2.4 3.4 1.0
HindIII 6 17,751 4.7 97,975 3.2 17,513 1.6 198,699 3.3 3.2 1.3
BgIII 6 8161 2.2 30,497 1.0 17,778 1.5 63,336 1.0 1.4 0.6
EcoRI 6 5555 1.6 45,234 1.5 11,684 1.0 65,745 1.1 1.3 0.3
NgoMIV 6 166 0.0 1436 0.0 48,090 3.4 93,246 1.3 1.2 1.6
SacI 6 2501 0.7 8413 0.3 20,000 1.6 141,985 2.1 1.2 0.8
XbaI 6 4329 1.2 36,162 1.3 12,426 1.1 69,100 1.1 1.2 0.1
BgII 11 206 0.1 4433 0.2 27,650 2.1 152,478 2.3 1.2 1.2
PstI 6 3047 0.9 13,079 0.4 16,785 1.5 85,561 1.4 1.0 0.5
EagI 6 124 0.0 3898 0.1 32,765 2.5 100,460 1.4 1.0 1.2
AflII 6 3637 1.0 36,561 1.3 5090 0.4 61,670 1.1 1.0 0.4
SphI 6 853 0.2 21,649 0.8 18,406 1.6 67,646 1.1 0.9 0.5
AlwNI 9 2709 0.8 11,631 0.4 8836 0.8 95,178 1.6 0.9 0.5
BssHII 6 12 0.0 1815 0.0 24,187 1.7 109,573 1.6 0.9 1.0
EcoRV 6 4015 1.1 19,768 0.7 9299 0.8 41,023 0.7 0.8 0.2
XhoI 6 1611 0.5 8640 0.3 8925 0.7 48,772 0.8 0.6 0.3
SacII 6 182 0.0 862 0.0 15,281 1.1 60,642 0.9 0.5 0.6
BamHI 6 1615 0.5 8977 0.3 6676 0.5 43,112 0.7 0.5 0.2
SalI 6 530 0.1 5811 0.2 9303 0.7 53,675 0.7 0.5 0.3
SmaI 6 148 0.0 1524 0.1 6748 0.6 56,135 0.9 0.4 0.4
SgrAI 8 96 0.0 390 0.0 14,315 1.1 23,916 0.3 0.4 0.5
KpnI 6 429 0.1 7655 0.2 2887 0.3 28,522 0.5 0.3 0.1
NotI 8 0 0.0 5 0.0 992 0.1 2278 0.0 0.0 0.0
FseI 8 3 0.0 59 0.0 749 0.1 1855 0.0 0.0 0.0
SbfI 8 2 0.0 22 0.0 88 0.0 721 0.0 0.0 0.0

SL, site length; Count, the number of DNA fragments of different lengths (100–600 bp).
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GBS procedures as described in Peterson et al. (2014) were used, but
with adapters modified to anneal to the specific enzyme pairs. Two
MiSeq runs were made, and each run consisted of three monocots
and three dicots. The MiSeq Reporter software was set to produce
demultiplexed data in both the forward and reverse directions in
FASTQ format. The FASTQ files for each species/enzyme combination
were processed separately.

The bioinformatics analysis of genome coverage for each enzyme
combination in each species was performed in several steps. First, the
MiSeq FASTQdatawere cleaned to remove low quality sequences using
Trimommatic (Bolger et al. 2014) with a five-base sliding window, and
with a quality cut-off using a PHRED score of 24 and a minimum
sequence length of 75 bases. Second, unique sequences were obtained
independently from each enzyme and species combination using
FastX_Collapser (Gordon 2010), followed by the de novo assembly of
contigs using Minia (Salikhov et al. 2013). Minia was run with a k-mer
size of 31, the minimum k-mer abundance of 2 and the genome size
of 100,000,000. Third, the total number of contigs and the total number
of bases from all contigs from each enzyme and species combination
were counted with a custom Perl script. Empirical genome coverage
(EgC) was estimated as the number of bases from all contigs against

the estimated genome size of a plant species (listed in Table 3) from
published flow cytometry values from the Plant DNAC-values Database,
Kew Royal Botanical Gardens (http://data.kew.org/cvalues/). There was
no report on the genome size of red flax, and its EgCwas estimated using
the reported genome size of cultivated flax in the Plant DNA C-values
Database. Comparisons of EgC values for AB and HH to PM were
alsomade for understanding genome sampling. Note that such a relative
comparison of species-specific EgC or IgC values between two RE
pairs should not be affected by the use of either estimated genome size
(Table 3) or published genome sequence length (Table S2) of a species.

C5: empirical verification on individual plants
The verification of IgC and SNP genotyping in 12 Arabidopsis and 12
rice individual samples was conducted with HH and PM. The assayed
materials (Table 4) represented 12 races of Arabidopsis and 12 acces-
sions of rice. Seeds were randomly selected from each race or accession
and planted in the greenhouse at the Saskatoon Research and Devel-
opment Centre. Young leaf tissue was specifically collected from a
single plant representing a race or accession, and DNA was extracted.
Following the gd-GBS protocol (Peterson et al. 2014), with adapters
modified to anneal to the specific enzyme pairs, two additional MiSeq

Figure 2 Fragment distributions detected in silico on selected chromosomes of Arabidopsis and rice. Distributions of DNA fragments generated
by in silico digestions with three restriction enzyme combinations on two chromosomes of Arabidopsis thaliana (A, B) and Oryza sativa (C, D). The
number of DNA fragments and the average enzyme-cutting position based on a 100 kb sliding-window of a given chromosome are calculated and
shown with a colored line for each enzyme combination. The corresponding horizontal linear line represents the average fragment count for an
enzyme combination on the chromosome. More digestions were found for HinfI + HpyCh4IV than the other two enzyme combinations.
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sequencing runs were conducted. Each MiSeq run consisted of all 48
indexed accession/enzyme combinations from both species, and gen-
erated 96 demultiplexed paired-end FASTQ files of each sample/
enzyme combination for the two species. The contig assembly and SNP
genotyping were performed using the npGeno pipeline with default
settings (Peterson et al. 2014). The statistics on contigs and resulting
SNPs, along with their read statistics, were compiled for each enzyme
combination in each species. To assess the dynamics of missing values
in SNP genotyping for each enzyme combination, total SNPs were
analyzed and plotted with respect to the number of samples present
and average number of reads per sample for both plant species.

Data availability
Online supplementary information contains Figure S1, File S1, Table
S1, Table S2, and Table S3. The genome sequence data for 22 assayed
organisms are available in the NCBI database with direct links listed in
Table S2. The original Illumina MiSeq data (in FASTQ format), with
two runs for IgC verification on 12 plant species and with two runs for
verification on 12 Arabidopsis and 12 rice samples, are available at the
NCBI with Sequence Read Archive Project ID: SRP066269. The de-
veloped software, IgCoverage.rar (File S1), is available as an online
supplementary file.

RESULTS

Genome coverage from in silico analysis
The in silico digestions by 60 individual REs of the sequenced genomes
of four plant species revealed a huge variation in the counts of DNA
fragments of different lengths (100–600 bp) and a large variation in
genome coverage by these generated DNA fragments in each species
(Table 1). For example, the numbers of such DNA fragments obtained
in Arabidopsis ranged from 0 (with the NotI enzyme) to 376,984 (with
theCviKI-1 enzyme), and IgC values ranged from 0– 67.3% for these 60
enzymes. Such large variation in genome coverage was also observed
for rice, maize, and soybean. The commonly used enzyme ApeKI dis-
played the average genome coverage of 17.5%, but there were 22 four-

or five-cutter enzymes displaying more genome coverage than ApeKI
in these four plant species (Table 1). Generally, frequent-cutter en-
zymes generated more DNA fragments and showed higher genome
coverages. Overall, there were six four-cutter enzymes and 14 four-
cutter or five-cutter enzymes having genomic coverages higher than
50% and 30%, respectively. The top cutter enzymes for these four
species were either CviAII or CviKI-1, with the genome coverages
larger than 60%.

The in silico digestions with 70 RE combinations of the sequenced
genomes of 22 organisms also revealed a large variation in genome
coverage in each species (Table 2 and Table S3). For example, the
IgC values for 70 enzyme combinations ranged from 0.1–35.1% and
averaged 14% in Arabidopsis, while they ranged from 0.1–30.1% and
averaged 10.8% in fruit fly. For most of the RE pairs, there was also a
large variation in IgC across the 22 species. Generally, larger IgC values
were observed in plant than animal species. More variation was ob-
served in the species with larger genomes. Overall, across the 22 species,
there were 11 enzyme combinations having an average IgC of more
than 20%, and 21 combinations with more than 15%. The top three RE
pairs, with IgC values of 30% or higher across the 22 species, were
CviAII + HinfI, CviAII + DdeI, and BfaI + HinfI. In contrast, the
commonly used enzyme combination PstI + MspI (or PM) displayed
an averaged 4% IgC across the 22 species. The 21 enzyme combinations
with the IgC values of 15% or higher (Table 2) are recommended for
consideration for various GBS applications in diverse species, as they
could generate 3.8–8 times more genome coverage than the GBS ref-
erence RE pair PM. These 21 RE pairs also displayed no significant
associations detected between their IgC values and the genome sizes of
the 22 species.

To verify the differences in genome coverage among these enzyme
combinations, we also assessed DNA fragment distributions for the in
silico digestions by three selectedRE combinations (PM,AB,HH) on all
the chromosomes of Arabidopsis and rice. Figure 2 shows the DNA
fragment distributions on two chromosomes of Arabidopsis and rice.
Clearly,HHgeneratedmore different DNA fragments thanAB and PM
on the assayed chromosomes of each species. For example, HH had an

n Table 3 The empirical genomic coverages (EgC) for three restriction enzyme combinations (PM = PstI + MspI, AB = AvaII + BfaI, and
HH = HinfI + HpyCH4IV) and the ratio of the EgC relative to PM (Ratio to PM) in six dicot and six monocot species

PM AB HH

Plant Species GSa Contig · Lengtha EgC (%) Contig · Length EgC (%) Ratio to PM Contig · Length EgC (%) Ratio to PM

Dicot
Arabidopsis thaliana 156 17,352 · 208 0.74 51,231 · 218 2.28 3.09 111,175 · 196 4.45 6.03
Pisum sativum 4768 27,703 · 175 0.10 355,620 · 127 0.95 9.35 203,041 · 130 0.55 5.45
Linum grandiflorum 685 53,747 · 173 1.36 122,437 · 142 2.55 1.87 202,992 · 147 4.37 3.21
Carthamus tinctorius 1364 22,686 · 194 0.32 166,661 · 150 1.83 5.67 159,252 · 148 1.72 5.34
Glycine max 1100 45,759 · 171 0.71 222,148 · 165 3.33 4.67 224,215 · 163 3.33 4.67
Sinapis alba 489 39,423 · 191 1.54 141,589 · 167 4.83 3.13 182,384 · 172 6.41 4.16
Mean 0.80 2.63 4.63 3.47 4.81

Monocot
Aegilops umbellulata 4939 128,544 · 164 0.43 294,115 · 126 0.75 1.76 311,323 · 148 0.93 2.19
Pseudoroegneria

spicata
4450 186,910 · 159 0.67 466,001 · 129 1.35 2.02 365,274 · 151 1.24 1.85

Agropyron cristatum 6969 264,949 · 147 0.56 549,794 · 126 1.00 1.78 439,060 · 147 0.92 1.65
Zea mays 2665 84,632 · 182 0.58 295,130 · 136 1.51 2.62 293,728 · 147 1.62 2.81
Elymus lanceolatus 8240 275,761 · 157 0.52 368,636 · 131 0.59 1.12 416,130 · 145 0.73 1.39
Oryza sativa 489 75,742 · 195 3.02 164,171 · 190 6.36 2.11 209,403 · 184 7.90 2.61
Mean 0.96 1.93 1.90 2.22 2.08

Overall mean 0.88 2.28 3.27 2.85 3.45
a

GS, genome size in Mb obtained from Royal Botanic Gardens, Kew Plant DNA C-values Database; GS is not available for L. grandiflorum, so GS for the related flax
species (L. usitatissiumum) was used. Contig · length = number of contigs · average length (bp) per contig.
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average of 37 DNA fragments on each 100 kb sliding-window of chro-
mosome 1 of Arabidopsis, while AB and PM had only 23 and 7, re-
spectively. Similarly, HH had an average of 36 DNA fragments on each
100 kb sliding-window of chromosome 1 of rice, while AB and PMhad
only 28 and 8, respectively. Note that the striking drops in fragment
counts (Figure 2, C and D) reflected the assembly gaps in the respective
rice chromosomes.

Genome coverage at the species level
Weperformedanempirical verificationofgenomecoverage for the three
selected RE combinations (PM, AB, HH) with two runs of MiSeq GBS
sequencing on six monocot and six dicot plant species. Several in-
teresting results emerged (Table 3). First, the numbers of contigs and
the averaged contig lengths generated by each enzyme combination
varied substantially, with variable genome sizes of the 12 species. Sec-
ond, each enzyme combination also displayed a wide range of variation
in genome coverage across the 12 species. For example, PM displayed
EgC values ranging from 0.1–3.02%, and HH had EgC values ranging
from 0.55–7.90%. Third, larger EgC values were observed for AB and
HH than for PM in each species. For example, the average EgC across
these 12 species was 0.88% for PM, 2.28% for AB, and 2.85% for HH.
The same pattern of variation was observed when either monocots or
dicots were considered separately. Fourth, AB and HH displayed 3.27
and 3.45 times more genome coverage than PM across the 12 species,
respectively. Interestingly, AB and HH displayed larger EgC values in
dicots than in monocots. Fifth, the linear regression analyses revealed
significant associations of the EgC values obtained by AB and HH, but

not by PM, with the genome sizes of the 12 assayed plant species
(Figure S1). Smaller EgC values for AB and HH were observed in
species of larger genome size.

Genome coverage and SNP discovery at the
individual level
Wealso performedan empirical verificationof genomecoverage for two
selected RE combinations (PM, HH) with two runs of Miseq GBS
sequencing on 12 Arabidopsis and 12 rice plants and found several
patterns of variation (Table 4). First, the numbers of contigs and the
averaged contig lengths generated by each enzyme combination varied
greatly among the 12 samples of each species. Second, each enzyme
combination displayed more contigs (on average) in the rice than
Arabidopsis samples. Third, HH displayed 2.8 and 2.6 times more
genome coverage (average of all the samples) than PM in Arabidopsis
and rice samples, respectively. For the sample-wise genome coverage,
this pattern was also true, but more variation in sample-wise genome
coverage was observed in Arabidopsis than rice samples.

We also conducted SNP genotyping for each of the two selected RE
combinations in each species using the npGeno pipeline, and generated
some basic statistics of contigs and SNPs obtained from the GBS SNP
discovery with respect to sequence read andmissing data (Table 5). First,
more contigs with fewer sequence reads were obtained for HH than PM
for either species, suggesting more genome coverage for HH. Accordingly,
more average reads per contig were observed for PM than HH. For exam-
ple, the average read per contig per sample for PMwas 50.3 inArabidopsis
and 16.1 in rice, while for HH they were 10.7 in Arabidopsis and 8.0 in

n Table 4 Statistics of contig and mean contig length per sample obtained for two restriction enzyme combinations (PM = PstI + MspI;
HH = HinfI + HpyCH4IV) in combined runs of 12 Arabidopsis and 12 rice samples

PM HH
Sample Contig Count Mean Length Contig Count Mean Length Length Ratioa

Arabidopsis
Bur-0 59,354 204 120,602 208 2.1
Col-0 79,750 199 154,377 206 2.0
Col-1 25,865 198 89,198 215 3.8
Col-2 24,647 201 84,160 217 3.7
Col-3 25,891 200 109,742 218 4.6
Col-4 62,244 202 134,119 212 2.3
Col-5 27,325 201 99,377 223 4.0
Col-6 35,066 200 105,837 216 3.3
Col-7 38,725 203 95,451 219 2.7
LER 73,058 197 131,169 213 1.9
Tsu-1 75,930 198 123,256 210 1.7
WS4 63,640 199 113,102 214 1.9
Mean 49,291 200 113,366 214 2.8

Rice
R163 66,984 220 176,323 213 2.5
R237 63,211 223 206,916 214 3.1
R242 62,994 221 220,699 209 3.3
R286 64,506 221 158,090 210 2.3
R423 61,157 219 181,826 212 2.9
R614 70,942 213 176,441 210 2.4
R735 56,315 209 140,580 205 2.4
R971 73,663 221 199,219 211 2.6
R1120 63,652 220 146,569 211 2.2
R1409 58,519 220 170,706 209 2.8
R1570 69,318 218 166,983 211 2.3
R1662b 5690 246 164,098 214 25.0
Mean 64,660 219 176,759 210 2.6

a
Length ratio, the ratio of the total base pairs obtained for HH over those for PM.

b
Rice sample R1662 had a sequencing issue with PM and was excluded from the mean calculations.
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rice. Second, more SNPs with fewer reads per SNP per sample were iden-
tified for HH than PM for either species. For example, HH displayed
11,489 and 11,526 SNPs in Arabidopsis and rice, respectively, while PM
showed 1343 and 7886 SNPs in Arabidopsis and rice, respectively.

To understand if a new enzyme combination can also improve GBS
SNP genotypingwithmore SNPshaving fewermissing observations, we
performed further SNP analysis to assess the extent of missing data in
SNP genotyping for each selected RE combination in either species. It
was found that there were many more SNPs with 0–16.7% missing
observations [or absent in zero, one, or two (out of 12) samples] for
HH than PM in either species (Table 5). For example, there were 6168
SNPs for HH vs. 884 SNPs for PM in Arabidopsis, and 6261 SNPs for
HH vs. 4753 SNPs for PM in rice. Also, there were more contigs de-
tected (with SNPs having up to 16.7% observations missing) for HH
than for PM in either species. For example, there were 5405 contigs for
HH vs. 672 contigs for PM in Arabidopsis, and 5096 contigs for HH vs.
3687 contigs for PM in rice.

To understand the dynamics of missing data in SNP genotyping
under a new enzyme combination, we assessed the distribution of total
SNPs detected with respect to read count per sample and to the number
of samples present (or those having the SNP) for two enzyme combi-
nations (PM, HH) inArabidopsis and rice samples (Figure 3). It is clear
that PMdisplayedmore SNPs withoutmissing observations (or present
in all 12 samples) than HH in either species (Figure 3, A and B). This is
not surprising, as SNPs from PM had more reads per sample in either
species (Figure 3, C and D). For example, 28% (Arabidopsis) and 66%
(rice) of the detected SNPs for PM had more than 21 reads per sample,
while the majority of the detected SNPs from HH had only 4–7 reads
per sample. However, it was also observed that the combined number
of SNPs with 0–16.7%missing observationswas larger for HH than PM
in either species (Figure 3, A and B).

DISCUSSION
Our search for better REcombinations has producednot only a useful in
silico analytical tool, IgCoverage (File S1), for further analysis of an

individual or a pair of REs forGBS applications in a species of particular
interest, but also revealed a novel set of 21 combinations of four- or five-
cutter REs with significant increases in genome coverage for different
GBS applications (Table 2). The empirical evaluation of the HinfI +
HpyCH4IV combination in 12 plant species yielded 1.7–6 times more
genome coverage than the commonly used RE pair PstI +MspI, and 2.3
times more genome coverage in dicots than monocots (Table 3). Fur-
ther SNP genotyping analysis showed that HinfI + HpyCH4IV gener-
ated 7 and 1.3 times more SNPs with 0–16.7% missing observations
than PstI +MspI in separate MiSeq sequencing runs of 12 Arabidopsis
and 12 rice plants, respectively (Table 5). These findings demon-
strated the potential of new enzyme combinations for advancing GBS
applications with increased genome sampling and improved SNP
genotyping.

Our search focused on the two-enzyme system, but the in silico
analysis of genome coverage for a single enzyme system in four plant
species is also encouraging. For example, the four-cutter enzymeCviAII
showed an averaged genome coverage of 64%, while the commonly
used enzyme ApeKI displayed an averaged genome coverage of 17.5%.
There were 22 four- or five-cutter enzymes displaying more genome
coverage thanApeKI in these plant species (Table 1). Thus, it is possible
for further improvement of GBS protocols with the selection and eval-
uation of the single enzyme systemof genome reduction.More research
is needed in this direction to search for better genome sampling with
adequate read depth (Elshire et al. 2011; Beissinger et al. 2013; Schilling
et al. 2014).

The in silico analysis of the two-enzyme system was not exhaustive
in either enzyme combination or assayed organism, but our search
scope was much larger than those reported so far (e.g., Poland et al.
2012a; Peterson et al. 2012; Heffelfinger et al. 2014). In spite of this,
searching further for better enzyme combinations for increased ge-
nome coverage is still encouraged, particularly for a specific species
of interest. Also, we focused only on the genome coverage and did
not consider the issue of read depth, as the latter can be optimized with
a given sequencing effort (Beissinger et al. 2013). However, our effort

n Table 5 Statistics of contigs and single nucleotide polymorphisms obtained for two restriction enzyme combinations (PM = PstI + MspI;
HH = HinfI + HpyCH4IV) in combined runs of 12 Arabidopsis and 12 rice samples

Arabidopsis Rice

Statistic PM HH PM HH

Contig statistic
Total contigs 10,498 42,355 28,611 36,808
Mean contig length (SD) in bp 243 (18) 242 (20) 239 (18) 238 (19)
Total reads 6,334,545 5,431,330 5,514,707 3,547,509
Mean reads/contig 603.4 128.2 192.7 96.4
Mean reads/contig/sample 50.3 10.7 16.1 8.0
Contigs with SNP0 (%) 239 (2.3) 473 (1.1) 1308 (4.6) 852 (2.3)
Contigs with SNP0 + SNP1 (%) 368 (3.5) 1623 (3.8) 1960 (6.9) 1900 (5.2)
Contigs with SNP0 + SNP1 + SNP2 (%) 453 (4.3) 2915 (6.9) 2319 (8.1) 2834 (7.7)
Contigs with SNPwt (%) 672 (6.4) 5405 (12.8) 3687 (12.9) 5096 (13.8)

SNP statistic
Total SNPs 1343 11,489 7886 11,526
Total reads 350,269 925,468 1,412,233 1,052,072
Mean reads/SNP 260.8 80.6 179.1 91.3
Mean reads/SNP/sample 21.7 6.7 14.9 7.6
SNP0 (%) 423 (31.5) 1122 (9.8) 2325 (29.5) 1995 (17.3)
SNP0 + SNP1 (%) 688 (51.2) 3417 (29.7) 3823 (48.5) 4216 (36.6)
SNP0 + SNP1 + SNP2 (%) 884 (65.8) 6168 (53.7) 4753 (60.3) 6261 (54.3)

The percent of the total contigs or total SNPs (single nucleotide polymorphisms) is shown in parenthesis. SNP0, SNPs having no missing observations across the 12
samples; SNP1, SNPs having 8.3% observations missing (or absent in one of the 12 samples); SNP2, SNPs having 16.7% observations missing (or absent in two of the
12 samples); SNPwt, SNPs with or without missing observations across the 12 samples.
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generated an encouraging outcome with a novel set of 21 combinations
of four- or five-cutter REs with increased genome coverage when com-
paredwith theGBS reference pair PstI +MspI. The enzyme combinations
with large genome coverages appeared to be those four- or five-cutter
pairs (Table 2). There was only one pair of five-cutters (AvaII + ApeKI)
displaying an IgC value of 22.4%, and one pair of four-cutters (MspI +
MseI) with a value of 11.7%, across the 22 species. These results suggest
that the search for the best two-enzyme GBS protocol should focus on
those combinations of four- or five-cutters. Also, the increases in genome
coverage for these enzyme combinations vary greatly across the 22
assayed species. This variation may reflect the genome size and structure.
For example, the plant species with larger genomes (or abundant repeat
sequences and genome duplication) appeared to show higher genome
coverages (Table 2). Such variation may also reflect the selection of DNA
fragments with different ends and lengths within 100–600 bp, as the
other DNA fragments not matching these criteria were excluded from
consideration for genome coverage.

One encouraging finding in empirical verifications in plants is that
the enzyme combinations with larger EgC values also generated many
more SNPswith amild (0–16.7%) level ofmissing data thanPstI +MspI.

Also, it was found that the read depths of such SNPs are more shallow
(with 4–7 reads on average) in these enzyme combinations, suggesting
error rates for these SNPs would be expected to be higher than those
using PstI + MspI. We focused more on the counts of GBS SNPs with
the mild level of missing observations, and less on the accuracy of the
SNPs and the optimization of read depth vs. SNP density. All of these
issues are dependent on the total sequencing output of a GBS effort
(Wendl 2006; Sims et al. 2014). Higher accuracy of SNPs requires an
increased sequence read output per sample, through either more se-
quencing runs with higher sequencing cost or decreased multiplexing
with fewer samples. More research is needed to optimize the parame-
ters of genome coverage, read depth, SNP accuracy, and sequencing
effort for a defined research goal in a species (Beissinger et al. 2013;
Heffelfinger et al. 2014). This optimization is critical for the application
of GBS to species with large genomes. e.g., grass species. The expected
number of DNA fragments generated by an enzyme combination is
proportional to the genome size. The more DNA fragments generated
for larger genomes, the more sequencing output is needed to identify
accurately the fragment with adequate read depth (Beissinger et al.
2013; Sims et al. 2014).

Figure 3 SNP distributions for two RE pairs in Arabidopsis and rice. Distribution of total single nucleotide polymorphisms detected with respect
to the number of samples present, and average number of reads per sample, for two restriction enzyme combinations (PM = PstI + MspI; HH =
HinfI + HpyCH4IV) in combined runs of 12 Arabidopsis and 12 rice samples.
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The empirical verification also revealed smaller values of genome
coverage for those assayed enzyme combinations than those obtained
from the in silico analysis (Table 2 and Table 3). Such variation should
not be surprising for several reasons. First, many factors may have
contributed to the selection and identification of the DNA frag-
ments. The in silico analysis considered much wider fragment length
(100–600 bp), while the actual GBS runs may consider only those of
length 200–400 bp. Bioinformatics analysis may have also presented
some bias in excluding some DNA fragments for contig identifica-
tion for both comparative enzyme combinations. It is also possible
that some contigs generated byMinia may not be fully unique and still
had overlapping sequences among some contigs, biasing upward the
genome coverage calculation. Second, a sequencing flow cell has a
finite number of binding sites for fragments and, once saturated,
additional fragments cannot be sequenced. This technical feature
would greatly affect the efficiency of more frequently cutting RE pairs
in read output. This was evident as more frequently cutting RE pairs
had a lower read depth compared to less frequently cutting combi-
nations (Table 5). Third, our verification effort focused more on the
comparative genome coverage, but not on the absolute extent of gain
in genome coverage. It was our goal to explore those candidate RE
combinations with possible gain in genome coverage, not to test and
develop the best RE combination in a specific species.

Our empirical verifications were performed on plant species with a
few selected enzyme combinations to illustrate the potential of improve-
ment in genome coverage, thus biasing against animal species. The in
silico analysis revealed 21 enzyme combinations with 15% or higher
genome coverage in a wide range of plant, animal, and fungus species,
which is muchmore than PstI +MspI (4%). More research is needed to
verify some of these enzyme combinations in animal species. This is
especially important, given the finding of larger variation in genome
coverage in 13 animal species (Table 2 and Table S3). Similarly, our in
silico analysis of the single enzyme system was done only with plant
species. It is possible to expand the search effort for animal species,
along with empirical verification (De Donato et al. 2013). Our search
for higher genome coverage and the developed associated softwarewere
largely aimed at genetic diversity and population genetic studies, but
both are equally useful for research into different interests focusing on a
few hundred loci with higher read depth. For example, searching with
IgCoverage for REs with less genome coverage would allow for an
optimized experimental design with more samples to be assayed in a
sequencing lane.

We are confident, however, that these novel enzyme combinations
(Table 2) will play a role in future GBS applications, as these RE com-
binations can increase genome sampling and improve SNP genotyping.
For optimum use of these RE combinations in GBS protocols, several
factors are worthmentioning for consideration. First, when selecting an
enzyme combination based on its performance in this study, it should
be used with a species closely related to one of the relevant species
assayed in silico here. Alternatively, a new in silico analysis using
IgCoverage should be pursued to assess specific REs or pairs of REs in
the genome sequence of the species of interest, or that of a closely
related species if sequence data are not available for the first. Second, the
adapters used in the GBS protocol need to be modified to anneal to
the fragment ends generated by the selected enzyme combination.
Third, a preliminary empirical assessment of genome coverage for
the selected RE or RE combination in the species of interest is recom-
mended before pursuing a large scale GBS application. Fourth, some
effort may also be needed to optimize the enzyme combination for use
in a specific species with respect to sequence output, read depth, SNP
accuracy, and the extent of multiplexing (Hamblin and Rabbi 2014;

Heffelfinger et al. 2014). Pursuing too high a degree of genome coverage
may not always be the best option, as it may generate less accurate SNPs
with a given sequencing effort (Beissinger et al. 2013). Fifth, some
attention should be paid to the limitations of our search effort, the
desired level of genome coverage and the workable level of missing
observations in SNP data.

Conclusion
Our in silico analyses of 22 plant, animal, and fungus species produced a
novel set of 21 combinations of four- or five-cutter REs with increased
genome coverage for a GBS application. The empirical evaluations of
some new enzyme combinations in plant species confirmed the in-
crease in genome coverage and the improvement in SNP genotyping.
The developed in silico analytical tool, IgCoverage, should also be useful
for further analysis of an individual or a pair of REs for GBS applica-
tions in a species of particular interest.
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