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ABSTRACT
Rodents are the most speciose group of mammals and display a great ecological
diversity. Despite the greater amount of ecomorphological information compiled for
extant rodent species, studies usually lack ofmorphological data on dentition, which has
led to difficulty in directly utilizing existing ecomorphological data of extant rodents
for paleoecological reconstruction because teeth are the most common or often the
only micromammal fossils. Here, we infer the environmental ranges of extinct rodent
genera by extracting habitat information from extant relatives and linking it to extinct
taxa based on the phenogram of the cluster analysis, in which variables are derived
from the principal component analysis on outline shape of the upper first molars. This
phenotypic ‘‘bracketing’’ approach is particularly useful in the study of the fossil record
of small mammals, which is mostly represented by isolated teeth. As a case study,
we utilize extinct genera of murines and non-arvicoline cricetids, ranging from the
Iberoccitanian latest middle Miocene to the Mio-Pliocene boundary, and compare our
results thoroughly with previous paleoecological reconstructions inferred by different
methods. The resultant phenogram shows a predominance of ubiquitous genera among
the Miocene taxa, and the presence of a few forest specialists in the two rodent groups
(Murinae and Cricetidae), along with the absence of open environment specialists in
either group of rodents. This appears to be related to the absence of enduring grassland
biomes in the Iberian Peninsula during the late Miocene. High consistency between
our result and previous studies suggests that this phenotypic ‘‘bracketing’’ approach is
a very useful tool.
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INTRODUCTION
Rodentia is the most species-rich group of mammals. The diversity of this group is linked
to a high morphological disparity of dental features (Hunter & Jernvall, 1995). In general,
dental morphology is functionally correlated with diet (Gómez Cano, Hernández Fernández
& Álvarez-Sierra, 2013b; Kavanagh, Evans & Jernvall, 2007; Pineda-Munoz, Evans & Alroy,
2016) and therefore indirectly related to ecological features such as habitats (Auffray,
Renaud & Claude, 2009; Blois & Hadly, 2009;Daams, Freudenthal & Van der Meulen, 1988;
Martin, 2010). This relationship between shape and function in rodent teeth has been
ultimately related to developmental processes (Gomes Rodrigues et al., 2013; Kavanagh,
Evans & Jernvall, 2007).

Additionally, the paleontological record of rodents is mostly based on isolated teeth,
given their hard mineralization. Teeth are particularly abundant in the fossil record and
their highly informative morphology allows for the development of studies on evolutionary
(e.g., Lazzari, Aguilar & Michaux, 2010) and ecological (e.g., Patnaik, 2011) patterns.
Therefore, in order to work with fossil material it is essential to establish a methodology
that utilizes isolated teeth.

Paleoecology of extinct micromammals has been inferred in several ways (Bonis
et al., 2002; Domingo et al., 2012; Hernánde Fernández & Peláez-Campomanes, 2003a;
Martín-Suárez, Freudenthal & Civis, 2001; Massol et al., 2011; Rodríguez, 2006). They are
mostly community-based inferences, which required that fossil assemblage reflect or
approximate the original community. On the other hand, using ecomorphological features
for paleoecological inferences would be a taxon-oriented approach, rather than based
on a community as a whole. Ecomorphological studies of extant rodent taxa have been
conducted to show various degrees of morphological correlations with ecological and
environmental parameters (Arregoitia, Fisher & Schweizer, 2017; Samuels, 2009; Samuels &
Van Valkenburgh, 2008). This approach can provide paleoecological information for extinct
taxa. However, these studies rarely include dental characters. Therefore we approached this
dilemma and sought a way to fill this gap by building a database for M1 dental morphology
of extant and extinct rodents. In this sense, geometric morphometric methodologies can
quantify shape and size variation as well as the morphospace, which facilitates ecological
and evolutionary inferences (Ledevin et al., 2016; Ledevin et al., 2010; Michaux, Chevret &
Renaud, 2007; Renaud, Chevret & Michaux, 2007; Renaud et al., 1996; Samuels, 2009).

FollowingHernánde Fernández & Peláez-Campomanes (2003b), we applied a phenotypic
‘‘bracketing’’ approach to geometric morphometric data of tooth morphology separately
for the Murinae and non-arvicoline Cricetidae. Both groups are characterized by a specific
occlusal pattern in their molars. Murines have three lingual cusps on the upper molars,
giving a triserial cusp arrangement, which is characteristic to this subfamily. In relation to
Cricetidae, due to the controversy associated to the arrangement of subfamilies among the
extinct representatives (Fejfar, 1999; Hugueney, 1999; Kälin, 1999; Lindsay, 2008; Rummel,
1999), we here refer to them as Cricetidae sensu lato (s.l.) following López-Guerrero et al.
(2017), which includes all the genera with typical ‘‘cricetid pattern’’ in the upper first
molars (Schaub, 1925); this dental pattern shows four major cusps connected by crests,

Gomez Cano et al. (2017), PeerJ, DOI 10.7717/peerj.3646 2/27

https://peerj.com
http://dx.doi.org/10.7717/peerj.3646


and one additional cusp at the anterior part of the first molar (anterocone). In this sense,
representatives of Arvicolinae with a typical microtine pattern, in which cusps correspond
to successive triangles in a varied number along the evolution of the group (Chaline et al.,
1999), were excluded of our analysis.

The wide variety of environments inhabited by the extant genera and the great number
of studies on extant and extinct taxa of rodents makes it possible to infer the palaeoecology
of the extinct genera based on morphological similarities to extant taxa and to validate our
approach by extensive comparisons with to previous works.

Although previous works on the geometric morphometrics of rodent molars describe
some ecological preferences of these groups (Gómez Cano, Hernández Fernández & Álvarez
Sierra, 2013b; McGuire, 2010; Renaud, Chevret & Michaux, 2007; Swiderski, Zelditch &
Fink, 2000;Van Dam, 1997), the interest of our study is based on the use of amethodological
approach that allows us for the first time to analyse the high morphological diversity within
extant and extinct murine and cricetid rodents and link it with their biome preferences.
The importance of the biome dimension lies in the integration of macroecological and
macroevolutionary processes (Gómez Cano et al., 2013a; Hernánde Fernández & Vrba,
2005; Vrba, 1995).

MATERIAL AND METHODS
Extant samples
We chose the upper first molar (M1) for the ecomorphological study, because of its highly
diagnostic features and abundance in the fossil record of muroids (e.g., Van Dam, 1997).

Based on the specimens available in museum collections and the literature, we compiled
a total of 670 scaled pictures (see Supplementary Information 1 for specimen information
and references) of right first upper molars for extant Murinae and non-arvicoline cricetids
in our study, including extant subfamilies Cricetinae, Neotominae, Sigmodontinae and
Tylomyinae (Musser & Carleton, 2005). These photos represent 107 of the 124 extant
Murinae genera (around 86%), and in the case of Cricetidae (non-arvicoline) we included
85 of its 102 genera (around 83%) according to the taxonomic revision of (Musser &
Carleton, 2005).

One of the authors (ARGC) took photographs of the tooth of extant taxa using a camera
Nikon D300s and Nikon AF-S VR 105 mm f/2.8 IF-ED lens. These samples are housed
at the American Museum of Natural History, New York (United States of America), the
National Museum of Natural History, Washington DC (United States of America) and the
Museum Nationale d’Histoire Naturelle, Paris (France).

Climatic characterization of extant genera
In order to characterize environments potentially occupied by the extinct genera, we
compiled the information for extant species of Murinae and Cricetidae s.l. under this study
into a database, referring IUCN (2012) and Musser & Carleton (2005) for biogeographic
distributions. Taking into account that different species of an extant genusmay not have the
same ecological parameters (e.g., Peromyscus), for each genus we summarized the climate
zones inhabited by all its species. Although all the species of a genus may not have the same
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Figure 1 Bioclimatic climatic typology. Climatic typology used in this paper modified fromWalter
(1970) and its relationships with world vegetation types.

ecology, we consider that one genus summarizes all the ecomorphological variability of
its species, due to the shared inheritance of aspects of morphology and habitat-specificity
(Bobe & Eck, 2001; Greenacre & Vrba, 1984; Hernández Fernández & Vrba, 2006).

To determine the number of climate zones inhabited by one species, we adopted the
cut-off of Hernánde Fernández (2001), in which the species is considered to occupy a
climate zone if 15% or more of the geographical range of a species is situated within the
climate zone. In addition, a species is also considered to occupy a specific climate zone
when it inhabits 50% or more area in one climatic dominion. Here, a climatic dominion is
defined as a continuous local climatic segment within a single climate zone. For instance,
the winter rain and summer drought climate zone is present around the Mediterranean
Sea and consists of several climatic dominions. In this climate zone, one climatic dominion
covers the larger part of the Iberian Peninsula–South France, and other climatic dominion
covers north-western Africa.

For the biome typology, we chose the climatic classification of Walter (1970) (Fig. 1),
which has a simple nomenclature and combines climate and vegetation information. We
added other classifications based on the characteristics of each biome, which simplifies the
scheme, grouping taxa into three categories according the Walter’s biomes they inhabit:
forest (I, II, IV, V, VI, VII), open environment (II/III, III, VII, IX) or ubiquitous if the
taxon is present in both kinds of environments.
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Fossil samples
For extinct groups, we compiled a photographic database from the literature to include
images of 11 extinct murine genera and 13 genera of extinct cricetids (Supplementary
Information 1), which were characteristic for the Iberoccitanian region during the latest
middle Miocene to the Mio-Pliocene boundary. We chose fossils from this region as a case
study because this geographical area shows remarkable environmental differences from the
rest of Europe today and during the Neogene (Gregor & Velitzelos, 1987; Kovar-Eder et al.,
1996; López-Guerrero, 2006; Mai, 1989; Pickford & Morales, 1994; Van der Made, Morales
& Montoya, 2006;Wolfe, 1985), and because previous studies have revealed environmental
heterogeneity, with the existence of two mammalian bioprovinces (Álvarez-Sierra, García
Moreno & López Martínez, 1985; Azanza et al., 1997; Daams et al., 1998; Gomez Cano et al.,
2014; Heikinheimo et al., 2007;Morales et al., 1999).

The intensive sampling in the Iberoccitanian fossil sites and the great amount of detailed
studies of these materials during the last decades (Sesé, 2006) made it possible to include
311 scaled pictures and drawings. These pictures represent all the extinct genera that have
been from this region during the latest middle Miocene to the Mio-Pliocene boundary,
including more than 90 species (see Appendix 1 for specimen information and references).

Fourier analysis of the outline
We chose outline analysis to describe molar morphology because, besides being effective
to describe the location of the tubercles characteristic of the molars, it is less sensitive
than landmark analysis to modifications of the dental pattern due to wear (Renaud, 1999;
Renaud et al., 1996). Furthermore, outline methods have been suggested to be useful tools
for the analysis of biological shapes in the absence of sufficient homologous landmarks
(Van Bocxlaer & Schultheiß, 2010).

The molar outline is defined as a two-dimensional projection of the molar viewed from
the occlusal side. Following Renaud et al. (1996) these outlines were digitalized for each
tooth as x and y coordinates of sixty-four points equally spaced along the tooth outline
using TPSdig2 version 2.16 software (Rohlf, 2010). The starting point of each outline was
defined at the maximum of curvature at the forepart of the tooth. In order to buffer the
asymmetry between right and left molars within each individual, left molars were subjected
to a mirror image and outlined as right molars (Renaud, 1999).

In order to analyze such x and y coordinates we applied an Elliptic Fourier Analysis
(EFA) (Kuhl & Giardina, 1982) to the dataset using EFAwin software (Ferson, Rohlf &
Koehn, 1985), which extracts Fourier coefficients from the original outline and normalizes
these shape variables. By this method the complex outline could be described as a sum of
trigonometric functions, named harmonics, of decreasing wavelength. Each harmonic is
defined by four Fourier Coefficients (FCs), two for x-(A and B) and two for y-projections
(C and D) (Deffontaine et al., 2009). The higher the rank of the Fourier harmonic, the
more details of the outline it describes but it is expected that mathematical noise also
increases (Renaud et al., 1996). Therefore, we used only Fourier coefficients up to the ninth
harmonic following previous studies, which demonstrated that the effect of measurement
error for upper molars was limited at this rank (Ledevin et al., 2010; Renaud, 1999). Finally,
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the first harmonic is proportional to the size of each specimen but its four coefficients
(A1–D1) are constant because of the standardization and therefore will be omitted in the
subsequent analyses (Renaud & Michaux, 2004;Renaud et al., 1996). Therefore, we retained
eight harmonics, which represent the best compromise between measurement error and
information content (Ledevin et al., 2010; Renaud, 1999). Thus we retained 32 FCs from
these eight harmonics (i.e., A2–D9). Focusing studies on supraspecific taxa (genera, family
etc.) can help to reveal their ecomorphological diversity and to understand the course of
their adaptive evolution (Miljutin, 2011). Therefore, this work was carried out at the genus
level, and each variable was calculated for every extant genus as the mean value of the
included species (see Supplementary Information 2). Each set of Fourier coefficients was
averaged per genus.

Finally, in order to represent accurate reconstructions of average outlines we used
an inverse method of the elliptic Fourier transform (Kuhl & Giardina, 1982; Rohlf &
Archie, 1984) as a support for visual interpretation of shape changes. These outlines based
in the Elliptic Fourier Transformation method provides very accurate reconstructions
because the inverse Fourier transform directly provide the Euclidean xy-coordinates of the
reconstructed outline (Renaud & Michaux, 2003).

The linking of extinct genera with extant ecological analogues
In order to relate the extinct genera with their modern ecological analogues, we computed
phenograms using cluster analysis on the variables obtained from a principal component
analyses (PCA) on the Fourier Coefficients. This limits the impact of covariance amongst
variables on the subsequent clustering algorithm (Hempson, Archibald & Bond, 2015).

We first performed PCA independently for the two groups of rodents (murines and
cricetids) to handle the obtained set of 32 Fourier Coefficients in the following cluster
analysis. The PCA enables us to reduce redundant information among the Fourier
Coefficients and to encompass the different patterns of shape variation within both
groups. Finally, the principal components were then used to build a phenogram for each
group. In order to reflect the statistical weight of each principal component we multiplied
principal component scores by the fraction of the variance that each principal component
explains. Then, these weighted scores were used to calculate a distance matrix based on
Euclidean distances between group means. Finally, both cluster analyses (for murines and
cricetids) were based on such distance matrices and used ‘‘paired-grouped’’ as clustering
procedure, by means of the PAST software (Hammer, Harper & Ryan, 2001).

To infer the biome preference for the extinct genera we summarized the biomes of the
extant genera with which they were closely linked in the cluster analysis. We chose this
conservative assignation because it offers a glimpse of all the compatible environments
for a particular morphology (Hernánde Fernández & Peláez-Campomanes, 2003b). Finally,
exhaustive comparisons with previous works were conducted as a key in this study in order
to validate that this ecomophological approach is valid.
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Figure 2 Graphs of principal components for murinae data.Ordination of murine genera in the
morphospace defined by the first three principal components (PCs), based on elliptic Fourier coordinate
datasets. Grey circles represent extant genera and purple circles represent extinct genera. The outlines of
the extreme genera in each axis are shown.

RESULTS & DISCUSSION
Although the basic pattern of major cusps is rather similar within each family, PCA results
show that substantial difference in complexity affects the outline shape and allows us to
differentiate several groups based on their morphological similarities (Figs. 2 and 3).

In the case of Murinae (Fig. 2), eight Principal Components were retained. The first
principal component (PC1, 24.66% of the total variance) describes an axis from massive
molars with the t1 clearly separated from the t2 cusp (negative values) to narrow molars
with a weak lingual cusp (positive values). On the second principal component (PC2,
18.55%), the positive side of the axis is characterized by broad molars with the double
t2 clearly independent from each other, while narrow molars with non-independent t2
fall on the negative side of this axis. Finally, the third component (12.83%) shows simple
outlines symmetrical in the longitudinal axis (positive values) to more rounded molars
with a robust t2 (negative values) and undulated outline where the main lingual cusps (t1
and t4) and labial cusp (t3, t6 and t9) are prominent and clearly identified in the outline.

The FC of Cricetids genera were reduced to six Principal Components. Reconstructed
outlines for Cricetidae (Fig. 3) indicate that molars with narrow and elliptic molars
are displayed on the positive end of the first principal component (PC1, 55.32% of the
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Figure 3 Graphs of principal components for cricetids data.Ordination of cricetid genera in the
morphospace defined by the first three principal components (PCs), based on elliptic Fourier coordinate
datasets. Grey circles represent extant genera and orange circles represent extinct genera. The outlines of
the extreme genera in each axis are shown.

total variance), while more symmetrical round molars, which are more symmetrical are
arranged at the negative end. The second axis (PC2, 13.74%) opposes massive molars
(positive values) and molars with an undulating outline linked to disposition of main
dental cusp (negative values). Finally, the third axis (PC3, 7.35%) opposes molars with the
anterocone marked in the outline (positive values) and molars with rounded outline at the
posterior side (negative values).
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Ecological characterization of Murinae
Based on the dendrogram of phenotypic similarities in the M1 outline obtained for
Murinae (Fig. 4), we associated the extinct genera with five different morphological groups
of extant taxa.

The first phenotypic group (Mur1) involves two extinct taxa (Huerzelerimys and
Paraethomys) linked to the modern genus Lorentzimys, which inhabits humid forest
biomes (I and V). These three genera have the t4 and t8 cusps connected by a weak crest
whereas the t7 cusp is absent (Mein, Martín-Suárez & Agustí, 1993), which is reflected in the
outline of the posterior side of the molar. The outlines of their molars are slightly narrower
than those in groupMur2, and with the anterior part less differentiated than those in group
Mur4. Whereas previous works based on communities and a morphological approach
for the extinct taxa did not indicate specific ecological preferences for Huerzelerimys,
humid and warm or non-seasonal environments have been inferred for Paraethomys
(Hernánde Fernández & Peláez-Campomanes, 2003b; Martín-Suárez, Freudenthal & Civis,
2001), which are consistent with our results.

Group Mur2 involves the extinct Castillomys, which was linked to extant African taxa
with preferences for both open and forested areas (generalist). Castillomyswas bracketed by
Aethomys (Musser & Carleton, 2005), Thallomys, andDephomys. The former two genera are
inhabitants of forested to open environments. Aethomys inhabits biomes II, II/III and V,
and Thallomys commonly inhabits biome II but is also found in open environments (II/III)
and subtropical desert (III). Dephomys is a rodent from tropical forests (biomes I and II).
Regarding morphology, these genera present a t1 cusp, which is displaced backwards and
is separated from the t2. Nevertheless, in these genera t2 is small, which gives a rounded
external appearance of the outline (Fig. 4).

Anthracomys, Occitanomys, Progonomys and Stephanomyswere grouped together (Mur3)
and positioned closely in the cluster with the extant Millardia, which inhabits tropical
biomes (both forest and open environments: biomes I, II and II/III). As occurred in group
Mur2, in these five genera the t1 is displaced backwards and is separated from the t2.
However, this feature is not developed in the same way in all these genera because this
posterior position of t1 is more marked in some taxa than in other ones. Moreover this
group has larger t2 than in groupMur2. These features generate slim outlines in the anterior
area of the M1.

Occitanomys shows a great morphological similarity with Stephanomys (Freudenthal
& Martín-Suárez, 1999; Van Dam, 1996; Van der Weerd, 1976). According to studies
of paleocommunities and morphological features (Hernánde Fernández & Peláez-
Campomanes, 2003b; Van Dam &Weltje, 1999), it appears that these two genera were
associated with a mix of tropical woodlands and a mosaic environment with open and
forest areas, which is indicative of the presence of a winter dry season. In addition, these
genera show stephanodonty, which consists of the presence of broad molars with strong
development of longitudinal crests connecting the transverse chevrons on the uppermolars.
This dental feature is moderate in Occitanomys, and more pronounced in Stephanomys
(Renaud et al., 2005; Renaud & Van Dam, 2002; Uhlig, 2002). Stephanodonty has been
linked to a general expansion of open environments, which has been noticed for the end
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of the Miocene in the Iberian region (Renaud et al., 2005). On the other hand, the upper
first molar of Anthracomys has been described as possessing a high crown (Freudenthal &
Martín-Suárez, 1999), which is also a feature that has been linked by Casanovas-Vilar et al.
(2011) to extant murines from arid and open environments where grasses predominate.
Progonomys which has a well-developed anterocentral cusp (Aplin & Helgen, 2010) is also
grouped in this third set. In this case, Casanovas-Vilar & Agustí (2007) inferred open
environments as the ecological preference for Progonomys based in synecological studies.
This genus is the oldest murine recorded at the Iberoccitanian fossil sites and its entry,
the Progonomys event, is classically related to the Vallesian Crisis where an expansion of
relatively arid environments has been described (Agustí et al., 1997; Koufos, 2003). Finally,
Gomes Rodrigues et al. (2013), showed that Progonomys,Occitanomys and Stephanomys had
a similar herbivorous diet based in microwear analysis, which is consistent with the results
of this paper. In summary, the environmental envelopes described by previous authors for
the murine included in this third set agree with our ecological inference, a wide range of
habitats from tropical to relatively arid environments, which are characterized by a mosaic
habitat of forest and herbaceous plants.

Rhagapodemus was linked to the extant genus Leggadina (Mur4), which has been
found in tropical woodlands, savannas and desert areas (biomes II, II/III and III).
The absence of longitudinal connections between the cusps makes the molar structure
of extinct Rhagapodemus consistent with that of Leggadina. Furthermore the labial
edge of the outlines is less sinuous than in the other groups of murines in our study.
Previous works have provided inconsistent inference, linking Rhagapodemus records
with open or arid environments in the Iberian Peninsula but also in other sites from
Italy and Turkey (Casanovas-Vilar et al., 2011; Jiménez-Moreno et al., 2015; Van der Made,
Morales & Montoya, 2006) or with forested environments (Hernánde Fernández & Peláez-
Campomanes, 2003b). Our results suggest that Rhagapodemus was a generalist taxon
that could inhabit both open and forest ecosystems, which could be consistent to both
interpretations of previous studies.

Finally, the extinct genus Castromys was linked to four extant genera (Mur5).
Lemniscomys is a member of an African clade (Musser & Carleton, 2005) and inhabits
forested biomes (I, II, IV and V). Praomys occurs primarily in forest and woodland habitats
(biomes I, II and V), although extinct representatives of this genus were linked to open,
dry environments (Geraads, 1995; Geraads et al., 1998). The murine Chiromyscus is an
arboreal rodent that inhabits tropical deciduous woodlands (specialist), but it also occurs
in mosaic scrub areas as extensions of forest and other degraded habitats (Aplin & Lunde,
2008). Finally, Castromys is also linked to the widespread genus Rattus, which involves a
great disparity of morphologies and inhabits the majority of biomes (I, II, II/III, III, IV,
V, VI, VII and VIII). These taxa have molars with broad cusps and without connection
between t6 and t9 (although this characteristic is variable in some species of Rattus), which
affect mostly the posterolabial side of the outline (Freudenthal & Martín-Suárez, 1999;
Martín-Suárez & Freudenthal, 1994; Wessels, 2009). In this case, the molars are broader
in relation to their length than in the others groups. Martín-Suárez, Freudenthal & Civis
(2001) assigned cool environmental preferences for Castromys based in a correlation
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between localities of Crevillente (South-eastern of Iberian Peninsula) and the eustatic sea
level curve; the presence of Castromys in Crevillente localities is associated with eustatic
minima and, therefore, was assigned a cold/dry preference. However, Van Dam &Weltje
(1999) assumed preferences for intermediate temperatures (subtropical), as inferred by
modelling of Miocene rodent palaeocommunities. Our results do not indicate any specific
environmental preferences for Castromys, which should be regarded as a generalist rodent.

Ecological characterization of Cricetidae
The genera of extinct Cricetidae included in this analysis can be differentiated in eleven
morphological groups (Fig. 5). The first three groups form a large agglomerative group
of genera, which have similar outlines with less marked differences among them. These
genera show clear distinction between the labial and lingual edges, which generates a
longitudinally asymmetric molar.

The first group (Cri1) includes the extinct genera Apocricetus and the extant Podomys
and Peromyscus. These genera show a prominent metacone (posterolabial cusp), which
characteristically generates the rounded and protruding outline in the posterolabial
region. Podomys is considered a forest specialist (Duesser & Shugar Jr, 1978; Gibbes &
Barrett, 2011) of temperate environments (biome V). However, Peromyscus is the most
speciose genus of the Neotominae subfamily, and its diversity is linked to a wide range
of different biomes inhabited by the species of this genus. Several previous works, based
on studies of environmental inferences by micromammalian communities (García-Alix,
2006; García-Alix et al., 2008; Minwer-Barakat, 2005), associated some Apocricetus species
with open/herbaceous and warm environments. Other studies based on community
approximation and ecomorphological studies (Daams, Freudenthal & Van der Meulen,
1988; Hershkovitz, 1962; Martín-Suárez, Freudenthal & Civis, 2001; Van Dam &Weltje,
1999), link Apocricetus to warm and humid conditions in forest environments. Our results
are congruent with previous studies and showed Apocricetus as a generalist, which should
be linked to both open and forested environments.

Democricetodon was clustered in the second morphological group (Cri2) together with
the extant genera Osdogonomys and Abrawayaomys. Despite the high similarity in dental
features between Megacricetodon and Democricetodon (Wessels, 2009), in general the genus
Democricetodon differs from the genus Megacricetodon in having a relatively shorter and
broader outline (Fejfar et al., 2011). Although our results are congruent with the high
degree of similarity between Democricetodon and Megacricetodon, the differences between
these extinct genera are evident in the outlines and link Democricetodon with extant genera
that possess broader molars and the anterolingual side less marked in the outline than in
Megacricetodon. The dental pattern described forDemocricetodon as low-crowned bunodont
molars could be linked with wet environments (Hershkovitz, 1962). Nevertheless, although
increase in morphological variability within Democricetodon teeth has been correlated
to periods of decreasing temperature (Peláez-Campomanes, Hernández-Ballarín & Oliver,
2015), some authors have indicated that changes in humidity across the IberianMiocene did
not affect the presence of Democricetodon (Freudenthal & Mein, 1989). These indications
could be coherent with the environment for Osdogonomys and Abrawayaomys, which are
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described as tropical deciduous woodland inhabitants (biome II). This kind of forest is
characterized by the seasonal alternation of winter-dry and summer-wet periods.

In the third group (Cri3) the extinct genus Neocricetodon clusters with the extant genus
Nyctomys. Despite a high degree of similarities in outline with the previous group, these
two genera show narrower molars than those in groups Cri1 and Cri2, and the metacone
cusp is less prominent, which is seen in our results as a straighter labial outline. Nyctomys
has been described as an arboreal or semi-arboreal rodent, which inhabits tropical forests
(I and II) and has low-crowned molars (Carleton, 1980; Corley, Ordóñez Garza & Rogers,
2011; Hunt, Morris & Best, 2004). Even if Neocricetodon has been previously described
as eurytopic (Van Dam &Weltje, 1999), it is commonly linked to forested environments
(Colombero et al., 2017), which is congruent with our results that showed Neocricetodon is
a forested specialist.

Megacricetodon is linked to the extant genusOtonyctomys in the group Cri4; both genera
show a distinct lingual outline due to the development and position of the anterocone,
which makes the anterior part of the tooth limited and marked in the outline with respect
to the rest of the main cusps. The brachyodont andmesodont molars with bunodont dental
pattern described in Megacricetodon species (Fejfar et al., 2011; Van Dam &Weltje, 1999)
have been previously associated with humid environments (Daams, Freudenthal & Van der
Meulen, 1988), which is coherent with the biomes inhabited byOtonyctomys in the Yucatan
Peninsula (I and II).

In the fifth set, Cri5,Cricetodon is groupedwith the extant genusOnychomys. Both genera
show a relatively similar outline to the previous three groups, sharing an asymmetrical
outline, due to the narrowing of the anterior edge of the tooth. Nevertheless, the outline
that corresponds to the anterocone is, in proportion, more slender compared with the
previous groups. The North American rodent Onychomys inhabits several biomes (II,
II/III, III, IV, VI, VII, VIII), most of them characterized by the presence of an annual
dry season. Although for some species of Cricetodon Rummel (1999) indicated preferences
for forested areas, other authors suggested drier environmental preferences for this genus
based on high-crowned molars (De Bruijn & Ünay, 1996; Van Dam &Weltje, 1999). Our
results integrate the conflict into a generalist characterization for the genus.

Rotundomys and Cricetulodon, which are closely related genera (López-Antoñanzas,
Peláez-Campomanes & Álvarez Sierra, 2014), were clustered together in the group Cri6 with
the extant Tscherskia, which is associated with temperate biomes (VI and VII) inhabiting
both forest and open environments. All these genera have an elliptic outline and share some
dental features. For example, the lophodont tooth pattern described for Rotundomys (Fejfar
et al., 2011; Kälin, 1999; Van Dam &Weltje, 1999) indicates food preferences on fibrous
plant parts (Casanovas-Vilar & Agustí, 2007). This food habit also has been described for
Tscherskia, which shares low-crowned molars (Nechay, 2000; Neumann et al., 2006).

In the group Cri7, the extinct genera Eumyarion was placed morphologically close to the
extant Isthmomys. These genera have asymmetrical molars similar to the ones in the first
four groups (Cri1 to Cri4). Nevertheless, Cri7 taxa differ from them in the posterior side
where they present a straight outline, which could be related to the alignment between the
metacone and the hypocone. The two species included in the genus Isthmomys have a small
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geographic range in Panama limited to equatorial rain forest areas. Therefore, our results
are consistent with Kälin (1999), who assumed similar forest conditions for Eumyarion,
based on brachyodonty.

In the morphological groups Cri8 and Cri9 we found molars with a marked sinuous
outline both labially and lingually, which is linked to the high crown (hypsodonty) and
the transverse alignment of each cusp. In the group Cri8 Ruscinomys is linked to the
extant genera Nelsonia. Nelsonia occurs in both open and forest biomes (II, II/III, V, VIII),
while it has been described within these biomes as inhabitant of cool cliffs, rim rock and
other rocky situations found in canyon bottoms (Hooper, 1954). Although, Ruscinomys
has been considered as inhabitant of open/herbaceous environments (García-Alix et al.,
2008; Van Dam &Weltje, 1999). We mostly agree withMartín-Suárez, Freudenthal & Civis
(2001) and Hernánde Fernández & Peláez-Campomanes (2003b) considering this genus as
an ecological generalist.

The groupCri9 showed the extinct generaHispanomys andBlancomys linked to the extant
genus Xenomys, which inhabits dry tropical woodlands (biome II). While some authors
considered Hispanomys as inhabitants of open/herbaceous environments (De Bruijn et
al., 1993; García-Alix et al., 2008; Van Dam &Weltje, 1999), other studies indicated more
generalist ecological preferences for this genus (Martín-Suárez, Freudenthal & Civis, 2001;
Hernánde Fernández & Peláez-Campomanes, 2003b). In the case of Blancomys, studies
based onmorphological and synecological approximations had slightly different outcomes;
whereas Hernánde Fernández & Peláez-Campomanes (2003b) indicated preference for dry
habitats, García-Alix et al. (2008) pointed to preferences for open and probably fresh
environments. Most of these interpretations might be encompassed by our results, since
biome II is present in tropical environments with strong hydric seasonality.

The last two groups (Cri10 and Cri11) involved separately Microtocricetus and
Trilophomys, which show similar outlines with particularly narrow molars (Fig. 5). The
outlines of these groups are particularly symmetrical; that is because the outline at the
bi-lobed anterocone is very symmetrical, broader than in the previous groups, and reduced
in relation to the posterior side.

The extinctMicrotocricetus is linked to the extant genus Akodon (Cri10), which inhabits
both forested and open biomes (I, II, II/III, III, IV, V, VII and VIII). The outlines of
these two genera are very symmetrical with a flat occlusal surface and a rectangular shape
(János & Kókay, 2010;Wahlert, 1984). The molars ofMicrotocricetus have been described as
mesodont, trending toward a prismatic dental pattern (Fejfar et al., 2011), and this genus
was linked to open environments (Bachmayer & Wilson, 1985).

The extinct genus Trilophomys forms the group Cri11 with the extant genera
Oxymycterus, which is also present in a wide range of biomes (I, II, II/III, V, VII and
VIII). In general, the molars of these rodents show a trend in which cusps are opposed
and begin to fuse into transverse lophs (Wahlert, 1984). The outline is symmetrical as in
the previous group, although in the case of Trilophomys the anterior side is a little more
differentiated and this area is slightly narrower when compared with the fifth group. The
molars of Trilophomys have been described as mesodont and hypsodont and, as in the
extant taxa, have a prismatic dental pattern (Fejfar et al., 2011), which is related to open
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environments where grasslands are dominant. Previous palaeoecological inferences linked
this extinct genus to open environments (García-Alix et al., 2008; Hernánde Fernández
& Peláez-Campomanes, 2003b). However, although most biomes inhabited by the extant
genus of this morphological group are characterized by the occurrence of a dry season and
several species of Oxymycterus are found in high altitudes with cold and open landscapes
(Hershkovitz, 1962), they showvery generalist ecology andoccur in both forest and grassland
biome environments. In this sense, our results appear to expand the ecological preferences
of Trilophomys.

Final remarks
We note the remarkable absence of open environment specialists (Figs. 4 and 5) in both
groups of rodents (Cricetidae and Murinae). In summary, our results show in the two
rodent groups a predominance of ubiquitous genera among the Miocene taxa, and the
presence of a few forest specialists.

This absence of open environments specialists is coherent with the fact that there is no
isotopic evidence of C4 plant-dominated habitats in the Iberoccitanian region during the
Miocene (Domingo et al., 2013), which is related to the absence of long-term C4-dominated
open grasslands in favour of forests and open woodlands (Domingo et al., 2009).

On the other hand, the dominance in our results of generalist taxa could be related to their
tendency to survive in unstable environments with changing conditions (Cantalapiedra,
Hernández Fernández & Morales, 2011; Gomez Cano et al., 2013; Hernánde Fernández &
Vrba, 2005; Moreno Bofarull et al., 2008; Van der Meulen, Peláez-Campomanes & Levin,
2005; Vrba, 1980; Vrba, 1987), as the ones that could be found in the transition zone
between tropical and temperate biogeographic regions that was the Iberian Peninsula
during the Neogene (Pickford & Morales, 1994).

Our study was based in the late Miocene Iberoccitanian extinct rodents. Many of
the studied genera had species living outside the Iberoccitanian region or in additional
time intervals not considered here (e.g., Megacricetodon and Democricetodon, have been
registered in Africa and Asia, as well as in earlier time intervals), which might increase
the total morphological range of these genera. Consequently, the associated extant genera
could slightly change in some cases, particularly in those genera that have very few species
in the Iberoccitanian region during the late Miocene (e.g., Eumyarion with only two species
considered in this study, but much more diverse in Central Europe and even Asia during
the Oligocene andMiocene). Therefore, although our results are a good characterization of
extinct rodent genera from the South-western Europe during the Late Miocene, they must
be taken carefully when extrapolated to other time intervals or biogeographical regions.

CONCLUSIONS
Geometricmorphometric comparison of the first uppermolars in several extant and extinct
rodent taxa allowed the inference of ecological preferences based on dental morphology at
the genus level. This work set this analysis of geometric morphometric as a very effective
methodology for eco-morphological inferences by comparing with previous works using
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different methods. This method is particularly useful in the study of the fossil record of
small mammals, which is mostly represented by isolated teeth.

Particularly, themorphological database of uppermolar outlines of extant taxa compiled
in this work is a successful tool for the development of ecomorphological analyses of the
rodent fossil record.

Finally, the ecological characterization established in this work will be indispensable for
the future development of palaeoecological and palaeoclimatic studies, which could help
further explain the ecological diversity of the Iberoccitanian region during the Miocene.
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