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Abstract

Objectives To evaluate the performance of a novel convolutional neural network (CNN) for the classification of typical

perifissural nodules (PFN).

Methods Chest CT data from two centers in the UK and The Netherlands (1668 unique nodules, 1260 individuals) were

collected. Pulmonary nodules were classified into subtypes, including “typical PFNs” on-site, and were reviewed by a central

clinician. The dataset was divided into a training/cross-validation set of 1557 nodules (1103 individuals) and a test set of 196

nodules (158 individuals). For the test set, three radiologically trained readers classified the nodules into three nodule categories:

typical PFN, atypical PFN, and non-PFN. The consensus of the three readers was used as reference to evaluate the performance of

the PFN-CNN. Typical PFNs were considered as positive results, and atypical PFNs and non-PFNs were grouped as negative

results. PFN-CNN performance was evaluated using the ROC curve, confusion matrix, and Cohen’s kappa.

Results Internal validation yielded a mean AUC 0f91.9% (95% C190.6-92.9) with 78.7% sensitivity and 90.4% specificity. For

the test set, the reader consensus rated 45/196 (23%) of nodules as typical PFN. The classifier-reader agreement (k = 0.62-0.75)

was similar to the inter-reader agreement (k = 0.64-0.79). Area under the ROC curve was 95.8% (95% CI 93.3-98.4), with a

sensitivity of 95.6% (95% CI 84.9-99.5), and specificity of 88.1% (95% CI 81.8-92.8).

Conclusion The PFN-CNN showed excellent performance in classifying typical PFNs. Its agreement with radiologically trained

readers is within the range of inter-reader agreement. Thus, the CNN-based system has potential in clinical and screening settings

to rule out perifissural nodules and increase reader efficiency.

Key Points

» Agreement between the PFN-CNN and radiologically trained readers is within the range of inter-reader agreement.

» The CNN model for the classification of typical PFNs achieved an AUC of 95.8% (95% CI 93.3-98.4) with 95.6% (95% CI
84.9-99.5) sensitivity and 88.1% (95% CI 81.8-92.8) specificity compared to the consensus of three readers.
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Abbreviations

CNN  Convolutional neural network
GGO  Ground glass opacity

IQR Interquartile range

NLST National Lung Screening Trial
PFN  Perifissural nodule

ROC  Receiver operating characteristic
STD  Standard deviation

VDT  Volume doubling time
Introduction

Since the publication of the National Lung Screening Trial
(NLST) demonstrated a reduction in lung cancer—related mor-
tality of 20% compared to chest X-ray [1], and this has been
confirmed more recently by European studies [2, 3], resulting
in a significant amount of interest on lung cancer screening
using computed tomography. Alongside the detection of lung
cancer, the increased use of low-dose computed tomography
(CT) for screening purposes has resulted in the increased de-
tection of benign of small-to-intermediate-sized pulmonary in
approximately 50% of the high-risk individuals screened [4],
resulting in a substantial number of false-positive results [5].

Perifissural nodules (PFN) are a sub-group of small-to-
intermediate-sized solid nodules, frequently identified by ra-
diologists reporting chest CT scans. PFNs are defined as nod-
ules that are attached to fissures, and are homogenous and
solid with smooth margins and an oval/lentiform or triangular
shape [6]. They account for approximately 20-30% of all
solid pulmonary nodules found in the lung cancer screening
setting as well as incidentally in the clinical setting [6—S8].
Although some of the PFNs show growth rates similar to
malignant nodules (volume doubling time < 400 days), they
have so far been shown to be benign in all typical cases [6-9],
and are generally considered to be benign reactive
intrapulmonary lymph nodes [10, 11]. Automated and consis-
tent identification of PFNs with their exclusion from further
consideration could reduce the workload of radiologists and
prevent unnecessary follow-up scans being performed.

The recent rapid advancement in the field of convolutional
neural networks (CNNss) for image recognition has led to the
possibility of applying these techniques to pulmonary nodule
classification. Given the characteristic appearance of PFNs,
their benign nature and their abundance in both screening
and clinical settings, they are an interesting target for
the training of a CNN classifier. Here, we evaluate the
performance of a new deep convolutional neural net-
work for PFN classification (PFN-CNN) trained on nod-
ules retrospectively collected from two European cen-
ters, including validation on a holdout dataset.
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Materials and methods
Population and data selection

The main data used for the current study were collected as part
of the public-private grant provided by the European Institute
of Innovation and Technology (EIT), grant agreement No.
17189. The use of retrospective data from two participating
centers, Oxford University Hospitals (OUH) and University
Medical Center Groningen (UMCG), was approved by local
Ethics Committees. The need for consent from individuals
was waived by local Ethics Committees, as the study was
retrospective in nature, and at the point of data selection, all
participant data were anonymized.

Inclusion criteria were as follows: CT scans of men and
women, aged 18 years or above, with solid lung nodules 5—
15 mm in maximum axial diameter, having ground truth of
either histology, subsequent resolution, or stability in volu-
metric size after 1 year follow-up or in diameter after 2-year
follow-up [12]. Exclusion criteria were as follows: CT scans
with motion artifacts, slice thickness of more than 2.5 mm,
more than 5 nodules reported on the scan, or malignancy in
the last 5 years. Depending on the measurement tool available
at the time of data collection, the maximum axial diameter of a
nodule was either derived from semi-automatic volumetry or
measured manually using a digital caliper tool. Measurements
were rounded to the nearest millimeter. Although the inclu-
sion criteria for nodule size were 5—-15 mm, some of the nod-
ules, after enrolment in the study, were measured to be smaller
due to measurement variability and were not excluded. These
include seven 4 mm and two 3 mm nodules in the training set,
and five 4 mm nodules in the test set.

Curation of PFN data

The data comprised both clinical and screening data, based on
CT scanners from different manufacturers, and a wide variety
of protocols, including the possible use of contrast agent. Data
from each center were marked up by a radiologist on-site, and
curation was performed centrally to ensure consistency be-
tween sites. A typical PFN was defined according to de
Hoop et al as “a fissure-attached, homogeneous, solid nodule
with smooth margin and an oval, lentiform or triangular
shape.” An atypical PFN was defined as “a nodule that either
met all features but was not attached to visible fissure or a
fissure-attached nodule, convex on one side and rounded on
the other.” Non-PFN was defined as “a nodule with a shape
that did not appear to be influenced by the fissure.” [6]. Due to
high rate of discrepancy in distinguishing atypical PFNs and
the higher probability of misclassifying malignant nodules as
atypical PFNs compared to typical PFNs, only typical PFNs
were considered to belong to the positive training class, and
everything else was considered a negative. A total of 1,668
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nodules from 1,260 individuals were selected from the two
participating medical centers for training, validation, and test-
ing. The split ratio between training/cross-validation and test-
ing (holdout dataset) was approximately eight to one; 1557
nodules from 1103 individuals were used for training and
cross-validation, while 196 nodules from 158 individuals
were used for testing.

Training of the PFN classifier

The CNN-based PFN classifier was developed by Optellum
Ltd. and was initialized from a lung cancer prediction model
trained on around 16,000 NLST nodule images, for the task of
distinguishing malignant from benign nodules based on ana-
lyzing a cuboidal volume of CT data centered on each nodule.
This pretraining step helps the network to learn general fea-
tures associated with the related task of lung cancer prediction
that can be reused for PFN classification. Details on the de-
velopment of the lung cancer prediction model have been
previously described [13, 14]. The PFN classifier was then
fine-tuned using the curated PFN data to produce a PFN score
for each presented nodule using five-fold cross-validation. For
binary classification of typical PFNs/non-PFNs, the binariza-
tion threshold for the PFN score was determined from the
training/cross-validation data, based on the Youden index.

Evaluation of the PFN classifier

The PFN-CNN was validated by comparing its performance
to human readers using a reader study. The testing dataset
consisted of 196 nodules (from 158 individuals) detected on
standard or low-dose CT. Patients whose data were not includ-
ed in the training and cross-validation set were included in the
reader study test set.

For the reader study, cuboidal patches of voxels with be-
nign nodules at the center were presented to the PFN classifi-
cation model. For each nodule, the PFN classifier provided a
PFN score ranging from 0 to 100. Based on the PFN score
produced by the PFN-CNN and the binarization threshold of
52.1, the nodules were classified as either typical PFN or non-
PFN. Two radiologists with 8 (reader A) and 10 (reader B)
years of experience in chest radiology and a 4th year radiology
resident (reader C) were asked to label each nodule as typical
PFN, atypical PFN, or non-PFN. To match the Al training
procedure, nodules that were rated by two or more readers
as typical PFNs were considered as positive, whereas atypical
PFNs and non-PFNs were considered as negative results and
were combined into one group.

Data analysis

The Kruskal-Wallis test was used to determine whether a con-
tinuous variable was normally distributed. Normally

distributed data were presented as mean and standard devia-
tion (SD), and non-normally distributed data were presented
as median and interquartile range (IQR). Mann-Whitney U
test was used to compare continuous variables between nodule
types. Model performance was compared to the consensus of
readers and evaluated using receiver operating characteristics
(ROC). The evaluation of agreement was presented using a
confusion matrix and Cohen’s kappa, and was interpreted as
follows: value < 0, no agreement; 0.01-0.20, none to slight;
0.21-0.40, fair; 0.41-0.60, moderate; 0.61-0.80, substantial;
and 0.81-1.00, almost perfect agreement [15]. All statistical
analysis was performed using SPSS v23 (IBM).

Results
Internal cross-validation

Table 1 gives an overview of patient and nodule details from
both training and test datasets. In the training dataset, 427/
1,557 (27.4%) nodules were labeled as typical PFNs, and
1,045/1,557 (67.1%) nodules were labeled as non-PFNss.
The mean AUC of five-fold cross-validation on the internal
dataset was 91.9% (95% CI 90.6-92.9). At an optimal oper-
ating point of 52.1, the PFN-CNN yielded 87.4% (95% CI
86.2-88.4) accuracy, 78.7% (95% CI 75.8-81.5) sensitivity,
and 90.4% (95% CI 89.1-91.5) specificity.

Demographics of the testing dataset

In total, 196 unique nodules from 158 participants were in-
cluded. Mean age was 66.6 + 8.7 years, and 48/158 (30.4%)
participants were female. Based on the reader consensus, 45
(22.9%) were typical PFNs, 42 (21.4%) atypical PFNs, and
105 (53.6%) non-PFNs. Four (2.0%) nodules had no classifi-
cation due to disagreement (Table 2). Significant difference
(p = 0.02) was found in maximum axial diameter between
typical PFNs (median 6 mm (IQR 5-7)) and atypical PFN/
non-PFNs (media 6 mm (IQR 6-8)).

PFN-CNN classifier performance

When the performance in classifying typical PFNs was com-
pared to the consensus of the three readers, the AUC of PFN-
CNN was 95.8% (95% CI1 93.3-98.4) (Fig. 1). The threshold
value of 52.1 from the internal validation was used to distin-
guish typical PFNs from non-PFNs, which gave 89.8% accu-
racy, 95.5% (95% CI 84.9-99.5) sensitivity, and 88.1% (95%
CI 81.8-92.8) specificity (Table 3). For the four pulmonary
nodules without agreement in their classification as typical
PFN, atypical PFN, or non-PFN, the PFN-CNN classified
three as typical PFN and one as non-PFN (Figs. 2 and 3).
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Table 1 Details of nodules and
associated clinical data

Training dataset Testing dataset

Typical Atypical PFNs Typical PEFNs, Atypical PFNs and

PFNs, n (%) and non-PFNs, n (%) non-PFNs, n (%)

n (%)

Patients—age
18<x <50 19 (6.2) 51(6.4) 12.7) 2 (1.7)
50 <x <60 126 (41.0) 252 (31.7) 8 (21.6) 25 (20.7)
60 <x<70 102 (33.2) 296 (37.2) 14 (37.8) 42 (34.7)
70 <x <80 44 (14.3) 137 (17.2) 8 (21.6) 24 (19.8)
80 <x<90 15 (4.9) 57(7.2) 3(8.1) 10 (8.3)
90 <x <100 1(0.3) 3(04) 3(8.1) 18 (14.9
Missing 0 (0.0) 0(0.0) 12.7) 2 (1.7)
Patients—sex
Female 34 (11.1) 259 (32.5) 6 (16.2) 40 (33.1)
Male 273 (88.9) 537 (67.5) 31 (83.8) 81 (66.9)
Nodules—Ilocation
Left lingula lobe 17 (4.0) 62 (5.5) 0 (0.0) 5(3.3)
Left lower lobe 110 (25.8) 288 (25.5) 12 (26.7) 33(21.9)
Left upper lobe 19 4.4) 123 (10.9) 244 16 (10.6)
Right lower lobe 97 (22.7) 294 (26.0) 12 (26.7) 45 (29.8)
Right middle lobe 135 (31.6) 136 (12.0) 13 (28.9) 17 (11.3)
Right upper lobe 49 (11.5) 227 (20.1) 6(13.3) 35(23.2)
Nodules—size
<5 2 (0.5) 7 (0.6) 2 (4.4) 3 (2.0
5<x<7 344 (80.6) 832 (73.6) 32 (71.1) 104 (68.9)
7<x<10 71 (16.6) 174 (15.4) 10 (22.2) 32 (21.2)
10<x<15 10 (2.3) 112 9.9) 122) 10 (6.6)
>15 0 (0.0) 5(0.4) 0 (0.0) 2 (1.3)

Reader agreement

The agreement was substantial between the reader consensus
and PFN-CNN, with 89.8% (95% CI 85.7-93.9) accuracy and
0.744 (95% CI 0.635-0.842) kappa. There was substantial
agreement between the PFN-CNN and the three individual
readers (Table 4), and kappa (k) was 0.748 (95% CI 0.850—
0.646), 0.623 (95% CI 0.745-0.501), and 0.732 (95% CI
0.838-0.626) for readers A, B, and C, respectively. Inter-
reader agreement was substantial between readers: reader A
and reader B, £ = 0.639 (95% CI 0.510-0.768), reader A and

reader C, k= 0.792 (95% CI 0.892-0.692), and reader B and
C, k=0.706 (95% CI 0.829-0.583).

Discussion

With this study, we have demonstrated the feasibility of a
PFN-CNN to classify typical perifissural nodules on a
chest CT. The PFN-CNN was trained on datasets from
two European centers and built on top of a nodule char-
acterization framework that had been trained on the US

Table 2 Nodule classification by

Typical PEN, N (%)

Atypical PFN, N (%) Non-PEN, N (%)

readers
Reader A 49 (25.0)
Reader B 46 (23.5)
Reader C 35(17.9)
Consensus* 45 (22.9)

31 (15.8) 116 (59.2)
57 (29.1) 93 (47.4)
57 (29.1) 104 (53.1)
42 (214) 105 (53.6)

PFN, perifissural nodule

*Agreement between two or more readers (4 nodules are without agreement)

@ Springer



Eur Radiol (2021) 31:4023-4030

4027

ROC Curve

1.0

0.8

0.6

Sensitivity

0.4

0.2

00 AUC=95.8% (95%Cl: 93.3-98.4)
0.0 0.2 0.4 0.6 0.8 1.0

1 - Specificity
Fig. 1 Performance of PFN-CNN for the classification of typical PFNs

NLST data. The PFN-CNN showed excellent performance
in identifying typical PFNs when compared to the consen-
sus of three readers (AUC = 95.8%, sensitivity = 95.6%,
specificity = 88.1%) and had comparable agreement with
readers (classifier-reader agreement 85.7-89.8% [k =
0.62—0.75], inter-reader agreement 87.8-89.3% [k
0.64-0.79]). This result demonstrates the potential utility
of CNN-based systems for automatic PFN classification to
reduce the workload of radiologists.

An interesting finding in our study was the signifi-
cant improvement in performance in the reader study,
with AUC = 95.8 (95% CI 93.3-98.4) as compared to
the internal cross-validation, with AUC = 91.9% (95%
CI 90.6-92.9). This improvement could have been
caused by the difference in data mark-up available for
classifying PFNs for training (binary labels) and for the
reader study (tertiary labels). As both datasets contained
a spectrum of cases, there may have been more border-
line cases “rounded-up” or “rounded-down” for binary
classification than in the tertiary classification.

Previous studies have shown that PFNs in both clin-
ical and screening settings represent non-malignant le-
sions for which no follow-up is needed and that they
account for 20-30% of (baseline) nodules [6-8]. Up to
now, the gold standard for their identification has been
the expert opinion of radiologists. However, there is an
intrinsic variability in classification by radiologists, as
has been shown by Schreuder et al who found only
moderate agreement between radiologists [16].
Therefore, 100% accuracy may not be achievable.
Automatic classification of PFNs using CNN has been
previously attempted in only one study [17]. Ciompi
et al used a CNN pre-trained using natural images to
classify PFNs with respectable success (AUC = 86.8%).
The difference in performance between their study and
ours may be due to three factors. First, one of the major
differences between our study and the work from
Ciompi et al was the data used for pretraining; in our
study, we used domain-specific images, whereas they
used natural images for pretraining. Although we were
not able to directly compare how different pretraining
methods may influence the performance of neural net-
work, we believe that the pretraining on images from
the same domain on a related task may be a factor in
the increased performance. Second, our PFN-CNN was
not tested on an external dataset, which could potential-
ly yield lower performance. Third, the definition of pos-
itive results was different between their study and ours.
We focused on the identification of only typical PFNs
and considered atypical PFNs as negative result. This is
due to the higher disagreement of atypical PFNs among
readers than typical PFNs [16], and the relatively low
prevalence of atypical PFNs (3.1%) compared to typical
PFNS (19.7%) [6].

Although our study demonstrates excellent perfor-
mance in terms of AUC in classifying typical PFNs,
there are several shortcomings. Firstly, the PPV of the
described PFN-CNN was 70.5%. To our knowledge, our
study is the first study to describe the PPV for an au-
tomatic PFN classifier. In a clinical setting, accurate
identification of PFNs is critical to avoid accidental rule
out of malignant nodules. In this case, 29.5% of

Table 3 Performance of readers

and PFN-CNN compared to the Sensitivity (%)

Specificity (%) PPV (%) NPV (%)

reader consensus

Reader A 93.3 (85.2, 100.0)
Reader B 73.3 (59.1, 86.1)

Reader C 95.6 (88.6, 100.0)
PFN-CNN 95.6 (88.5, 100.0)

95.4 (91.9, 98.1)
98.7 (96.7, 100.0)
98.0 (95.5, 100.0)
88.1(83.0, 93.0)

85.7 (75.0, 94.9)
94.3 (85.7, 100.0)
93.5(85.7, 100.0)
70.5 (59.6, 81.4)

98.0 (95.3, 100.0)
92.5 (88.1, 96.2)

98.7 (96.5, 100.0)
98.5 (96.1, 100.0)

PFN-CNN, convolutional neural network for the classification of perifissural nodules; PPV, positive predictive

value; NPV, negative predictive value
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Fig. 2 Examples from the test
dataset along with scores
generated by the PEN-CNN

Nodule A
Score: 99.13

(True positives)

Nodule B
Score: 98.15

Nodule C
Score: 00.33

(True negatives)

Nodule D
Score: 00.05

Axial Coronal Sagittal

nodules that were classified by the PEN-CNN as typical ~ for the limited performance in PPV. Firstly, the binari-
PFN were not typical PFNs. There are several reasons  zation threshold of the PFN score was not optimized for

Fig. 3 Examples from the test
dataset along with scores
generated by the PFN-CNN

Nodule A
Score: 98.25

(False positives)

Nodule B
Score: 90.26

Nodule C
Score: 40.23

(False negatives)

Nodule D
Score: 28.14

Axial Coronal Sagittal
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Table 4 Confusion matrix and
kappa on the agreement between PFN-CNN Kappa (95%CI)
the PEN-CNN and the three ]
readers in typical PFN Typical PFN Non- Total
classification PFN
Reader A Typical PFN 45 4 49 0.748 (0.850, 0.646)
Non-PFN 16 131 147
Total 61 135 196
Reader B Typical PFN 34 1 35 0.623 (0.745, 0.501)
Non-PFN 27 134 161
Total 61 135 196
Reader C Typical PFN 43 3 46 0.732 (0.838, 0.626)
Non-PFN 18 132 150
Total 61 135 196
Consensus Typical PFN 43 2 45 0.744 (0.635, 0.842)
Non-PFN 18 133 151
Total 61 135 196

PFN-CNN, convolutional neural network for the classification of perifissural nodules

PPV, rather, we used the Youden index to define the
optimal cutoff for typical PFN classification, which
equally values the performance in both sensitivity and
specificity. Secondly, by using the consensus of three
trained readers, the ground truth for typical PFN may
be more conservative compared to the clinical practice,
where usually a single reader makes the classification.
This applies similarly to the data on which the PFN classi-
fier was trained. For future studies, we suggest using the
consensus of multiple readers for the curation of the CNN
training data. Thirdly, the binary nature of the PFN-CNN
and the grouping of atypical PFNs as negative results do not
reflect the classification method suggested by de Hoop et al
[6]. On the other hand, our study has demonstrated the im-
portance of distinguishing the difference between typical
and atypical PFNs, which has led to a better performance
of the CNN compared to previous studies [17]. Use of the
PFN-CNN, even though only focusing on typical PFNs,
could potentially allow the exclusion 0f22.9% of lung nod-
ules in our dataset from further evaluation. When PFN-
CNN is implemented as a part of a fully automated CAD
system, the efficiency of lung cancer screening could be
greatly increased. Lastly, the PFN-CNN was trained on
the data provided by two participating centers. Whether
the results can be generalized to other datasets from a dif-
ferent population and acquired with different CT scanners
and protocols was not determined. However, as our training
data was heterogeneous including both incidental and
screening data, with a variety of CT scanners and protocols
used, we do not expect drastic differences in performance
when tested on an external dataset, though this has yet to be
confirmed. Our immediate next step would be to focus on
the automatic classification of atypical PFNs, as these are
also more difficult for radiologists distinguish.

In conclusion, a PFN-CNN trained on datasets from
European centers showed excellent performance in classifying
typical PFNs in a holdout dataset in terms of AUC. This result
demonstrates the potential utility of CNN-based systems in
clinical and screening setting for ruling out benign pulmonary
nodules and reducing radiologist workload.
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