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Abstract: Hydroxytyrosol (HT) and punicalagin (PC) exert cardioprotective and antiatherosclerotic
effects. This study evaluated the effect of an oral supplement containing HT and PC (SAx) on
dyslipidemia in an adult population. A randomized, double-blind, controlled, crossover trial was
conducted over a 20-week period. SAx significantly reduced the plasma levels of triglycerides (TG)
in subjects with hypertriglyceridemia (≥150 mg/dL) (from 200.67 ± 51.38 to 155.33 ± 42.44 mg/dL;
p < 0.05), while no such effects were observed in these subjects after the placebo. SAx also significantly
decreased the plasma levels of low-density lipoprotein cholesterol (LDL-C) in subjects with high
plasma levels of LDL-C (≥160 mg/dL) (from 179.13 ± 16.18 to 162.93 ± 27.05 mg/dL; p < 0.01),
while no such positive effect was observed with the placebo. In addition, the placebo significantly
reduced the plasma levels of high-density lipoprotein cholesterol (HDL-C) in the total population
(from 64.49 ± 12.65 to 62.55 ± 11.57 mg/dL; p < 0.05), while SAx significantly increased the plasma
levels of HDL-C in subjects with low plasma levels of HDL-C (<50 mg/dL) (from 44.25 ± 3.99
to 48.00 ± 7.27 mg/dL; p < 0.05). In conclusion, the supplement containing HT and PC exerted
antiatherosclerotic and cardio-protective effects by considerably improving dyslipidemia in an adult
population, without co-adjuvant treatment or adverse effects.

Keywords: cardiovascular disease; atherosclerosis; hydroxytyrosol; punicalagin; dyslipidemia; total
cholesterol; low-density lipoprotein cholesterol; high-density lipoprotein cholesterol; triglycerides

1. Introduction

Cardiovascular diseases (CVDs) remain the leading cause of disease burden in the
world. An estimated 17.9 million people died from CVDs in 2019, representing 32% of all
global deaths [1]. The recommendation by the World Health Organization (WHO) to help
reduce the global burden of CVD is designed to provide counseling and adequate treatment
for at least 50% of eligible people (defined) as aged 40 years or older and at high risk of
CVD) by 2025 [2]. People considered to be at high risk for CVD are those with one or more
risk factors, such as dyslipidemia, arterial hypertension, diabetes, or previously established
disease [3]. To reduce the global burden of CVD, early detection and primary prevention
are essential [3], and the WHO considers subjects aged 40–80 years, without a known
baseline history of CVD, to be the target population in primary prevention efforts [2].
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It has been widely recognized that most CVDs can be prevented by addressing be-
havioral risk factors, such as unhealthy diet, physical inactivity, and harmful tobacco and
alcohol use, as well as appropriate control of risk conditions for CVDs, including dyslipi-
demia, arterial hypertension, diabetes and obesity [4]. Although the remarkable success of
pharmacotherapy and preventive efforts have been introduced in the past decades, CVDS
still constitutes a public health challenge as a top cause of morbidity, loss of useful life years,
and mortality worldwide [1]. Therefore, any efforts for the prevention of CVD should be
strongly encouraged.

Atherosclerosis, otherwise known as an atherosclerotic vascular disease (ASVD), is the
main cause of mortality in CVD [5]. In ASVD, the buildup of plaques within blood vessels,
resulting in the restriction of blood flow, with a potential risk of rupture, contributes to the
development of heart attacks (myocardial infarction) and strokes, which can be fatal [6].

Dyslipidemia is one of the major risk factors for the development and progression
of ASVD and CVDs [7,8]. Dyslipidemia includes a wide range of lipid abnormalities
and may involve a combination of increased plasma levels of total cholesterol (TC), low-
density lipoprotein cholesterol (LDL-C), and triglycerides (TG), or decreased high-density
lipoprotein cholesterol (HDL-C). The prevention and sensible management of dyslipidemia
can positively modify CV morbimortality [8]. Therefore, an effective solution with few or
no adverse effects and high adherence, could reduce the ASVD morbimortality and, CVDs.

Polyphenols are becoming increasingly accepted as therapeutic substances for ad-
dressing a wide range of diseases, such as ASVD and CVDs [9–22], and their risk fac-
tors [9,11–17,20–26]. Diverse studies have reported an inverse correlation between polyphe-
nol consumption and the risk of CV events [10,18,23,27] and overall mortality [23,28–30].
Among these bioactive compounds, hydroxytyrosol (HT), from olives, and punicalagin
(PC), from pomegranates, are noteworthy for their antioxidant, antiatherosclerotic, cardio-
protective, neuroprotective, anticancer, and other effects [13,26,31–36]; in this article, we
focus on their cardioprotective and antiatherosclerotic effects. According to various in vitro
and in vivo studies, the cardioprotective and antiatherosclerotic properties of HT and PC
can normalize dyslipidemia, arterial prehypertension and hypertension, diabetes melli-
tus, oxidative and nitrative statuses, proinflammatory statuses, prothrombotic statuses,
endothelial dysfunction, obesity, metabolic syndrome, and mitochondrial dysfunction,
modulate the expression of cardioprotective and antiatherosclerotic genes, and reduce
the adverse effects of drug treatment, etc. [9,13,14,16,26,31,32,34,37–52], through multiple
pathways [9,13,16,26,31–34,45–47].

In a previous crossover, randomized, double-blind and controlled study, oral sup-
plementation with a combination of HT and PC in middle-aged healthy adults showed
anti-atherosclerotic effects by improving endothelial function, blood pressure and levels of
circulating oxidized LDL, with more marked improvements in subjects with alterations
of these atherosclerotic markers [14]. Data obtained in this clinical trial regarding the
effect of this oral supplement on the lipid profile, especially in subjects with dyslipidemia
are reported.

2. Materials and Methods

The present study was registered at http://clinicaltrials.gov under the number
NCT02042742 (access date: 23 January 2014).

2.1. Design and Subjects

This was a crossover, randomized, double-blind and placebo-controlled clinical trial,
which was conducted over 20 weeks. A full description of the methodology of the study has
been previously reported [14]. Briefly, eligible participants were assigned at random to two
double-blind 8-week treatment periods receiving the supplement or placebo separated by a
washout period of 4 weeks. Participants (n = 84) were men and women, aged 45–65 years,
recruited at the Nutrition Department of Hospital University La Paz in Madrid, Spain, who
voluntarily agreed to take part in the study and gave written consent. Exclusion criteria

http://clinicaltrials.gov
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were body mass index (BMI) ≥30 kg/m2, subjects receiving drug treatment for CV risk
(e.g., dyslipidemia, hypertension, diabetes mellitus, etc.), presence of family background
of premature vascular disease, metabolic syndrome, severe liver or renal dysfunction,
cancer, and mental illness or low cognitive ability. Other exclusion criteria were the
use of nutritional supplements, intensive physical activity, alcohol use (>30 g/day), and
hypersensitivity or allergy to olive and pomegranate by-products. Women still experiencing
menstrual cycles were also excluded.

All subjects gave their informed consent to take part in the study, which was approved
by the Scientific Research and Ethics Committee of the HULP (Code 3799) in accordance
with The Ethical Standards of The Declaration of Helsinki [53].

2.2. Intervention and Study Variables

The supplement (SAx) (Pomalive®, Euromed S.A., Mollet del Vallès, Barcelona, Spain)
(patent in concession process) contained 3.3 mg of HT from a standardized olive fruit extract
(Mediteanox®,) 65 mg of PC from a standardized pomegranate fruit extract (Pomanox® P30)
and 331.7 mg of maltodextrin. Identically appearing placebo capsules contained 400 mg of
maltodextrin. Subjects were instructed to take three capsules/day of the assigned product
(SAx or placebo) with their meals and were instructed to maintain their normal dietary
habits. They received the exact number of capsules (in blister packaging) required for each
8-week intervention period (SAx or placebo) during pre-period visits at the study center.
Visits were scheduled at baseline and before and after each intervention period. Study
variables included the following: (a) diet assessment, (b) anthropometric measurements,
(c) vital signs, (d) biochemical analysis of the lipid profile, and (e) compliance with the
study products and adverse effects.

The diet was recorded over three days (including one day of the weekend) [20].
Participants registered the weight of foods or, alternatively, cups, spoonfuls, etc., used for
household measurements. Records were reviewed by a nutritionist during the study visits
in the presence of the participant. The DIAL software (Alce Ingenieria S.L., Las Rozas de
Madrid, MD, Spain) was used for the calculation of the energetic and nutritional content of
foods and beverages consumed.

Anthropometric data (weight, height, BMI) were collected using standard techniques,
adhering to international norms set out by the WHO [54] in the morning by trained
personnel with the subject barefoot and wearing only underwear. A bioelectrical impedance
analyzer (BIA) was used for estimating body composition (EFG ElectroFluidGraph®, Akern
S.R.L., Pontassieve, Fl, Italy). Blood pressure and heart rate were measured using a 420 Spot
Vital Signs Monitor (Welch Allyn, Skaneateles Falls, NY, USA), determining the mean of
three readings.

At the beginning and end of each 8-week intervention period, fasting blood samples
were collected for biochemical analysis. Samples were analyzed on the Olympus AU5400
Automated Chemistry Analyzer (Olympus Corporation, Izasa, CA, USA) for levels of
total cholesterol, high-density lipoprotein cholesterol (HDL-C), low-density lipoprotein
cholesterol (LDL-C) and triglycerides. Results are expressed as mg/dL, values that were
considered dyslipidemia were ≥200 mg/dL, ≥150 mg/dL, ≥160 mg/dL, and <50 mg/dL
for total cholesterol, triglycerides, LDL-C, and HDL-C levels, respectively.

The participants’ compliance was determined through interviews and a comparison
between the number of capsules supplied and that returned in the middle and at the end
of each intervention period. When a participant had consumed ≥90% of the capsules
supplied, he/she was deemed compliant. Any adverse effects observed during the study
were logged. Any unfavorable, unwanted effects (diarrhea, constipation, nausea, vomiting,
halitosis, etc.) that were reported by a participant and/or observed by the researchers were
defined as adverse effects. No participants showed adverse effects during the study. The
participants were informed of their right to leave the study at any time.
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2.3. Statistical Analysis

In the present clinical trial, a sample size of 38 subjects was determined to be neces-
sary to achieve 90% power (at α = 0.05) with a potential 20% dropout [14,55]. Qualitative
data are presented as both counts and percentages. Quantitative data are presented as
means ± standard deviations (SDs). The Kolmogorov–Smirnov test was used to assess
whether the data were normally distributed, and Levene’s test was used to evaluate the
homogeneity of the variances. The denominator’s degrees of freedom were estimated using
Satterthwaite’s formula. The possible sequence effects, period effects, and residual effects
that can occur in this type of crossover study were analyzed. Multiple comparisons were ad-
justed for using the Bonferroni method. Two-sided tests were applied, and a p-value < 0.05
was considered statistically significant. The statistical analyses were performed using the
linear mixed model in the SAS Statistical Analysis Software, version 9.3 (SAS Institute Inc.,
Cary, NC, USA).

3. Results
3.1. Recruitment and Study Population

The present clinical trial was performed between February and June 2013. This study
involved 84 apparently healthy subjects (17 males (20.2%) and 67 females (79.8%)) who
were found to be suitable for inclusion. There were 17 participants subsequently lost to
follow-up (nine in the SAx/Placebo sequence and eight in the Placebo/SAx sequence)
for personal reasons (n = 15) and noncompliance with the treatment instructions (n = 2).
As such, 67 participants (14 males (20.9%) and 53 females (79.1%)) completed the present
20-week clinical trial; only their results were included in the statistical analyses (Figure 1).
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Figure 1. Flow chart depicting the present study.

3.2. Baseline Characteristics

Regarding the baseline state in the present clinical trial, there were no significant
differences between the participants assigned to the different intervention sequences
(Placebo/SAx and SAx/Placebo) in gender, age, smoking habits, anthropometry, lipid
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profiles, or other variables. The average age of the population was 53.0 ± 4.5 years, and the
average BMI was 24.6 ± 3.1 kg/m2 (Table 1).

Table 1. Baseline characteristics of the participants.

Placebo/SAx
(n = 33)

SAx/Placebo
(n = 34)

Gender (Female %, n) 78.79 (26) 79.41 (27)
Age (years) 53.21 ± 4.2 52.79 ± 4.8

Smoking (Smokers %, n) 18.18 (6) 26.47 (9)
Weight (kg) 66.26 ± 11.8 64.08 ± 10.9

BMI (kg/m2) 24.64 ± 2.9 24.56 ± 3.2
Waist circumference (cm) 80.51 ± 9.2 82.58 ± 9.8

FM (%) 29.18 ± 6.7 28.76 ± 6.4
FFM (%) 70.82 ± 6.7 71.24 ± 6.4
MM (%) 48.03 ± 7.7 47.87 ± 5.5
SBP (mmHg) 110.3 ± 13.1 110.9 ± 12.9
DBP (mmHg) 74.06 ± 10.8 73.75 ± 9.5
HR (bpm) 67.36 ± 8.9 70.41 ± 7.5
TC (mg/dL) 226.7 ± 29.6 224.6 ± 35.4

LDL-C (mg/dL) 144.3 ± 23.9 145.3 ± 28.6
HDL-C (mg/dL) 66.25 ± 12.9 62.00 ± 12.6

TG (mg/dL) 80.56 ± 24.6 86.52 ± 44.0
Data presented as means ± standard deviations (SDs). SAx: oral supplementation with hydroxytyrosol (HT) and
punicalagin (PC); BMI: body mass index; FM: fat mass; FFM: fat-free mass; MM: muscle mass; SBP: systolic blood
pressure; DBP: diastolic blood pressure; HR: heart rate; TC: total cholesterol; LDL-C: low-density lipoprotein
cholesterol; HDL-C: high-density lipoprotein cholesterol; and TG: triglycerides. There were no significant
differences in the baseline state between the two intervention sequences.

3.3. Dietary and Anthropometric Variables

Regarding the results for the dietary and anthropometric variables compared between
the beginning and end of the different intervention periods, no significant differences were
observed, nor were significant differences found between the different periods in terms of
the changes in these variables (Table 2).

Table 2. The dietary and anthropometric variables at the beginning and end of the supplementation,
and placebo periods.

SAx
(n = 67)

Placebo
(n = 67)

Energy (kcal/day) Start 1923 ± 513.6 1864 ± 471.9
End 1891 ± 549.4 1881 ± 569.5

Change −31.88 ± 463.2 17.07 ± 355.5

Carbohydrates (%) Start 38.06 ± 6.5 38.46 ± 8.9
End 37.62 ± 6.3 39.06 ± 6.5

Change −0.439 ± 5.7 0.598 ± 8.1

Proteins (%) Start 17.24 ± 3.7 17.44 ± 2.9
End 17.43 ± 3.6 17.60 ± 3.1

Change 0.193 ± 4.4 0.164 ± 3.5

Lipids (%) Start 41.42 ± 6.3 40.48 ± 8.8
End 41.36 ± 5.7 40.19 ± 5.9

Change −0.067 ± 5.3 −0.287 ± 8.0

SFA (%) Start 12.33 ± 2.9 12.46 ± 4.0
End 12.38 ± 2.8 12.03 ± 2.9

Change 0.049 ± 2.7 −0.433 ± 4.2

MUFA (%) Start 19.10 ± 3.6 18.82 ± 4.9
End 19.56 ± 4.0 19.29 ± 3.5

Change 0.453 ± 3.8 0.470 ± 4.2
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Table 2. Cont.

SAx
(n = 67)

Placebo
(n = 67)

PUFA (%) Start 6.45 ± 2.3 5.60 ± 1.6
End 5.98 ± 1.7 5.46 ± 1.8

Change −0.470 ± 2.4 −0.134 ± 1.4

Total Cholesterol (mg/dL) Start 350.5 ± 172.8 303.9 ± 150.4
End 328.1 ± 133.8 323.0 ± 115.9

Change −22.35 ± 210.8 19.04 ± 130.1

Fiber (g/d) Start 21.95 ± 7.8 21.71 ± 8.0
End 21.68 ± 8.9 20.47 ± 7.3

Change −0.275 ± 8.2 −1.234 ± 6.5

Weight (kg) Start 65.10 ± 11.3 65.10 ± 11.2
End 64.93 ± 11.2 64.85 ± 11.3

Change −0.173 ± 1.3 −0.249 ± 1.0

BMI (kg/m2) Start 24.58 ± 3.0 24.63 ± 3.0
End 24.51 ± 3.0 24.48 ± 3.0

Change −0.068 ± 0.5 −0.151 ± 0.6

Waist Circumference (cm) Start 81.85 ± 9.0 81.24 ± 9.8
End 81.82 ± 9.6 81.25 ± 9.6

Change −0.034 ± 2.9 0.008 ± 3.7

FM (%) Start 29.16 ± 6.6 28.90 ± 6.5
End 29.56 ± 6.8 29.79 ± 7.2

Change 0.400 ± 2.8 0.891 ± 3.7

FFM (%) Start 70.84 ± 6.6 71.10 ± 6.5
End 70.44 ± 6.8 70.21 ± 7.2

Change −0.400 ± 2.8 −0.891 ± 3.7

MM (%) Start 47.63 ± 6.2 47.52 ± 6.5
End 46.67 ± 5.7 46.44 ± 5.8

Change −0.970 ± 5.1 −1.082 ± 5.8
Data expressed as means ± standard deviations (SDs). SAx: oral supplementation with hydroxytyrosol (HT) and
punicalagin (PC); SFA: saturated fatty acids; MUFA: monounsaturated fatty acids; PUFA: polyunsaturated fatty
acids; BMI: body mass index; FM: fat mass; FFM: fat-free mass; and MM: muscle mass. In the present clinical trial,
no significant differences were observed between the beginning and end of the different intervention periods or in
the changes.

3.4. Lipid Profile Variables

Table 3 shows the values obtained for the lipid-profile variables examined. Figure 2
shows a significant reduction after SAx treatment was observed in the plasma levels of
LDL-C in subjects with initially high plasma levels of LDL-C (≥160 mg/dL) (SAx period
start: 179.13 ± 16.18; end: 162.93 ± 27.05 mg/dL; p < 0.004). This significant effect did not
occur in these subjects following placebo treatment.

In addition, at the end of the placebo period, a significant decrease in the plasma levels
of HDL-C was observed in the total population (Placebo period start: 64.49 ± 12.65; end:
62.55 ± 11.57 mg/dL; p < 0.016). After the SAx period, a significant increase in the plasma
levels of HDL-C was observed in subjects with initially low plasma levels of HDL-C (SAx
period start: 44.25 ± 3.99; end: 48.00 ± 7.27 mg/dL; p < 0.033). After the placebo period,
this significant effect on plasma HDL-C levels was not observed in these subjects (Placebo
period start: 41.50 ± 5.19; end: 43.75 ± 8.26 mg/dL; p < 0.464) (Figure 3). In the present
clinical trial, only women showed low plasma levels of HDL-C. There were no men who
presented low plasma levels of HDL-C.

At the end of the SAx period, a significant decrease in the plasma levels of TG
was observed in subjects with hypertriglyceridemia (≥150 mg/dL) (SAx period start:
200.67 ± 51.38; end: 155.33 ± 42.44 mg/dL; p < 0.017). This significant effect on the plasma
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levels of TG was not present after the placebo period in these subjects (Placebo period start:
186.00 ± 51.54; end: 170.50 ± 50.32 mg/dL; p < 0.700) (Figure 4).

3.5. Compliance and Adverse Effects

No significant differences were observed in the numbers of capsules consumed be-
tween the different intervention periods or treatment sequences. More than 90% of the
capsules provided were consumed by all the participants. No adverse effects derived from
the consumption of any treatment were reported.

Table 3. Lipid-profile variables at the beginning and end of the supplementation and placebo periods
in population with dyslipidemia.

SAx
(n = 67)

Placebo
(n = 67)

TC (mg/dL)
(n = 49)

Start
End

Change

237.6 ± 26.0
234.9 ± 25.1
−2.776 ± 18.8

238.4 ± 20.0
233.0 ± 22.8
−5.388 ± 18.8

LDL-C (mg/dL) Start 179.1 ± 16.2 171.6 ± 9.1
(n = 16) End 162.9 ± 27.1 ** 163.6 ± 16.9

Change −16.20 ± 18.5 −8.063 ± 15.1

HDL-C (mg/dL) Start 44.25 ± 4.0 41.50 ± 5.2
(n = 8) End 48.00 ± 7.3 * 43.75 ± 8.3

Change 3.750 ± 4.0 2.250 ± 5.4

TG (mg/dL) Start 200.7 ± 51.4 186.0 ± 51.5
(n = 4) End 155.3 ± 42.4 * 170.5 ± 50.3

Change −45.33 ± 10.5 −15.50 ± 73.1
Data expressed as means ± standard deviations (SDs); SAx: oral supplementation with hydroxytyrosol (HT)
and punicalagin (PC); TC: total cholesterol; LDL-C: low-density lipoprotein cholesterol; HDL-C: high-density
lipoprotein cholesterol; and TG: triglycerides. In the present clinical trial, significant differences were observed
between the beginning and end of the SAx period (* p < 0.05, ** p < 0.01). There were no significant differences in
the placebo period or in the changes in the different intervention periods.
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4. Discussion

The present clinical trial is the first study to evaluate the effects of the regular con-
sumption of an oral supplement containing HT and PC on ASVD and CVD markers,
such as dyslipidemia (high TC, high LDL-C, low HDL-C, and high TG), in primary pre-
vention in an adult population. The intake of three capsules daily, which contained HT
(9.9 mg) and PC (195 mg), for an 8-week period significantly decreased the plasma levels
of LDL-C and TG and significantly increased the HDL-C levels in an adult population
with dyslipidemia without co-adjuvant treatment, and no adverse effects were observed,
even though they frequently occur when using lipid-lowering drugs (e.g., myopathies,
renal dysfunction, hepatic dysfunction, rhabdomyolysis, flushing, itching, gastrointestinal
irritation, and stomach ulcers) [56–61]. In addition, the supplement resulted in a high
adherence to the treatment among the participants (>90%). As observed in our previous
article, the supplement containing HT and PC produced a significant improvement in
ASVD and CVD markers, such as endothelial dysfunction, arterial prehypertension and
hypertension (both systolic blood pressure (SBP) and diastolic blood pressure (DBP)) as
well as circulating plasma levels of oxLDL [14]. Several studies have shown improvements
in dyslipidemia following the intake of HT [9,37,49,62–67] or PC [46,68–73]. However, most
of the studies that have evaluated the effects of these bioactive compounds were performed
in vitro or in experimental animals [37,49,50,52,62,63,67,71,74]; only some have involved
humans [9,38,64,65,73], and even fewer have evaluated these compounds outside food
matrices [14,66,68,75] or studied their combined synergistic effect [14].

An example of this is the study of Cao et al., who observed how dyslipidemia could
be prevented by 17-week of supplementation with HT. The study evaluated the effects
of various doses of HT (low-dose: 10 mg/kg/day, and high-dose: 50 mg/kg/day) vs.
metformin (225 mg/kg/day) in mice with diverse metabolic disorders induced by a high-
fat-diet (HFD), or in mice with obesity and type 2 diabetes mellitus (T2DM) (db/db-model
mice). Low-dose HT produced significantly decreased fasting glucose levels in the db/db-
model mice that were similar to those of the metformin group. In Cao et al.’s study, low-
and high-dose HT notably and significantly improved the lipid profile in both the HFD and
db/db mice without adverse effects, while metformin did not produce this positive effect
in those mice. All the lipid variables were significantly increased under HFD treatment and
effectively improved after treatment with both low- and high-dose HT (decreased plasma
LDL-C levels (p < 0.01), decreased plasma TG levels (p < 0.01), reduced plasma free fatty
acid levels (p < 0.01), increased plasma HDL-C levels and improved LDL-C/HDL-C ratios
(p < 0.01)). As in our study, due to an increase in the plasma HDL-C levels, a significant
reduction in TC was not observed by Cao et al. In addition, HT supplementation could
decrease lipid deposits within the livers and muscle tissues of the HFD mice, through the
inhibition of the sterol regulatory element-binding protein 1c/fatty acid synthase (SREBP–
1c/FAS) pathway, reducing SREBP-1c levels, a well-known regulator of fatty acid and
cholesterol synthesis in the liver [52].

The improvement of dyslipidemia with HT has also been reported in other studies,
such as the study of Tabernero et al., where they evaluated the effect of HT and its lipophilic
derivatives in rats with diverse metabolic disorders induced by a cholesterol-rich diet. The
hypercholesterolemic diet was supplemented with 0.04% HT in the different HT groups.
After 8-week, a significant reduction in the plasma levels of LDL-C and TC was observed in
the HT groups, and there was not a significant decrease in plasma TG [62]. This amelioration
of dyslipidemia with HT was also observed in the study of Zhang et al., in which HT was
administered at a dose of 10 mg/kg/day orally to mice for 16-weeks. After this period
of time, a marked and significant reduction in the plasma levels of the lipid parameters
(TC, LDL-C, and TG) and an increase in the plasma levels of HDL-C were observed in
the HT group, compared to the control group (by approximately 17.4% (p = 0.004), 15.2%
(p = 0.003), 17.9% (p = 0.009), and 26.9% (p = 0.033), respectively)). HT improved hepatic
steatosis and lipid deposition. The possible pathways for improving lipemia include the
regulation of cholesterol metabolism via decreasing the phosphorylation of p38, followed



Nutrients 2022, 14, 1879 10 of 17

by the activation of AMP-activated protein kinase (AMPK) and inactivation of nuclear
factor-kappa B (NF-κB), which, in turn, trigger the blockade of sterol regulatory element-
binding protein 2/proprotein convertase subtilisin/kexin type 9 (SREBP2/PCSK9) and the
upregulation of low-density lipoprotein receptor (LDLR), apolipoprotein A-I (ApoAI), and
ATP-binding membrane cassette transport protein A1 (ABCA1). These steps finally lead to
a reduction in LDL-C and an increase in HDL-C in the circulation [67].

A crossover clinical trial with 60 prehypertensive men conducted by Lockyer et al. eval-
uated the effects of a phenolic-rich olive leaf extract (136.2 mg of oleuropein; 6.4 mg of HT)
on lipid profiles, among other variables, during 6-week of treatment, followed by 4-week of
washout. In the phenolic-rich olive leaf extract group, after 6-week, the researchers reported
a reduction in the plasma levels 308 of TC (−0.32 (±SD 0.70) mmol/L, p = 0.002), LDL-C
(−0.19 (±SD 0.56) mmol/L, p = 0.017), and TG (−0.18 (±SD 0.48) mmol/L, p = 0.008));
however, no significant changes were observed in the differences between the study treat-
ments. Although these lipid-lowering effects were obtained in subjects who did not suffer
from dyslipidemia, the researchers suggest that the possible mechanisms by which these
lipid-lowering effects occur include a decrease in the activities of key cholesterol-regulatory
enzymes, such as 3-hydroxy-3-methylglutaryl coenzyme A reductase (HMGR) (the main
target of statins) and acyl-coenzyme A: cholesterol acyltransferase (ACAT), resulting in
decreased cholesterol biosynthesis, impacting the flow of bile (increasing biliary cholesterol
and bile acid concentrations) and leading to its increased fecal excretion [66].

On the other hand, with respect to the results observed with PC on lipid profiles, some
authors, such as Kang et al., have observed improvements in dyslipidemia in mice, with
these metabolic disorders induced by a HFD. Their study evaluated the effects of admin-
istering various doses of PC (low-dose: 10 mg/kg/day, and high-dose: 100 mg/kg/day)
to these mice for 12-week. After PC administration, at both doses, there was a significant
decrease in the plasma levels of TG, TC, and LDL-C, and a significant increase in those of
HDL-C (low-dose: 14%, 16%, 42%, and 19%, respectively, and high-dose: 23%, 25%, 67%,
and 35%, respectively) compared with the control HFD (n = 6) [46]. A pomegranate leaf
extract (PLE) rich in PC produced improvements in the lipid profile in a mouse model
in which hyperlipidemia and obesity were induced by a HFD. The treatment group was
provided with 400 or 800 mg/kg/day of PLE for 5-week. The results after 5-week were
very encouraging. Apart from the improvements in the other parameters evaluated, the
study showed a marked and significant reduction in the plasma levels of TC and TG, and a
significant improvement in the TC/HDL-C ratio (low-dose: approximately 35% (p < 0.01)
and 56% (p < 0.01), respectively, and high-dose: approximately 29% (p < 0.05), 60% (p < 0.01),
and 24% (p < 0.05), respectively)) versus the HFD group (n = 11). PLE also significantly
attenuated the rise in plasma TG and inhibited intestinal fat absorption in these mice. PLE
showed a significant difference in decreasing the appetite of obese mice fed a HFD but
showed no effect in mice fed a normal diet [70].

In clinical trials, such as the one conducted by Esmaillzadeh et al., in 22 patients with
T2DM and dyslipidemia, 14 women (63.6%) and eight men (36.4%) presented improvements
in their lipid profiles after the consumption of 40 g/day of a concentrated pomegranate
juice (CPJ) rich in PC for 8-weeks. Although these results showed a significant reduction
in the plasma levels of TC (approximately 4%; p = 0.006) and LDL-C (approximately 8%;
p = 0.006), and the LDL-C/HDL-C (approximately 10%; p < 0.001) and TC/HDL-C ratios
(approximately 6%; p < 0.001), there were no significant changes in the plasma levels of TG
or HDL-C versus the control group (pre-study period of 8-weeks without CPJ). There were
no significant changes between these two periods. The researchers suggested, as a possible
mechanism for the improvement of dyslipidemia through the consumption of a CPJ rich in
PC, that a reduction in the liver’s levels of cholesterol esters but not an elevation in the fecal
excretion of cholesterol or bile acids might affect cholesterol biosynthesis in the liver [73].
Along the same lines are the results observed by Estrada-Luna et al., in women with acute
coronary syndrome (ACS), who took a daily dose of 20 g of microencapsulated pomegranate
(MiPo) rich in PC for 4-week. After the consumption of MiPo by 11 subjects, there was an
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improvement in the lipid profiles in the fasting and postprandial conditions, among other
parameters evaluated, as evidenced by a significant reduction in the plasma TG (p < 0.05;
16%, 8%, and 42% at 0, 4, and 8 h, respectively), TC (p < 0.05; between 8% and 15% at all
of the three registered times), and LDL-C levels. The most important decrease reported
with MiPo treatment was in the plasma LDL-C levels, in both the fasting and postprandial
conditions, at any time on the treatment curve (27% in the fasting conditions (p < 0.05), and
36% at 4 h (p < 0.05) and 35% at 8 h in the postprandial conditions (p < 0.05)) compared
to those in the pre-supplementation conditions. The fasting plasma levels of HDL-C
significantly increased by 11% (p < 0.05). These improvements may be due, according to the
researchers, to the activation of peroxisome proliferator-activated receptor-α (PPAR-α) and
peroxisome proliferator-activated receptor-γ (PPAR-γ), to the overexpression of lipoprotein
lipase (LPL) activity, and possibly, to a reduction in the intestinal absorption of TG [68].

The improvements in dyslipidemia observed with the administration of only these
bioactive compounds are of great importance since atherogenic dyslipidemia (abnormal
changes in the plasma lipid profile, such as a decrease in HDL-C levels and increase in
TG and LDL-C levels) is strongly associated with ASVD and the progression of CV com-
plications [76]. The following are among several reasons for this strong association: the
elevation of the plasma levels of LDL-C is one of the primary mechanisms in initiating
the development of ASVD by inducing its entrance and retention in the arterial intima
and leading to extracellular cholesterol accumulation and the formation of cholesteryl
ester droplet-engorged macrophage foam cells with transformation to an inflammatory
and prothrombotic phenotype in the blood vessels. These major pathways favor the
formation of a plaque necrotic core, containing cellular and extracellular debris and LDL-
C-derived cholesterol crystals, in addition to increasing the risk of LDL-C’s oxidation to
oxLDL [77–80]. This is a relevant consideration, as high circulating plasma levels of oxLDL
is one of the most important markers in the atherogenic process [81], is associated with
all stages of ASVD [81], and is a predictor of future CV events, in both CVD-symptomatic
subjects [82,83] and apparently healthy or CVD-asymptomatic subjects [79]. A reduction in
the plasma levels of HDL-C decreases its antiatherogenic capacity (reverse LDL-C trans-
port, antioxidant effects by inhibiting LDL-C oxidation, vasodilation, anti-inflammatory
effects, antithrombotic effects, antiapoptotic effects, vascular endothelial repair, etc.). This
highlights the inverse relationship that exists between low plasma levels of HDL-C and CV
risk [84], the former behaving as an independent predictor of CVD [84–88]. In addition,
an increase in the plasma levels of TG, giving rise to hypertriglyceridemia, is atherogenic
through multiple mechanisms, some of which contribute to the formation of lipid deposits
in the arterial intima, increasing monocyte activity, stimulating the synthesis of proinflam-
matory cytokines and procoagulant factors, and promoting endothelial dysfunction [89].
Hypertriglyceridemia also contributes to atherogenesis through its association with other
metabolic alterations, such as the reduction of plasma HDL-C levels or the elevation of
the plasma levels of small and dense LDL-C, to name a few [89]. In addition, atherogenic
dyslipidemia influences the development of important early markers of CV risk, such as
endothelial dysfunction [8,90–94] or high circulating plasma levels of oxLDL [94–96]. In
the development of endothelial dysfunction, there has been speculation that certain mecha-
nisms may be involved, such as the overexpression of the enzyme nicotinamide adenine
dinucleotide phosphate (NADPH) oxidase, the activation of c-Jun N-terminal kinase 2
(JNK2) [97,98], an increase in the production of superoxide anion radical (O2−) [98], an
increase in the production of asymmetric dimethylarginine (ADMA) [99], and a rise in the
circulating plasma levels of oxLDL [100], among other reactive oxygen species (ROS) [100].
On the other hand, subjects with dyslipidemia per se present higher plasma levels of oxLDL
than those without these pathologies, as elevated plasma lipid levels are a strong predictor
of high circulating plasma levels of oxLDL in diverse types of populations [77,101,102].
Consequently, the described improvements in the plasma lipid profiles of dyslipidemic
subjects could contribute significantly to the reduction of endothelial dysfunction and
high circulating plasma levels of oxLDL, improvements observed in the current study



Nutrients 2022, 14, 1879 12 of 17

that we reported in our previous article [14]. One possible limitation of this study is the
sample size.

5. Conclusions

The daily intake of a supplement containing HT (9.9 mg) and PC (195 mg) for 8-weeks
was shown to improve dyslipidemia in an adult population with metabolic disorders.
Therefore, the regular consumption of a supplement composed of HT and PC may reduce
the CV risks that these subjects face. Further clinical trials are needed to confirm the
favorable effects of these polyphenols in humans.
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MUFA monounsaturated fatty acids
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