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Abstract

Neuropilin-1 (Nrp1) guides the development of the nervous and vascular systems, but its role in the mature brain remains to
be explored. Here we report that the expression of the 65 kDa isoform of Sema3A, the ligand of Nrp1, by adult vascular
endothelial cells, is regulated during the ovarian cycle and promotes axonal sprouting in hypothalamic neurons secreting
gonadotropin-releasing hormone (GnRH), the neuropeptide controlling reproduction. Both the inhibition of Sema3A/Nrp1
signaling and the conditional deletion of Nrp1 in GnRH neurons counteract Sema3A-induced axonal sprouting.
Furthermore, the localized intracerebral infusion of Nrp1- or Sema3A-neutralizing antibodies in vivo disrupts the ovarian
cycle. Finally, the selective neutralization of endothelial-cell Sema3A signaling in adult Sema3aloxP/loxP mice by the
intravenous injection of the recombinant TAT-Cre protein alters the amplitude of the preovulatory luteinizing hormone
surge, likely by perturbing GnRH release into the hypothalamo-hypophyseal portal system. Our results identify a previously
unknown function for 65 kDa Sema3A-Nrp1 signaling in the induction of axonal growth, and raise the possibility that
endothelial cells actively participate in synaptic plasticity in specific functional domains of the adult central nervous system,
thus controlling key physiological functions such as reproduction.
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Introduction

Blood vessels and axons employ similar mechanisms and follow

common guidance cues to grow and navigate tissues during

embryonic development [1,2]. Blood vessels influence the trajec-

tories taken by axons to reach their appropriate end organs [3]. In

the adult brain, they communicate with neurons and glia in order

to meet physiological demands [4,5]. Endothelial cells are well

positioned to sense peripheral inputs and ideally suited to convey

signals that could influence neuronal structure and synaptic

plasticity. However, whether they are capable of influencing

axonal plasticity in the mature central nervous system remains to

be elucidated. Recent evidence suggests that the semaphorins,

members of a family of secreted guidance molecules, continue to

be expressed in the postnatal brain and may have important

implications for neuronal plasticity and nervous system physiology

[6]. Of these, Sema3A, which exerts both repulsive and attractive

effects on growing axons [7–9], is also expressed in endothelial

cells during vascular development [10,11]. Interestingly, Sema3A

acts as a guidance factor during the migration of a particular

population of neuroendocrine neurons that secrete the fertility-

regulating neuropeptide gonadotropin-releasing hormone (GnRH)
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[12,13], and that moreover retain a high degree of plasticity in the

mature brain [14]. In particular, GnRH neurons, which project to

the hypothalamic median eminence (ME) and release their

neurohormone into a specialized capillary network for delivery

to the anterior pituitary (Figure 1A), are known to undergo

extensive axonal growth towards the vascular wall during critical

time windows in adulthood, such as at the onset of the

preovulatory surge, when massive GnRH release has to occur to

trigger ovulation [14], and are thus an ideal system in which to

analyze endothelial-axonal interactions during adult nervous

system homeostasis.

In this study, we examined whether this periodic sprouting of

GnRH axon terminals in the ME of the adult hypothalamus was

regulated by endothelial cells, through the release of Sema3A and

the activation of its cognate receptor, neuropilin-1 (Nrp1) [15–17].

We report that endothelial cells of the ME do indeed release the

65 kDa isoform of Sema3A (p65-Sema3A) at key stages of the

ovarian cycle, that Nrp1 is expressed in GnRH axons, and that

Sema3A-Nrp1 signaling is required for the extension of GnRH

axon terminals towards the vascular plexus on the day of the

preovulatory surge. We also demonstrate that the selective

inhibition of Sema3A expression in endothelial cells of the ME

and the transient local manipulation of Sema3A signaling in vivo

alter the preovulatory release of GnRH, suggesting that the

endothelium-to-neuron communication mediated by 65 kDa

Sema3A-Nrp1 signaling is of functional relevance in the adult

brain. Our results thus indicate a hitherto unidentified role for

brain vascular endothelial cells in mediating the cyclic plasticity of

GnRH axons in the adult hypothalamus and, consequently, in

reproductive physiology.

Results

Sema3A Is Expressed by the Endothelial Cells of Portal
Blood Vessels in the ME of the Adult Hypothalamus

Sema3A is mainly known as a developmental signal regulating

axon guidance. In order to assess the potential role of Sema3A as a

guidance cue for hypothalamic GnRH neurons controlling the

ovarian cycle, we first investigated its expression in the ME of

adult animals. In situ hybridization of adult female rat brain

sections revealed that the mRNA for Sema3A was selectively

expressed in endothelial cells of the vascular compartment of the

ME (Figure 1B). Only a weak hybridization signal was seen in the

ependymal layer and in the internal and external axon layers.

Brain sections hybridized with the sense probe (negative control)

did not exhibit any detectable labeling in the ME (unpublished

data). Further analysis by cell sorting, using an affinity-purified

antibody to plasmalemmal vesicle-associated protein 1 (PV1) [18],

a component of the fenestral diaphragms [19], selectively

expressed by endothelial cells of the ME (Figure 1B,C; PV1

mRNA expression in fluorescent versus nonfluorescent cells,

t(6) = 4.080, p = 0.007, n = 4) revealed that Sema3A expression

was restricted to PV1-positive cells (Figure S1 and Figure 1C;

t(6) = 2.636, p = 0.039, n = 4), unlike b3-tubulin, DARPP-32, and

thyroid-stimulating hormone (TSH), markers for neurons, tany-

cytes, and endocrine cells, respectively, which were expressed only

by non-PV1-positive cells and not found in the same fraction as

Sema3A (Figure S1). Immunofluorescence analysis in adult female

mice using a Sema3A-specific antibody [13] revealed bright

Sema3A immunoreactivity in the capillary zone of the ME that

extended into the nervous tissue, where it progressively vanished

(Figure 1D). Together, these findings indicate that Sema3A is

expressed in vivo in the ME of the mature brain, and is localized in

vascular endothelial cells of the pituitary portal system, onto which

GnRH neurons abut.

Vascular Endothelial Cells Isolated from the ME Release
p65-Sema3A

To further investigate the site of origin of Sema3A in portal

blood vessels and to determine whether fenestrated endothelial

cells from the rat ME can release Sema3A, we used a sequential

panning method for their purification, as described previously

[20,21]. Consistent with our findings in vivo [18,21], purified ME

endothelial cells in culture expressed PV-1 and were labeled by

Bandeiraea simplicifolia lectin (Figure S2). We confirmed Sema3A

mRNA expression in purified ME endothelial cells by RT-PCR

expression analysis (Figure 1E). Next, we used immunoblotting to

analyze the conditioned medium of purified ME endothelial cells

and compared it with total protein extracts from ME explants,

revealing several bands corresponding to the different known

isoforms (the secreted 65 kDa and 95 kDa forms, and the 125 kDa

precursor; see Figure 1F) of Sema3A [22]. Notably, the

conditioned medium of purified ME endothelial cells only

contained a smear at 125 kDa and a discrete band for p65-

Sema3A (Figure 1F), which appears to be the furin cleavage

product of the 95 kDa isoform (Figure S2B). This confirms that

fenestrated endothelial cells of the ME express Sema3A and

release its 65 kDa isoform into the extracellular space.

p65-Sema3A Release in the ME Is Regulated by the
Ovarian Cycle

To determine whether Sema3A expression in the ME varies

during the ovarian cycle, we performed Western blotting

experiments during the onset of the preovulatory surge at

proestrus (when GnRH nerve terminals are close to portal plexus

vessels) and during diestrus (when GnRH nerve terminals are

distant from the endothelial wall) [23]. Remarkably, we found that

p65-Sema3A expression was significantly increased on the day of

proestrus as compared to diestrus (Figure 1G; p65-Sema3A, Di16h

versus Pro16h; n = 5 independent experiments, p,0.01, t test).

Author Summary

In the developing embryo, endothelial cells release
chemotropic signals such as Semaphorin 3A (Sema3A)
that, upon activation of its receptor Neuropilin-1 (Nrp1),
regulate neuronal migration and axon guidance. However,
whether endothelial cells in the adult brain retain the
ability to secrete molecules that influence neuronal
function is unknown. Here we show in the adult brain of
rodents that vascular endothelial cells release Sema3A and
that the amount released is regulated by the ovulatory
cycle. Sema3A, in turn, promotes the outgrowth of axons
of hypothalamic neurons that express Neuropilin-1 to-
wards the endothelial wall of portal blood vessels. These
neurons release there the neuropeptide that controls
reproduction: gonadotropin-releasing hormone (GnRH).
Notably, this endothelial-cell-mediated sprouting of GnRH
axons regulates neuropeptide release at a key stage of the
estrous cycle, the proestrus, when the surge of GnRH
triggers ovulation. Thus, by promoting GnRH axonal
growth in the adult brain, Sema3A/Neuropilin-1 plays a
pivotal role in orchestrating the central control of
reproduction. Our results suggest a model in which
vascular endothelial cells are dynamic signaling compo-
nents that relay peripheral information to the brain to
control key physiological functions, including species
survival.

Brain Endothelial Cells Control Fertility
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Figure 1. Sema3A expression in ME vascular endothelial cells during the ovarian cycle. (A) Schematic diagram illustrating the anatomy of
the hypothalamic-pituitary-gonadal axis in a sagittal view. In rodents, GnRH cell bodies (green circles) are diffusely distributed in the preoptic region
and send neuroendocrine axons (green fibers) towards the ME of the hypothalamus, where they release the neurohormone into pituitary portal
blood vessels (red arrow) for delivery to the anterior pituitary. At the adenohypophysis, GnRH elicits the secretion of the gonadotropins luteinizing
hormone (LH) and follicle-stimulating hormone (FSH), which stimulate gametogenesis and gonadal-steroid secretion and thus support reproductive
function. cc, corpus calosum; ac, anterior comissure; oc, optic chiasma; 3V, third ventricle. (B) Representative dark-field photomicrographs of a coronal
section of an adult female rat ME, showing Sema3A mRNA localized using a radioactive probe (bright dots indicating silver grains, top panel). Note
the presence of Sema3A mRNA in the capillary zone of the ME (white arrow) and in intrainfundibular capillary loops (arrowhead) containing PV1-
immunoreactive fenestrated endothelial cells (right panel, green immunofluorescence), and its relative paucity in the parenchyma. Sema3A mRNA
expression is also seen in various nuclei of the mediobasal hypothalamus (MBH) that lie adjacent to the ME but do not contain PV1-immunoreactive
blood vessels. V3, third ventricle. Scale bar, 100 mm. (C) PV1-positive cell (PV1-pos) isolation by FACS (schematic diagram and dot plot, top) and real-
time PCR analysis of PV1, Sema3A, estrogen receptor alpha (ERa), and ERb transcripts. (D) Representative immunofluorescence images showing the
localization of Sema3A immunoreactivity (green) in coronal sections of the ME of adult female mice. Fenestrated vascular endothelial cells are labeled
by the monoclonal antibody MECA32, which binds to mouse PV1 (red). Note that Sema3A immunoreactivity is localized in portal blood capillaries of
the external zone of the ME (inset) as well as some intrainfundibular capillary loops present in the nervous parenchyma (arrowhead); Sema3A
immunolabelling is of very high intensity at the level of the capillary zone, but is also seen in the adjacent nervous parenchyma, progressively
vanishing at deeper levels of the tissue. Nuclei are counterstained in blue using Hoechst. (Insets) High-magnification images of the areas indicated by
dashed lines. Black arrowheads at the periphery of the pictures indicate the planes of the individual images that make up the photomontage; each
panel is composed of an assembly of four images captured sequentially for each fluorophore using the MosaiX module of the AxioVision 4.6 system
(Zeiss, Germany) and a Zeiss 206 objective (N.A. 0.8). Scale bar, 100 mm (30 mm in inset). (E) Detection by RT-PCR of Sema3A mRNA in total RNA
extracts from ME explants microdissected from adult female rats and immunopurified ME endothelial cells (ECs). ML, 100 bp molecular ladder; H2O,
PCR negative control without cDNA; +/2, Sema3A amplicon (395 bp) with (+) or without (2) RT. (F) Western blot analysis of Sema3A protein levels in
the adult ME and 48 h ME EC-conditioned medium (EC-CM). Each lane was loaded with 35 mg of protein. While all Sema3A isoforms (65, 95, and

Brain Endothelial Cells Control Fertility
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This regulation appeared to be selective for p65-Sema3A, as the

expression of other Sema3A isoforms did not change significantly

during the ovarian cycle (Figure 1G; p95-Sema3A, 0.22660.0449

arbitrary units at Di16h versus 0.13360.0411 arbitrary units

at Pro16h, n = 5, t(8) = 1.522, p = 0.167; p125-Sema3A,

0.42760.0455 arbitrary units at Di16h versus 0.37960.0519

arbitrary units at Pro16h, n = 5, t(8) = 0.698, p = 0.505). These data

indicate that the levels of p65-Sema3A in the ME are maximal on

the day of proestrus, when circulating levels of estradiol are also

high and are known to exert their positive feedback effect on the

hypothalamo-pituitary-gonadal axis [24,25]. To determine wheth-

er these changes are sex-steroid-dependent, we ovariectomized

(OVX) adult cycling female rats and subsequently treated them

with subcutaneous injections of sesame oil, alone or containing

17b-estradiol 3-benzoate (E2), progesterone (P), or E2+P. As shown

in Figure 1H, estradiol induced a significant increase in p65-

Sema3A expression in the ME of OVX rats when compared with

the other treatment groups, whereas progesterone inhibited this

increase (n = 5 rats per treatment, p,0.05, one-way ANOVA).

Interestingly, additional RT-PCR analyses revealed that PV1-

positive endothelial cells expressed mRNA for the estrogen

receptor ERa (Figure 1C) and that this expression was particularly

enriched in the ME of adult female rats (PV1-positive versus PV1-

negative cells, t(6) = 2.793, p = 0.031, n = 4).

Altogether, these results provide direct evidence that the release

of p65-Sema3A by fenestrated endothelial cells of the ME is

strictly regulated during the ovarian cycle, being maximal during

proestrus, under the action of circulating estradiol.

GnRH Neurons Express the Sema3A Receptor Nrp1
We next investigated whether adult GnRH neurons express

Nrp1, the obligate receptor of Sema3A, by performing double in

situ hybridization experiments using 33P-labeled Nrp1 and Dig-

UTP-labeled GnRH antisense cRNA probes (Figure 2A). High

levels of Nrp1 mRNA were observed in cells of the diagonal band

of Broca (DBB) and in several nuclei of the rostral and medial

preoptic regions—for example, the anteroventral periventricular

nucleus, the median preoptic nucleus, and the medial preoptic

nucleus (unpublished data). The distribution of neurons expressing

GnRH mRNA was similar to that described in previous in situ

hybridization studies [26–28]—that is, the highest density was seen

in the rostral preoptic region, followed in decreasing order by the

medial preoptic area and the DBB. Nrp1 mRNA was expressed at

detectable levels in 38.262.5% of GnRH neurons in diestrus (n = 4

animals, more than 200 GnRH neurons were considered per

animal) and in 50.061.5% of GnRH neurons in proestrus (n = 4

animals, t(6) = 4.039, p = 0.007) with no preferential anatomical

distribution. Nrp1 mRNA was also expressed in the ME, the

projection field of GnRH neurons (Figure 2B). However, the

hybridization signal was not seen in the neural layers, which

contain various types of glial cells associated with neuroendocrine

axons [14], but instead was detected in the capillary zone

(Figure 2B, inset).

To determine whether Nrp1 protein was present in GnRH axon

terminals abutting onto the vascular plexus, we performed double

immunolabeling studies with antibodies to Nrp1 and GnRH in the

ME of the adult brain. Strong Nrp1 immunoreactivity was seen in

the external zone of the ME (Figure 2C) at every anteroposterior

level examined. Nrp1 labeling was distributed in the same regions

as the majority of GnRH axon terminals, and consistent with Nrp1

mRNA expression by GnRH neuronal cell bodies, GnRH-

containing fibers were also found to contain Nrp1 protein

(Figure 2C, arrows). However, many Nrp1-positive axon-like

fibers did not contain GnRH (Figure 2C), suggesting that

additional neuroendocrine systems express this receptor. In

agreement with in situ hybridization data, endothelial cells of the

pituitary portal blood vessels were also found to express Nrp1

immunoreactivity (Figure S3).

Thus, the spatial and temporal pattern of expression of Sema3A

in the ME together with that of its receptor, Nrp1, in GnRH

neurons is consistent with a functional role for Sema3A signaling

in promoting GnRH axonal growth towards the vascular plexus at

proestrous, when a massive release of the neurohormone into the

pituitary portal circulation is required to trigger the preovulatory

surge of gonadotropins.

Sema3A Promotes GnRH Axonal Growth Towards the
Endothelial Wall of Portal Blood Vessels

In order to assess whether Sema3A can promote the outgrowth

of GnRH axons in situ, we analyzed hypothalamic explants

containing the ME, maintained ex vivo in artificial cerebrospinal

fluid. Explants obtained from either diestrous or preovulatory

proestrous rats were exposed to 1 mg/ml Sema3A for 30 min, then

fixed and processed for electron microscopy. Using 15 nm gold-

particle labeling, we revealed a striking transformation of GnRH

nerve terminals as a function of the presence or absence of

Sema3A in diestrous rats. Indeed, the distance between GnRH

nerve terminals (green) and the pericapillary space of pituitary

portal blood vessels (p.s., pink) appeared to be significantly shorter

in Sema3A-treated explants versus controls (Figure 3A). Quanti-

tative morphometric analysis showed that while the total number

of GnRH nerve terminals at a distance of 10 mm or less from the

parenchymatous basal lamina (which delineates the pericapillary

space) did not vary significantly among treatments (n = 4 animals

per condition; more than 100 GnRH-immunoreactive axon

terminals were considered per explant, one-way ANOVA,

F(2,11) = 0.224, p = 0.803), their distribution was markedly changed

(Figure 3B). In fact, the fraction of GnRH nerve terminals found at

a distance of less than 1 mm from the pericapillary space increased

by 400% in diestrous ME explants exposed to 1 mg/ml Sema3A

for 30 min when compared to controls (Figure 3B, left panel; n = 4

hypothalamic explants per condition; p,0.001, one-way AN-

OVA). Importantly, Sema3A-mediated effects on GnRH axonal

growth in diestrous explants were abolished upon pretreatment

with an Nrp1-neutralizing antibody (Figure 3B, left panel; n = 4

hypothalamic explants per condition; p,0.01, one-way ANOVA).

125 kDa) are detected in protein extracts from the adult female ME, only the 65 kDa Sema3A isoform is present in the EC-CM. (G) Western blot (top)
and quantitative analysis (bottom, relative to actin) of Sema3A protein levels showing a difference in 65 kDa Sema3A expression between the
afternoon of diestrus (Di16h) and proestrus (Pro16h), whereas the protein levels of 125 and 95 kDa Sema3A remain unchanged. Band intensity was
quantified using Scion software. ** t(8) = 4.709, p = 0.0015 (n = 5 independent experiments). (H) Western blot analysis for Sema3A (top; upper image)
and actin (top; lower image) in the ME of control ovariectomized (OVX) female rats and those treated with 17b-estradiol 3-benzoate (E2),
progesterone (P), or E2+P (n = 5 independent experiments per treatment). E2 induces a significant increase in 65 kDa Sema3A expression in the ME of
OVX rats when compared with the other treatment groups (one-way ANOVA, F(8,11) = 27.779, p,0.001; Tukey’s test, ***p,0.001), whereas
progesterone inhibits this increase (Tukey’s test, p = 0.003). Bar graph, mean ratio (6SEM) of Sema3A expression to that of actin (p,0.05, one-way
ANOVA). Data are represented as means 6 SEM.
doi:10.1371/journal.pbio.1001808.g001
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In contrast, in ME explants obtained from animals in proestrus,

when Sema3A is heavily released, GnRH axons naturally extend

up to the pericapillary space. In this context, exogenous Sema3A

treatment did not further affect the elongation of GnRH nerve

terminals towards the pericapillary space (Figure 3B, right panel;

n = 4 hypothalamic explants per condition; p.0.05, one-way

ANOVA). However, exposing proestrous ME explants to neutral-

izing antibodies to either the Nrp1 or Sema3A caused GnRH

nerve endings to retract from the pericapillary space (Figure 3B,

right panel; n = 4 hypothalamic explants per condition; p,0.01,

one-way ANOVA), suggesting that GnRH axon extension towards

the endothelial wall at the transition between diestrus and

proestrus is attributable to Nrp1 activation by Sema3A.

Sema3A-Regulated Structural Changes at the
Neurovascular Junction Depend on Nrp1 Expression in
GnRH Neurons

To assess whether the structural changes promoted by Sema3A

at the GnRH neurovascular junction require neuronal expression

of Nrp1, we generated mice in which Nrp1 expression was

selectively knocked out in GnRH neurons. Animals harboring the

conditional Nrp1 allele [29] were crossed with a mouse line

expressing Cre recombinase under the control of the endogenous

GnRH gene promoter [30] (Figure 3C). To verify the efficacy of

our genetic targeting strategy, we analyzed Nrp1 expression in

GnRH neurons of wild-type (Nrp1loxP/loxP) and mutant

(GnRH::Cre; Nrp1loxP/loxP) littermates by immunofluorescence. In

wild-type mice, the expression patterns of GnRH and Nrp1

partially overlapped within the ME (Figure 3D, arrow), as seen in

rats (Figure 2C). In contrast, upon Cre-mediated deletion of Nrp1

in GnRH-positive neurons, Nrp1 expression was abolished in the

external zone of the ME where GnRH axons are found (Figure 3D,

asterisk), while it was maintained in other neuroendocrine axonal

populations (Figure 3D). Electron microscopic analyses of hypo-

thalamic explants from diestrous mice treated with Sema3A (as in

Figure 3A,B) confirmed the extension of GnRH nerve terminals

towards the pericapillary space in the ME of Nrp1loxP/loxP mice

(Figure 3E; p,0.05, two-way ANOVA, control versus Sema3A;

Figure 2. Nrp1, the obligate Sema3A receptor, is expressed in adult GnRH neurons. (A) Simultaneous bright-field and epi-illumination
photomicrograph showing cells (arrows) labeled with a digoxigenin-conjugated probe for GnRH mRNA (dark staining) and a radioactive probe for
Nrp1 mRNA (bright silver grains) in the preoptic region of an adult female rat. Scale bar, 20 mm. (B) Representative dark-field photomicrograph of
Nrp1 mRNA (bright dots) in an adult female rat ME localized using a radioactive probe. Note the absence of signal in the parenchyma of the ME but
intense expression of Nrp1 mRNA in the capillary zone of the ME (white arrows). V3, third ventricle; ARH, arcuate nucleus of the hypothalamus. Scale
bar, 150 mm. (Inset) High-magnification image of a different field in the same area under simultaneous bright-field and epi-illumination to visualize
cell nuclei counterstained for Nissl. Scale bar, 50 mm. (C) Photomicrographs showing the distribution of GnRH (green) and Nrp1 (red)
immunoreactivity in the ME of an adult female rats. Note that Nrp1 and GnRH are colocalized in the external layer of the ME (arrows). Scale bar,
100 mm.
doi:10.1371/journal.pbio.1001808.g002
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n = 3–4 hypothalamic explants per condition; 150 GnRH-immu-

noreactive nerve terminals were considered per explant), while this

was not observed in GnRH::Cre; Nrp1loxP/loxP littermates

(Figure 3E; p = 0.23, control versus Sema3A), indicating that

Nrp1 expression in GnRH neurons is required to mediate this

functional regulation by Sema3A in vivo.

Sema3A Promotes Neurite Outgrowth from GnRH
Neurons in Vitro

In order to evaluate the role of Sema3A on neurite

elongation in GnRH-expressing neurons, we took advantage

of our ability to obtain primary cultures of GnRH neurons

from the nose of 12.5-d-old GnRH-GFP embryos (E12.5)

(Figure 4A). As expected, primary GFP-positive neurons were

seen to be surrounded by numerous Sema3A-positive cells

(Figure 4B), which have been co-isolated with GnRH neurons

from the nasal compartment [31]. While 24-h treatment with

Sema3A had no effect on GnRH neurite elongation (unpub-

lished data), the addition of a Sema3A-neutralizing antibody to

the culture medium for the same time period caused significant

shortening of GnRH neuronal processes (Figure 4C). These

data strongly suggest that the production of Sema3A by the

surrounding cells was responsible for neurite elongation in

these GnRH neurons.

To further explore the role of Sema3A on neurite outgrowth

in mature GnRH-expressing neurons, we took advantage of the

GnV-3 cell line, one of eleven clones of GnRH-expressing cells

obtained by the conditional immortalization of cultured adult

rat hypothalamic cells. GnV-3 cells grow in culture in the

presence of doxycycline, but stop proliferating and undergo

differentiation upon drug removal, exhibiting many of the

features of mature adult GnRH neurons, including neurite

growth [32]. Rat ME explants were cultured in proximity to

aggregates of GnV-3 neuronal cells. After 72 h of co-culture,

neurites grew to the same extent on both the proximal and distal

sides of GnV-3 cell aggregates (Figure 5A). To test whether

Nrp1 was involved in GnRH neurite growth in response to

factors released by the ME, Nrp1-neutralizing antibodies were

added to the medium. These antibodies significantly attenuated

the growth-promoting effect of the ME on GnV-3 neurites

(Figure 5B).

Data shown in Figure 1 indicate that endothelial cells of the ME

are a major source of p65-Sema3A, the expression of which is

induced by estradiol during proestrus. To date, no biological

function has been attributed to this 65 kDa isoform of Sema3A. In

order to determine whether it is involved in the GnRH axonal-

growth-promoting effect described above, we performed a second

set of experiments using three-dimensional matrix co-cultures.

Briefly, aggregates of GnV-3 cells were cultured for 72 h along

with aggregates of mock-transfected COS-7 cells or COS-7

cells secreting the 95 kDa full-length (Sema3A-FL) or recombinant

Figure 3. Sema3A-Nrp1 signaling promotes GnRH axonal growth in the ME of the adult female rodent brain. (A) Representative
electron micrographs of GnRH-immunoreactive axon terminals (green) from diestrous female rat hypothalamic explants containing the ME, incubated
for 30 min in the presence (right panel) or absence (left panel) of Sema3A. Under basal unstimulated conditions (left panel), GnRH nerve endings (n,
arrowhead, green) are distant from the pericapillary space (p.s., pink). Sema3A treatment (right panel) causes GnRH axon terminals to advance
towards the pericapillary space (p.s., pink), from which they remain separated by only a few nanometers (arrows). Cap, pituitary portal blood
capillaries. Scale bar, 1 mm. (B) Quantitative analysis of the percentage of GnRH nerve terminals located less than 1 mm from the pericapillary space in
the external zone of the ME, in explants from diestrous (left panel) and proestrous (right panel) rats treated with Sema3A, a Nrp1-neutralizing
antibody (Nrp1-Ab), a Sema3A-neutralizing antibody (Sema3A-Ab), both Nrp1-Ab and Sema3A, and in controls. (Left panel) One-way ANOVA,
F(2,11) = 54.875, p,0.001. (Right panel) One-way ANOVA, F(3,12) = 37.093, p,0.001. Tukey’s test, ***p,0.001, **p,0.01 for pairs of groups as indicated;
n = 3–4 animals per group. (C) Genetic strategy to invalidate Nrp1 expression specifically in GnRH-expressing cells in mice. (D) Immunofluorescence
analysis of coronal brain sections from adult female Nrp1loxP/loxP (left) and GnRH::Cre; Nrp1loxP/loxP (right) littermates using antibodies to GnRH (green)
and Nrp1 (red). Note the markedly reduced Nrp1 immunoreactivity in the dorsolateral part of the ME, where most GnRH axon fibers occur, in
GnRH::Cre; Nrp1loxP/loxP mice (asterisk) when compared to Nrp1loxP/loxP animals (arrow), confirming the efficient ablation of Nrp1 in GnRH neurons of
the former. Scale bar, 50 mm. (E) Quantitative analysis of the percentage of GnRH nerve terminals located less than 1 mm from the pericapillary space
in the external zone of the ME in explants from control Nrp1loxP/loxP and GnRH::Cre; Nrp1loxP/loxP mice and those treated with Sema3A. One-way
ANOVA, F(3,15) = 9.894, p = 0.0015. Tukey’s test, *p,0.05; n = 3–4 animals per group. Data are represented as means 6 SEM.
doi:10.1371/journal.pbio.1001808.g003

Figure 4. Sema3A immunoneutralization causes the retraction
of axon-like processes in primary GnRH neurons in vitro. (A)
Schematic representation of a sagittal view of a mouse embryo at E12.5,
showing the distribution of GnRH neurons (green dots) within the head.
Primary cultures were performed from microdissected nasal compart-
ment (NC) explants, which contain most GnRH neurons at this
embryonic stage. FB, forebrain; OE, olfactory epithelium; VNO,
vomeronasal organ. (B) Representative images showing the binding
of the Sema3A-neutralizing antibody (red) to cultured cells surrounding
GFP-expressing GnRH neurons (green). (C) Representative images
showing the morphology of cultured GnRH neurons under control
conditions and after treatment with the Sema3A-neutralizing antibody
and bar graph quantifying the mean length of their axon-like processes
(control, N = 3 independent experiments, n = 146 cells; Sema3A-Ab,
N = 3 independent experiments, n = 143 cells). Total number of cultures,
24 from 4 litters. Data are represented as means 6 SEM. Unpaired
Student’s t test, t(285) = 4.823, p,0.0001.
doi:10.1371/journal.pbio.1001808.g004
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65 kDa Sema3A, in the presence or absence of the

Nrp1-neutralizing antibody (Figure 5C). Remarkably, Sema3A-

FL and p65-Sema3A were equally effective at promoting neurite

elongation in GnV-3 cells, whereas the Nrp1 antibody stunted this

Sema3A-dependent outgrowth (Figure 5D). Altogether these

findings suggest that p65-Sema3A, which is highly expressed in

the ME during proestrus, unlike the relatively scarce 95 kDa or

125 kDa forms, acts on GnRH neuroendocrine axons through

Nrp1 to promote their elongation.

The Targeted Infusion of Nrp1- or Sema3A-Neutralizing
Antibodies into the ME Is Sufficient to Disrupt the
Reproductive Cycle

Consistent with the fact that Nrp1 is also expressed in GnRH

neurons during embryogenesis [12,13,33], we have observed that

GnRH::Cre; Nrp1loxP/loxP mice exhibit some alterations in the

development of the GnRH system, although they display a

comparable number of GnRH terminals in the ME as Nrp-

expressing mice (Figure 3D,E). To study the physiological

relevance of Sema3A-Nrp1 signaling in the mature brain

independent of any potential developmental effects, however, we

treated adult female rats with a regular 4-d estrous cycle with the

Nrp1- or Sema3A-neutralizing antibodies found to inhibit the

Sema3A-induced outgrowth of GnRH axon terminals in situ (see

Figure 3). The antibodies were locally infused into the ME

(Figure 6A) at a rate of 0.1 mg/h for 7 d, via a cannula connected

to a subcutaneously implanted osmotic minipump. Estrous cycle

monitoring by daily inspection of vaginal smears for 1 wk

following the initiation of treatment revealed a clear disruption

of the cyclic pattern (Figure 6A). In fact, both Nrp1- and Sema3A-

antibody-infused animals showed a preponderance of days in the

diestrous phase, which is associated with reduced release of GnRH

[34] and increased distance of GnRH axon terminals from the

pericapillary space [23], and a concomitant reduction of days in

proestrus (Figure 6B; n = 5–6 per group, p,0.05, one-way

repeated measures ANOVA, during versus before infusion). In

contrast, animals infused with the vehicle alone (PBS) displayed

normal 4-d estrous cycles (n = 6) (Figure 6A,B). One week after the

initiation of treatment, the animals were sacrificed and subjected

to control immunoprecipitation or immunofluorescent experi-

ments to verify that the infused Nrp1- and Sema3A- antibodies

had successfully targeted receptors and ligands in the ME,

respectively (Figure S4 and Figure S5). Immunoprecipitation and

immunoblot analyses indicated that the infused Nrp1 antibodies

did bind to, and could therefore effectively block, about 50% of the

endogenous pool of Nrp1 contained in the ME (Figure S3A).

Immunofluorescence analysis of the binding of the Sema3A-

neutralizing antibody showed that it selectively targeted the

external zone of the ME, where pituitary portal blood vessels

Figure 5. 65 kDa Sema3A-Nrp1 signaling is responsible for GnRH neurite sprouting. (A) Three-dimensional matrix assays using co-cultures
of ME explants dissected from adult female rats (control, n = 3; Nrp1-Ab, n = 4) and cell aggregates of immortalized GnV-3 cells, in the absence (top
panels) or presence (bottom panels) of an Nrp1-neutralizing antibody (Nrp1-Ab). Co-cultures were fixed and stained with Alexa 588–X phalloidin.
GnV-3 cell aggregates show neurite extension under control conditions, whereas neurite sprouting is strongly inhibited by Nrp1-Ab. White
arrowheads in the left panels indicate the merging point of the two individual images composing each picture. (B) Quantitative analysis of the area
covered by phalloidin staining surrounding the aggregates (top panel; n = 3 in controls, n = 4 in Nrp1-Ab-treated aggregates; unpaired Student’s t
test, t(5) = 7.424, p,0.001) and GnV-3 neurite length (bottom panel; n = 3 in controls, n = 4 in Nrp1-Ab-treated aggregates; unpaired Student’s t test,
t(5) = 5.610, p,0.005), respectively. (C) Co-cultures of GnV-3 cell aggregates placed around aggregates of COS-7 cells transfected with full-length
(95 kDa) Sema3A (Sema3A-FL), 65 kDa Sema3A (p65-Sema3A), or the control vector (n = 7), in the presence (Sema3A-FL+Nrp1-Ab, n = 4; p65-
Sema3A+Nrp1-Ab, n = 6) or absence of Nrp1-Ab (Sema3A-FL, n = 4; p65-Sema3A, n = 4), as shown in the schematic drawing. Sema3A-FL and p65-
Sema3A are equally effective at inducing GnV-3 neurite growth when compared to control conditions (middle panels), while neurite growth is
prevented by the Nrp1-neutralizing antibody (right panels). (D) Quantitative analysis of GnV-3 neurite length (one-way ANOVA with Tukey’s post hoc
test, F(4,24) = 38.058, p,0.0001). Data are represented as means 6 SEM. Scale bars, 100 mm in (A), 50 mm in (C).
doi:10.1371/journal.pbio.1001808.g005

Figure 6. Neutralization of Nrp1 and Sema3A activity in the ME
in vivo impairs adult reproductive function in rats. (A, Upper
panel) Schematic diagram representing the stereotaxic implantation of
a 28 gauge infusion cannula connected to a subcutaneously implanted
mini-osmotic pump in the ME of cycling female rats, for the delivery of
Nrp1- or Sema3A-neutralizing antibodies (0.2 mg/ml, 0.5 ml/h). (Lower
panel) Representative estrous cycle profiles showing the disruption of
estrous cyclicity by the infusion of Nrp1-Ab but not of PBS into the ME.
Infusion was started on day 0 (downward arrow) and ended 7 d later
(upward arrow), when the pump contents were exhausted. Di, diestrus;
Pro, proestrus; Es, estrus. (B) Quantitative analysis of alterations in
ovarian cyclicity (number of days in each phase) caused by Nrp1-Ab or
Sema3A-Ab infusion (n = 6 animals in the PBS and Nrp1 groups; n = 5
animals in the Sema3A group). Diestrus, two-way repeated-measures
ANOVA, F(14,33) = 19.073, p,0.001, Tukey’s test, ** p = 0.003 and
p = 0.005 between before and after infusion within Nrp-1- and
Sema3A-treated groups, respectively. Proestrus, two-way repeated
measures ANOVA, F(14,33) = 31.119, p,0.001, Tukey’s test, *** p,0.001
and ** p = 0.002 between before and after infusion within the Nrp-1-
and Sema3A-treated groups, respectively. Estrus, two-way repeated
measures ANOVA, F(14,33) = 0.084, p = 0.776. Data represented as means
6 SEM.
doi:10.1371/journal.pbio.1001808.g006
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and neuroendocrine terminals are localized (Figure S4B). Togeth-

er with our ex vivo results, these data suggest that Sema3A-Nrp1

signaling is required for the neuroendocrine control of the ovarian

cycle in the adult rat brain.

Endothelial-Cell-Derived Sema3A Modulates the
Amplitude of the Preovulatory LH Surge

To further study the physiological relevance of Sema3A-Nrp1

endothelial-cell-to-neuron signaling in the mature brain, we used

an intravenous injection of the TAT-Cre fusion protein, whose

cellular uptake is enhanced compared to Cre recombinase [35]

particularly in the ME of living animals [36], to target endothelial

cells in Sema3aloxP/loxP mice. Control experiments with tdToma-

toloxP/+ reporter mice showed that a single injection of TAT-Cre

into the tail vein caused gene recombination in tanycytes, which

do not express Sema3A (see Figure 1C), and in the capillary zone

harboring Sema3A mRNA-expressing endothelial cells in adult

females (Figure 1B, Figure 7A). Quantitative RT-PCR analyses

showed that Sema3A mRNA expression was decreased by 50%

in the ME of virgin female Sema3aloxP/loxP mice treated with

TAT-Cre and subjected to a male-pheromone-induced preovu-

latory GnRH/LH surge protocol [37], when compared to

vehicle-treated mice (Figure 7C; n = 7–8 per group, t test,

p,0.01), while it remained unchanged in the adjacent mediobasal

hypothalamus (Figure 7C; n = 5–7 per group, t test, p.0.05),

where Sema3A mRNA is abundantly expressed (Figure 1B) and is

known to play a key role in the control of GnRH release [38].

This selective attenuation of Sema3A expression in endothelial

cells of the ME led to a significant decrease in preovulatory

luteinizing hormone (LH) serum levels (Figure 7B; n = 7–8 per

group, t test, p,0.05), used as an index of GnRH release [39].

Finally, real-time PCR analyses of Sema3A expression in the ME

of wild-type mice across the estrous cycle revealed that Sema3A

mRNA levels were significantly higher in proestrus than in

diestrus (160.11 arbitrary units at proestrus versus 0.5460.09

arbitrary units at diestrus, n = 7 and 3, respectively, t(8) = 2.602,

p = 0.032). Together, these data suggest that the ovarian cycle

modulates Sema3A expression in endothelial cells of the ME,

which in turn promotes the elongation of GnRH neuroendocrine

axons on the day of proestrus to control the amplitude of the

preovulatory GnRH/LH surge.

Discussion

The reproductive cycle of mammals is critically regulated by

hypothalamic GnRH neurons [25], which periodically extend

their axons in the ME towards the pericapillary space, into which

they release the GnRH neuroendocrine signal during a specific

time window [23,40]. The potential role of vascular endothelial

cells in controlling this cyclic growth of axon terminals has not

been investigated. Our in vivo and in vitro findings collectively

indicate that Sema3A is a vascular factor promoting GnRH

axonal growth in the adult brain and playing a pivotal role in

orchestrating the central control of reproduction. We propose that

Sema3A released by fenestrated endothelial cells of the hypotha-

lamo-hypophyseal portal blood vessels cyclically induces GnRH

neurons to extend their terminals towards the pericapillary space,

this directionality being controlled by the glial scaffold along which

GnRH axonal fibers travel within the ME (see for review [14]). In

turn, this mechanism regulates neuropeptide release at key stages

of the ovarian cycle, such as at proestrus, when the preovulatory

surge of GnRH occurs.

Our ultrastructural analyses in GnRH::cre; Nrp1loxP/loxP mice,

which do not exhibit any defect in GnRH axonal targeting when

compared to Nrp1loxP/loxP mice (Figure 3D,E), as well as the effect

of locally restricted Sema3A infusion on GnRH axonal growth

(Figure 3B), strongly indicate that the effects of Sema3A on axonal

plasticity within the ME depend on direct Sema3A-Nrp1 signaling

in postdevelopmental GnRH terminals. The functional conse-

quence of endothelial Sema3A secretion on GnRH axonal

plasticity has, in addition, been demonstrated by the selective

invalidation of Sema3A expression in the ME of adult Sema3aloxP/

loxP mice by the intravenous injection of the recombinant TAT-

Figure 7. Targeted Sema3a gene deletion in endothelial cells of the ME alters the amplitude of the preovulatory GnRH/LH surge in
mice. (A) Representative image showing Tomato expression (red) in the capillary zone (asterisk) onto which GnRH axon terminals abut (green) in the
ME of tdTomatoloxP/+ mice into which the TAT-Cre recombinant protein was injected intravenously (i.v.). Note that Tomato is also expressed in
tanycytes (arrowhead), whose cell bodies line the floor of the third ventricle (3V) but that do not express Sema3A mRNA (see Figure 1B). (B)
Quantitative RT-PCR analysis of Sema3A mRNA expression in the ME, t(13) = 3.372, ** p = 0.005, and in the adjacent mediobasal hypothalamus (MBH),
t(10) = 20.287, p = 0.780, in Sema3aloxP/loxP mice treated i.v. with vehicle (n = 7) or TAT-Cre (n = 8 and 5, respectively). (C) Preovulatory LH levels in TAT-
Cre (n = 8) or vehicle-injected (n = 7) Sema3aloxP/loxP mice, t(13) = 2.188, *p = 0.048. Data are represented as means 6 SEM.
doi:10.1371/journal.pbio.1001808.g007
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Cre protein. Indeed, this approach, which further circumvents any

putative developmental effect that might occur with the use of

classic promoter-driven Cre expression technology, confirms that

the endothelial-Sema3A-promoted elongation of GnRH axons

modulates the amplitude of the preovulatory GnRH/LH surge on

the day of proestrus.

The molecular pathways that underlie this cyclic Sema3A-

Nrp1-mediated GnRH axonal sprouting are unknown, although

they appear to be intrinsic to GnRH neurons since Sema3A

promotes GnRH neurite outgrowth both in tissue explants and in

isolated cell cultures. A recent study has intriguingly suggested that

Sema3A could promote axonal growth by inducing protein kinase

G activity [41]. Notably, Sema3A receptors are broadly expressed

in the axon terminals of other neuroendocrine systems and this

signal has been proposed to serve as a coordinator of structural

and functional synaptic plasticity in various neuronal circuits [6].

In our study, only about 50% of the Nrp1 expressed in the median

emincence was neutralized by antibody infusion. It would be of

interest to investigate the effects of more complete Nrp1

invalidation in adult animals, as well as the potential role of

endothelial Sema3A in the growth of hypothalamic neuronal

projections controlling other anterior pituitary functions, such as

the growth-, stress-, and thyroid-hormone axes.

An intriguing finding of this study is that endothelial cells of the

ME appear to selectively release the 65 kDa isoform of Sema3A.

Interestingly, we show that estradiol mimics ovarian-cycle effects

on p65-Sema3A production in ovariectomized rats and that, in

agreement with a previous in vitro study [42], endothelial cells of

the ME express the estrogen receptor ERa. The mechanisms

underlying these changes in protein levels within the ME are

unknown but likely involve changes in Sema3a transcription, rather

than its translation or posttranslational processing such as furin

cleavage. In line with this idea, analysis of the Sema3a gene using

the ALGEN PROMO 3.0 software (http://alggen.lsi.upc.es/cgi-

bin/promo_v3/promo/promoinit.cgi?dirDB = TF_8.3) predicts

the presence of a putative estrogen-receptor-binding element at

100 bp upstream of the transcription initiation site; further

experiments will be required to determine whether this presump-

tive binding site is actually functional. Even though the biological

activity of p65-Sema3A has been validated in heterologous systems

mimicking growth-cone collapse [43] and in co-culture systems

using sympathetic ganglion explants [22], this isoform was

originally described as a proteolytic by-product of p95-Sema3A,

with reduced functional activity [22]. Similarly, it has been

reported recently that the anti-angiogenic activity of the 61 kDa

proteolytic fragment of Sema3B is dramatically reduced compared

to the full-length 83 kDa isoform [44]. In contrast, here we

demonstrate that 65 kDa and 95 kDa Sema3A isoforms are

equally effective at promoting GnRH neurite elongation ex vivo

(Figure 5C,D), indicating that the proteolytic cleavage of Sema3A

does not interfere with its axonal-growth-promoting activity. In

conjunction with the fact that the expression of the 65 kDa isoform

of Sema3A, unlike the 125 kDa precursor and the best known

95 kDa secreted isoform, is subject to cyclic changes, being

maximal on the day of proestrus, these results uncover for the first

time a physiological role for p65-Sema3A in the adult brain.

In conclusion, we show that in the ME of the hypothalamus,

p65-Sema3A is an endothelial-cell-derived protein that acts on

Nrp1 receptors in GnRH neuroendocrine processes, which have

previously been seen to express axonal markers such as GAP-43

[27], to promote their growth towards the target vascular wall

during a time window of the reproductive cycle that is critical to

ovulation. Because ovarian-cycle-regulated GnRH axonal elonga-

tion in the adult brain is likely to depend on the coordinated action

of many extracellular factors, endothelial p65-Sema3A may work

in concert or in competition with other secreted molecules

including VEGF, nitric oxide, TGF-b1, and BDNF, which are

particularly enriched in the capillary zone of the ME [21,36,45,46]

and may influence axonal plasticity by modulating the endothelial

expression of or responsiveness to semaphorins [8,47–49]. These

findings have implications for the possible roles of p65-Sema3A in

adult brain function. Finally, our results raise the intriguing

possibility that vascular semaphorins may play important and

unexpected roles in the adult neural plasticity underlying several

other key physiological processes such as learning, stress, and the

control of energy homeostasis [50–53].

Methods

Ethics Statement
All experiments were performed in accordance with the

European Communities Council Directive of November 24,

1986 (86/609/EEC) regarding mammalian research and were

approved by the Institutional Animal Care and Use Committee of

Lille and the animal experimentation committee of the Royal

Netherlands Academy of Arts and Sciences in Amsterdam.

Animals
Rats. Female Sprague Dawley rats (Janvier, Saint-Berthevin,

France) weighing 250–300 g were used for in situ hybridization,

immunohistofluorescence, immunoprecipitation, Western blotting

of tissue explants, electron microscopy, and intracerebral infusion

experiments. Vaginal smears were examined daily, and only rats

that exhibited at least two consecutive 4-d estrous cycles were used

for experiments. Diestrus 1 and 2 were defined by the

predominance of leukocytes in the vaginal lavage, the day of

proestrus was characterized by the predominance of round

nucleated epithelial cells, and estrus was distinguished by a large

number of clustered cornified squamous epithelial cells.

C57BL/6 mice. Nrp1loxP/loxP [29] and tdTomatoloxP/+ mice

were purchased from JAX mice (Jackson laboratory, Maine, USA),

while Sema3aloxP/loxP mice were generated as described previously

[54]. GnRH::Cre+/2 mice were a generous gift from Dr. Catherine

Dulac (Howard Hughes Medical Institute, MA) [30]. GnRH-GFP

mice were kindly provided by Dr. Daniel J. Spergel (Section of

Endocrinology, Department of Medicine, University of Chicago,

IL) [55]. Animals were genotyped by PCR using tail DNA

samples. Genomic DNA was extracted using the NucleoSpin

Tissue kit (Cat. No. 740.952.250, Macherey-Nagel, Hoerdt,

France). PCR was carried out using GoTaq DNA Polymerase

(Promega, USA) under the following cycling conditions: 95uC,

2 min; 95uC, 1 min; 57.3uC, 1 min; 72uC, 1 min, 35 cycles; 72uC,

5 min; 4uC until analysis. The primer sequences used were Cre-

sense 59-ATGGCTAATCGCCATCTTCC-39, Cre-antisense 59-

CTGGTGTAGCTGATGATCCG-39; Nrp1-sense 59-AGGTTA-

GGCTTCAGGCCAAT-39, Nrp1-antisense 59-GGTACCCTG-

GGTTTTCGATT-39; Tomato-sense 59-CTGTTCCTGTAC-

GGCATGG-39, Tomato-antisense 59-GGCATTAAAGCAGCG-

TATCC-39.

Adult (2–4-mo-old) female rats and mice were housed in a room

with controlled photoperiod (12 h/12 h light cycle) and temper-

ature (21–23uC). Animals were allowed access to tap water and

pelleted food ad libitum.

Primary Culture of ME Endothelial Cells
The purification of endothelial cells of the ME was realized by

sequential immunopanning. Endothelial cells of the ME were

isolated from 10-d-old rats using a procedure adapted from a
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protocol kindly provided by Dr. Ben Barres (Stanford, CA) [20], as

described previously [21]. In brief, ME explants were enzymat-

ically dissociated at 37uC for 90 min using a solution of papain

(33 U/ml) (Worthington/Cooper, Lakewood, NJ) in MEM/

HEPES (Invitrogen) containing L-cysteine (0.4 mg/ml) (Sigma)

and DNase (125 U/ml) (Sigma). Tissues were then triturated in a

solution containing ovomucoid trypsin inhibitor solution (2 mg/

ml) (Boehringer Mannheim, Mannheim, Germany), DNase

(125 U/ml), and BSA (1 mg/ml) (Sigma), to obtain a suspension

of single cells. The suspension was filtered through a 20 mm nylon

mesh. After centrifugation at 5506g, single cells were successively

panned on a Petri dish coated with an anti-CD90 mouse

monoclonal antibody, which recognizes the rat Thy1.1 antigenic

determinant (MRC-OX7; Serotec, Oxford, UK) to deplete

macrophages and fibroblasts, and on a second Petri dish coated

with rat neural antigen (RAN)-2 ascites (LGC Promochem,

Molsheim, France) to deplete meningeal cells and type-1

astrocytes; the remaining cells were incubated in a Petri dish

coated with an affinity-purified rabbit antibody raised against

PV1, which selectively recognizes fenestrated vascular endothelial

cells of the ME [18]. Purified endothelial cells were cultured in

DMEM supplemented with 10% fetal bovine serum, 1% L-

glutamine, and 2% penicillin/streptomycin until they reached

confluency. They were then recovered by trypsin digestion and

plated in 10 cm dishes or on poly-D-lysine (Sigma) coated

coverslips. Three primary cultures from three independent litters

were used in the present study.

To produce endothelial cell-conditioned medium (EC-CM), cell

monolayers were cultured in 10-cm dishes for 48 h in DMEM

(devoid of phenol red; Invitrogen) supplemented with 1% L-

glutamine, 1% penicillin/streptomycin, 5 mg/ml insulin (Sigma),

and 100 mM putrescine (Sigma). For Western blot analysis, 10 ml

of EC-CM were concentrated using a Centriplus centrifugal filter

device (size cutoff of 10 kDa, Cat. 4411, YM10; Millipore,

Bedford, MA) to obtain a final volume of 30–40 ml. The

concentrated medium was mixed with NuPAGE LDS sample

buffer 46 (Invitrogen) to obtain a final concentration of 16, boiled

for 5 min, and stored at 280uC until loading.

Inhibition of Furin Proteolytic Activity in Mouse
Endothelial Cells

Confluent cultures of mouse endothelial cells SVEC4-10 were

incubated in serum-free DMEM medium for 48 h, either in

presence or absence of the furin protease selective inhibitor Dec-

RVKR-CMK (100 mM; Bachem). Cell-conditioned media were

concentrated with a size cutoff of 50 kDa (Vivaspin, Sartorius),

and a sample size equivalent to the medium collected from a

2 cm2 cell monolayer was separated by SDS-PAGE and eventually

analyzed by Western blotting.

Reverse Transcription-PCR Amplification
Complementary DNA fragments derived from mRNAs encod-

ing Sema3A were generated by reverse transcription (RT)-PCR of

total RNA extracted from the neonatal rat brain, adult female rat

ME, or primary cultures of ME endothelial cells. One mg of Trizol

(Life Technologies, Grand Island, NY)-extracted RNA was reverse

transcribed to cDNA in a final volume of 10 ml containing 200 U

of SuperScript II reverse transcriptase (Invitrogen), 20 U of RNase

inhibitor (Promega, Madison, WI), and 0.5 mg of oligo-dT primer.

After a 1 h incubation at 42uC, the reaction was stopped by

heating at 94uC for 5 min. PCR was performed by using 1 ml of

each reverse transcription reaction and Hotstart Taq DNA

polymerase (Qiagen, France) in a volume of 50 ml. The

thermocycling conditions were 15 min at 95uC for enzyme

activation, followed by 35 cycles at 94uC for 1 min, annealing at

53uC for 1 min, 72uC for 1 min, followed by a final extension

period of 10 min at 72uC. A 364 bp DNA fragment (sense 59-

TCATCCTGAGGACAACAT-39, antisense 59-GCATATCT-

GACCTATTCT-39) corresponding to nucleotides 444–807

(NM017310) was amplified. PCR with the substitution of cDNA

with RNA served as a control. All cDNAs generated by RT-PCR

were verified by sequencing. b-actin cDNA was amplified with

primers 59-AACTGACAGACTACCTCA-39 and 59-GCTCA-

TAGCTCTTCTCCA-39 to verify the quality of samples (not

shown).

In Situ Hybridization
Tissue preparation. The brains of adult female rats (n = 4

per experiment) were fixed by transcardiac perfusion with ice-cold

4% paraformaldehyde in 0.1 M borate buffer at pH 9.5, postfixed

in the same fixative containing 10% sucrose for 2 h at 4uC, and

immersed in 20% sucrose in 0.02 M potassium phosphate buffered

saline prepared with DEPC-treated water at 4uC overnight,

embedded in Tissue-Tek (Miles, Elkhart, IN), and frozen in liquid

nitrogen. Coronal sections (30 mm) cut on a cryostat were

mounted onto gelatin-subbed and poly-L-lysine coated slides,

dried under vacuum for 4 h, and stored in boxes with dessicants at

280uC until use.
33P-labeled cRNA probes. Plasmids were provided by Dr.

Marc Tessier-Lavigne (University of California, San Francisco).

The lyophilized plasmid vector pBluescript II SK containing a

PstI/BamHI fragment of 1,181 bp corresponding to nucleotides

429–1610 (Genbank X85993) of the mouse Sema3A complemen-

tary DNA (cDNA) was used. To generate antisense 33P-labeled

cRNA, the plasmids were linearized by digestion with NotI and

subjected to in vitro transcription with T7 RNA polymerase. For

generation of sense 33P-labeled cRNA, the plasmids were

linearized by digestion with XhoI and subjected to in vitro

transcription with T3 RNA polymerase, according to previously

described protocols [45]. The lyophilized plasmid vector pBlue-

script II SK containing a 1,285 bp PstI fragment of rat Nrp1

corresponding to 490 bp of the 59UTR and 795 bp of the coding

region was used. SacI and T3 RNA polymerase were used to

synthesize the antisense probe, and HindIII and T7 RNA

polymerase were used to synthesize the sense probe.

Digoxigenin-labeled GnRH cRNA probe. The plasmid

vector GST7 containing a 330 bp BamHI/HindIII insert of

GnRH cDNA was linearized with HindIII for antisense and with

BamHIII for sense probes. The riboprobes were synthesized in vitro

in a 10 ml transcription reaction volume containing 1 mg of

linearized GnRH cDNA, 1 ml of a 2 mM solution of Digoxigenin-

11-dUTP (Roche Diagnostics, Meylan, France), 2 ml of a mixture

of GTP, CTP, and ATP (2.5 mM each) diluted from 10 mM

stocks, 1 ml of DTT 100 mM, 1 ml of RNasin, RNA polymerase

(T7 for antisense and SP6 for sense), and 106 transcription buffer.

This mixture was incubated at 37uC (T7) or at 40uC (SP6) for 1 h.

Residual DNA was digested with DNAse.

In situ hybridization. Single-label in situ hybridization for

Sema3A or for Nrp1 was performed as we have previously

described [45]. Briefly, after proteinase K digestion (10 mg/ml at

37uC; Boehringer Mannheim, Indianapolis, IN) and acetylation

(0.0025% acetic acid at room temperature) for 30 min, the

sections were dehydrated through an ascending ethanol series and

dried under vacuum for 4 h. The 33P-labeled cRNA probes were

heated at 65uC for 5 min with 500 mg/ml yeast tRNA (Sigma,

Saint Quentin Fallavier, France) and 50 mM dithiothreitol (DTT)

(Euromedex) in DEPC (Sigma)-treated water and then diluted to

an activity of 56106 cpm/ml with hybridization buffer containing
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50% formamide (Boehringer Mannheim), 0.25 M sodium

chloride, 16 Denhardt’s solution (Sigma), and 10% dextran

sulfate (Pharmacia). Eighty ml of this hybridization solution were

pipetted onto the sections, which were covered with a glass

coverslip and sealed with DPX (Electron Microscopy Sciences)

before incubation for 20 h at 58uC. Then, the slides were washed

four times (5 min each) in 46Saline Sodium Citrate (SSC) before

digestion with RNase (20 mg/ml for 30 min at 37uC; Sigma) and

rinsed at room temperature in decreasing concentrations of SSC

(26, 16, 0.56 for 10 min each) containing 1 mM DTT, to final

stringency in 0.16SSC at 65uC for 30 min. After dehydration in

an ascending ethanol series, the sections were vacuum-dried,

dipped in NTB-2 liquid emulsion (Kodak), dried, and stored in the

dark. Emulsion-coated slides were developed after 1 mo for

Sema3A or after 14 d for Nrp1 with Kodak D-19 developer. The

sections were then counterstained with thionine, dehydrated,

cleared in xylenes, and mounted with DPX.

For double-label in situ hybridization, prehybridization, hybrid-

ization, and posthybridization procedures were similar to those

described above, with the exception that the sections were not

dehydrated after the last 0.16 SSC rinse, but were further

processed for the localization of digoxigenin-labeled hybrids.

Briefly, after rinsing in 26 SSC, sections were blocked overnight

with 26 SSC buffer containing 0.3% Triton X-100 and 2%

normal goat serum, then washed in buffer 1 (100 mM Tris-HCl

and 150 mM NaCl, pH 7.4), and incubated for 5 h with alkaline-

phosphatase-conjugated anti-digoxigenin (Roche) diluted 1:1,000

with buffer 1 containing 1% normal goat serum. After rinsing in

buffer 1 and in buffer 2 (100 mM Tris-HCl, 50 mM MgCl2, and

100 mM NaCl, pH 9.5), sections were incubated in nitro blue

tetrazolium (NBT)+5-bromo-4-chloro-3-indolyl phosphate (BCIP)

chromogen solution (Sigma) for 12 h, and the reaction stopped

with buffer 3 (10 mM Tris-HCl, 1 mM EDTA, pH 8). Sections

were then quickly dehydrated in ethanol, dried, and dipped in K5

emulsion (Ilford, Saint-Priest, France).

Quantitative analysis. Nrp1 mRNA was quantified in

GnRH neurons as follows. GnRH mRNA-expressing cells were

observed under brightfield illumination, and Nrp1 mRNA-

expressing cells were observed under darkfield illumination. Thus,

each digoxigenin-labeled GnRH neuron was examined for the

presence of silver grains, indicating Nrp1, using alternate bright-

and darkfield observations. About 200 GnRH cells were studied

per animal. The total number of GnRH mRNA-expressing cells

and the number of GnRH cells coexpressing Nrp1 mRNA were

counted per section. From these data, the proportion of GnRH

neurons expressing Nrp1 mRNA per animal was calculated and

averaged.

Fluorescence-Activated Cell-Sorting Analysis
MEs from female P90 rats (n = 3) were microdissected and

enzymatically dissociated using a Papain Dissociation System

(Worthington, Lakewood, NJ) to obtain single-cell suspensions.

Subsequently, dissociated cells were resuspended in Hanks’

balanced salt solution (HBSS; Invitrogen) containing 1% BSA.

Endothelial cells were labeled for 30 min at 4uC using an affinity-

purified rabbit antibody raised against PV1 (1:100), which

selectively recognizes fenestrated vascular endothelial cells of the

ME [18], followed by a 15-min incubation at 37uC with an

AlexaFluor 488 anti-rabbit secondary antibody (1:100, Invitrogen).

FACS was performed using an EPICS ALTRA Cytometer

device (Beckman Coulter, Inc.). Sorted GFP-positive cells and

GFP-negative cells (yield: 30,000 cells isolated from each animal)

were collected into two separate tubes containing 500 ml of sterile

HBSS (Invitrogen) and subsequently centrifuged for 1 min at

7,500 g (maximum) to pellet the cells. HBSS was then aspired and

8 ml of a solution containing 1 ml of 0.1% Triton X-100 and 7 ml

of Prime RNase inhibitor (diluted 1:100 in diethylpyrocarbonate-

treated water; Invitrogen) was added. Captured cells were used to

synthesize first-strand cDNA using the SuperScript III First-Strand

Synthesis System for RT-PCR (Invitrogen) following the

manufacturer’s instructions. Controls without reverse transcriptase

were performed to demonstrate the absence of contaminating

genomic DNA. RNA isolated from the adult rat brain was also

reverse transcribed and used as a positive control. PCR was

performed at 35 cycles on a thermocycler (30 s denaturation at

94uC, 30 s annealing at 55–65uC, and 2 min elongation at 72uC).

PCR primer pairs were as follows: Sema3A forward primer, 59-

ATGAATGCAAGTGGGCTGGA-39; Sema3A reverse primer, 59-

CGGTCCTGATGGGATGATGG-39; PV1 forward primer, 59- T-

GAAGGAGGGCAACAAGACC-39 PV1 reverse primer, 59-AACG-

GTAGACCAGCGAATCC-39; b3-tubulin forward primer, 59-CG-

TCTCTAGCCGAGTGAAGTC-39; b3-tubulin reverse primer,

59-TCCGAGTCCCCCACATAGTT-39; DARP32 forward

primer, 59-CCTCATAGAGCGCGGGATTT-39; DARP32

reverse primer, 59-CGGATCATCTCCACCTGTCG-39; TSH for-

ward primer, 59-GAGAGTGTGCCTACTGCCTG-39; TSH re-

verse primer, 59-CATCCCGGTATTTCCACCGT-39; GAPDH

forward primer, 59-GGACCAGGTTGTCTCCTGTG-39; GAPDH

reverse primer, 59-ATTCGAGAGAAGGGAGGGCT-39. Qualita-

tive RT-PCR experiments were run three times on sorted cells from

three different animals. Real-time PCR was carried out on Applied

Biosystems 7900HT Fast Real-Time PCR System using exon-

boundary-specific TaqMan Gene Expression Assays (Applied Biosys-

tems): PV1 (PV1_Rn00571706_m1), Sema3A (Se-

ma3A_Rn00436469_m1), ERa (Esr1_Rn01640372_m1), ERb
(Esr2_Rn00562610_m1), and housekeeping ribosomal RNA

(Rn45_Rn03928990_g1).

Immunohistochemistry
Two-month-old female rats and monogenic and bigenic mouse

littermates were perfused transcardially with 4% paraformalde-

hyde in 0.1 M PBS, pH 7.4. Rat and mouse brains were postfixed

in the same fixative containing 20% sucrose for 2 h at 4uC,

immersed in 20% sucrose in 0.1 M phosphate buffered saline

overnight at 4uC, embedded in Tissue-Tek, and frozen in liquid

nitrogen. Coronal sections (14 mm) were cut on a cryostat and

mounted onto chrome-alum-gelatin–coated slides and subjected to

fluorescent labeling. Briefly, the sections were washed in 0.1 M

PBS, then incubated for 10 min at room temperature in blocking

solution containing 2% normal donkey serum (D9663; Sigma) and

0.3% Triton X-100 in 0.1 M PBS. Sections were then incubated

overnight at 4uC with the primary antibodies diluted in the same

solution. Primary antibodies used were rabbit polyclonal antibod-

ies diluted 1:3,000 for GnRH [56] and PV-1 [18] and a goat

polyclonal antibody to the extracellular domain of rat Nrp1 (AF

566; R&D Systems) diluted 1:400. Sections were washed in 0.1 M

PBS, and labeling revealed by incubation for 1 h at room

temperature with AlexaFluor 568–conjugated anti-rabbit or

AlexaFluor 488–conjugated anti-rabbit antibodies (1:400; Molec-

ular Probes) or biotin-conjugated donkey anti-goat IgGs (1:400;

Jackson Immunoresearch, West Grove, PA) followed by Alexa-

Fluor 488– or AlexaFluor 568–conjugated streptavidin (1:500) for

1 h. Vascular endothelial cells were visualized with tetramethylr-

hodamine isothiocyanate (TRITC)-conjugated Bandeiraea simplici-

folia lectin (1:600; Sigma). After washes, slices were coverslipped

with Permafluor medium (434990; Immunon, Pittsburgh, PA).

For the detection of Sema3A, female mouse brains were quickly

harvested, embedded in ice-cold Tissue Tek, frozen in isopentane
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(255uC), and stored at 280uC until use. Brains were cut into 20-

mm-thick coronal sections and processed for immunohistochem-

istry as follows. Slide-mounted sections were (1) fixed by

immersion for 1 min in methanol/acetone (vol/vol) at 220uC;

(2) blocked for 30 min using a solution containing 4% normal goat

serum and 0.3% Triton X-100; (3) incubated overnight at 4uC
with a rabbit polyclonal anti-Sema3A (1:50, sc-10720; Santa Cruz

Biotechnology, Santa Cruz, CA), which selectively recognizes

Sema3A in Western blots (Figure 1E,F,G and Figure S4), and a rat

anti-mouse PV1 (MECA32 clone, 1:200; gift from Professor Britta

Engelhardt, Switzerland) followed by 1 h at room temperature

with a cocktail of secondary AlexaFluor-conjugated antibodies

(1:500, Molecular Probes, Invitrogen, San Diego, CA); and (4)

counterstained with Hoechst (1:10,000, Molecular Probes, Invi-

trogen) and coverslipped using Mowiol (Calbiochem, USA).

Protein Extraction and Immunoprecipitation from Tissue
Explants

MEs were obtained from cycling diestrous and proestrous rats

killed at 16 h. After dissection, each fragment was placed in a

microcentrifuge tube, snap frozen in dry ice, and stored at 280uC.

Protein extracts of a set of two MEs were prepared by trituration

of the fragments through 22 and 26 gauge needles in succession in

200 ml of lysis buffer (25 mM Tris, pH 7.4, b-glycerophosphate,

1.5 mM EGTA, 0.5 mM EDTA, 1 mM sodium pyrophosphate,

1 mM sodium orthovanadate, 10 mg/ml leupeptin and pepstatin

A, 10 mg/ml apoprotinin, 100 mg/ml PMSF, and 1% Triton X-

100) for straight analysis, or in 750 ml for immunoprecipitation.

After 30 min of gentle rocking at 4uC, the tissue lysates were

cleared by centrifugation at 14,000 rpm for 15 min. For straight

analysis, the protein content of supernatants was determined using

BCA protein assays (Pierce Chemical, Rockford, IL), and equal

amounts of proteins were mixed with SB4X to obtain a final

volume of 50 microliters in 16 NuPAGE LDS sample buffer

(Invitrogen). For immunoprecipitation, 60 ml of protein A-sephar-

ose (1:1 slurry in lysis buffer, P3391; Sigma) were added to the

supernatants in order to remove endogenous IgGs (preclearing).

The samples were then rocked for 30 min at 4uC, the beads were

centrifuged for 15 s at 14,000 rpm, and the supernatants collected.

Equal amounts of protein (350 mg) in 750 ml of lysis buffer were

incubated with 2 mg of anti-Nrp1 (AF566, R&D Systems) with

gentle rocking overnight at 4uC. Thereafter, 60 ml of protein A-

sepharose beads were added to the antibody-antigen complex and

incubated for 3 h at 4uC. The sepharose beads were collected by

centrifugation. Beads were then washed twice with ice-cold lysis

buffer, and boiled for 5 min in 50 ml of 26NuPAGE LDS sample

buffer (Invitrogen). Samples were stored at 280uC until use.

Western Blotting
Samples were boiled again for 5 min after thawing and

electrophoresed for 1 h at 150 V in precast 3%–8% Tris-acetate

gels or for 35 min at 200 V in precast 4%–12% MES

polyacrylamide-SDS gels (Invitrogen). Then, the proteins were

transferred onto 0.2 mm pore-size polyvinylidene difluoride

(PVDF) membranes (Invitrogen) for 1 h at room temperature

(RT). Blots were incubated for 1 h in Tris-buffered saline (TBS;

0.05 M Tris, pH 7.4, 0.15 M NaCl) with 0.05% Tween 20 (TBS-

T) and 5% nonfat milk at RT, or in TBS with 1% Tween 20 for

1 h at RT. The membranes were exposed to the primary antibody

(goat polyclonal anti-Nrp1, 1:100, AF566, R&D Systems, or rabbit

polyclonal anti-Sema3A, 1:100, sc-10720, Santa Cruz Biotech-

nology) diluted in TBS-T with 5% nonfat milk overnight at 4uC
with gentle rocking. Immunoreactions were detected with

horseradish peroxidase-conjugated secondary antibodies (Sigma)

in TBS-T with 5% nonfat milk for 1 h at room temperature, and

developed using enhanced chemiluminescence (NEL101; Perki-

nElmer, Boston, MA). When necessary, the membranes were

stripped (PBS; 5 min at 100uC) and incubated with a

goat polyclonal antibody against actin (1:1,000; Santa Cruz

Biotechnology). Protein expression was densitometrically analyzed

using Scion Image software (Scion Corporation, MA).

Assessment of Ultrastructural Changes in GnRH Nerve
Terminals Induced by Sema3A

To determine whether Sema3A promotes GnRH nerve

terminal plasticity, ex vivo experiments were carried out according

to previously described protocols [21]. Female rats weighing 250–

300 g were killed on diestrus 2 (n = 12) or proestrus (n = 12) by

decapitation. Four animals were used per condition. After rapid

removal of the brain, hypothalamic explants were microdissected

without damaging the MEs. Explants were placed in 12-well plates

and preincubated for 30 min at 37uC in 1 mL of Krebs-Ringer

bicarbonate buffer, pH 7.4, containing 4.5 mg/ml D-dextrose and

5 mM tetrodotoxin, with or without Nrp1- or Sema3A-neutralizing

antibodies (15 mg/ml, AF566 and MAB-1250, respectively, R&D

Systems), under an atmosphere of air containing 5% CO2. The

Nrp1-neutralizing antibody has been shown to selectively target

the semaphorin-binding domain of Nrp1 [13]. In addition, we

confirmed the specificity of the Sema3A-neutralizing antibody,

which specifically detects Sema3A in the conditioned media from

transfected COS-7 cells (Figure S4C), using immunohistochemis-

try (Figure S4B). After this preincubation, tissues were placed in

fresh medium with or without a recombinant human Semaphorin-

3A/Fc chimera (1,000 ng/ml; 1250-S3, R&D Systems) for an

additional 30-min incubation period. Explants were then pro-

cessed for electron microscopy as described previously [23].

Briefly, tissues were fixed by immersion in a solution of 2%

paraformaldehyde, 0.2% picric acid, and 0.1% glutaraldehyde in

0.1 M phosphate buffer, pH 7.4, for 2 h at 4uC. Tissues were

postfixed with 1% OsO4 in phosphate buffer for 1 h at room

temperature. After dehydration, tissues were embedded in

Araldite. Semithin sections (1–2 mm thick) were used to progres-

sively approach and identify the portion of the ME targeted for

ultrastructural studies—that is, the area where the pituitary stalk

becomes distinct from the base of the hypothalamus but still

remains attached to it by the hypophyseal portal vasculature [23].

This area, which does not extend beyond 20 mm, contains high

numbers of GnRH fibers. To detect GnRH immunoreactivity,

ultrathin sections (80–90 nm thick) collected on Parlodion 0.8%/

isoamyl acetate-coated 100 mesh grids (EMS, Fort Washington,

PA) were treated using an immunogold procedure described

previously [23]. Briefly, after a preliminary treatment with H2O2

(10%; 8 min) and a blocking step in TBS (0.1 M Tris, pH 7.4, 0.15

M NaCl) containing 1% normal goat serum and 1% bovine

albumin serum (TBSB) (10 min at room temperature), the grids

were floated on a drop of the following reagents and washing

solutions: (1) rabbit anti-GnRH (1:5,000) in TBSB for 60 h at 4uC,

(2) TBS to remove excess antibodies (three times for 10 min), (3)

colloidal gold (18 nm)-labeled goat anti-rabbit immunoglobulins

(Jackson ImmunoResearch) 1:20 in TBS for 90 min at room

temperature, (4) TBS (three times for 10 min), and (5) distilled

water (three times for 10 min). The sections were then counter-

stained with uranyl acetate and lead citrate before observation.

The specificity of the GnRH antisera used has been discussed

previously [56]. Ultrathin immunolabeled sections were examined

with a Zeiss transmission electron microscope 902 (Leo, Rueil-

Malmaison, France), and images were acquired using a Gatan
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Orius SC1000 CCD camera (Gatan France, Grandchamp,

France). Morphometric analysis was performed by an investigator

blind to hypothalamic explant treatment on digitalized images

taken at an original magnification of 12,0006 from 10–15

ultrathin sections per animal, with a space of 25 sections between

them, to avoid taking the same GnRH nerve terminal into

consideration twice (the diameter of a GnRH nerve terminal

rarely exceeds 2 mm). All GnRH-immunoreactive nerve terminals

located at less than 10 mm from the parenchymatous basal lamina

(i.e., the pial surface of the brain) were taken into consideration—

that is, more than 100 distinct axon terminals per animals (i.e.,

almost all GnRH nerve terminals abutting onto the pituitary

portal blood vessels in the aforementioned 20-mm-thick region of

the ME). Immunolabeled terminals confined to a distance of

10 mm or less from the basal lamina were imaged and the

distance from the nerve terminal to the pericapillary space

recorded.

Similar electron microscopic analyses were performed in 60-d-

old diestrous Nrp1loxP/loxP (n = 8) and GnRH::Cre; Nrp1loxP/loxP

(n = 8) mice. Three to four animals were used per condition.

Functional Assay in GnRH Primary Cultures
Timed-pregnant GnRH-GFP mice were anesthetized with an

intraperitoneal injection of 200 mg/kg ketamine and killed by

cervical dislocation. E12.5 embryos were harvested, and nasal

regions were dissected from each embryo and dissociated using the

Papain Dissociation System (Worthington, Lakewood, NJ) to

obtain single-cell suspensions.

Dissociated nasal tissue containing GnRH-GFP cells, mesenchy-

mal cells, and olfactory/vomeronasal cells were cultured in

DMEM/F12 (Invitrogen) supplemented 1% L-glutamine (Invitro-

gen) and D-(+)-glucose (final concentration 1%) at 37uC with 5%

CO2 for 24 h in the presence or absence of mouse monoclonal

anti-Sema3A (15 mg/ml) [57] neutralizing antibody (R&D Sys-

tems, MAB-1250) before processing for immunocytochemistry

(control, N = 3 independent experiments, n = 146 cells; treated,

N = 3 independent experiments, n = 143 cells). Anti-Sema3A

binding in living cells was visualized using an AlexaFluor 568–

conjugated anti-mouse antibody (1:400; Invitrogen), and GFP

using an anti-GFP chicken primary antibody (1:1,000, ab13970,

Abcam) and an AlexaFluor 488–conjugated anti-chicken second-

ary antibody (1:400; Jackson Immunoresearch, West Grove, PA)

in 4% paraformaldehyde fixed cultures.

Quantification of GnRH fiber length was performed on

digitized photomicrographs using the NeuronJ plugin of ImageJ

software (National Institutes of Health); 10–20 pictures were taken

for each culture well, and a total of 200 cells for each treatment

condition were analyzed. Twelve embryos were used for the

control group and 13 for the treatment group. All experiments

used primary cultures generated from different individuals on

multiple culture dates. Data are presented as means 6 SEM. For

comparison between the two groups, a two-tailed unpaired

Student’s t test was used. Normality of the data was tested with

the Shapiro-Wilk test.

Cell Lines
COS-7 and SVEC4-10 cells (ATCC) were grown in a

monolayer at 37uC in a 5% CO2 atmosphere, in DMEM (Life

Technologies, Inc.) containing 1 mM sodium pyruvate, 2 mM

glutamine (Life Technologies, Inc.), 100 mg/ml streptomycin,

100 U/ml penicillin, and 4,500 mg glucose (ICN Biomedicals,

Inc.), supplemented with 10% FBS (Invitrogen). The medium was

replaced at 2-d intervals. Subconfluent cells were routinely

harvested by trypsinization and seeded onto 58 cm2 dishes

(100,000 cells). For all experiments, only cells within six passages

were used.

GnV-3 cells are one of 11 clones of GnRH-expressing cells

obtained by the conditional immortalization of cultured adult rat

hypothalamic cells [58]. GnV-3 cells express markers of well-

differentiated neurons and do not express markers of glial cells

[59]. Cells were grown in Proliferation medium consisting of

Neurobasal A medium with B27 supplement (20 ml/ml, Invitro-

gen-Gibco), PSN (16, Invitrogen), Glutamax I (Invitrogen),

doxycycline hydrochloride (0.5 mg/ml, Sigma), FBS (10 ml/ml,

Biological Industries), and bFGF (5 ng/ml, Invitrogen). Doxycy-

cline promotes the proliferation of these conditionally immortal-

ized cells. To induce the differentiation of GnV-3 cells, the

culture medium was replaced by differentiation medium

(containing Neurobasal A, B27 supplement, PSN, Glutamax I,

and bFGF).

In Vitro Cell Transfection
COS-7 cells were transiently transfected using the fast-

forward protocol. Briefly, a 58 cm2 subconfluent dish was split

into four dishes in OptiMEM medium (Invitrogen) about 1 h

before high-efficiency liposome transfection (Lipofectamine

2000, Invitrogen). Each dish was transfected with 2–4 mg of

DNA construct (full-length human Semaphorin 3A-myc cDNA

plasmid, 65 kDa truncated human Semaphorin 3A-myc cDNA

plasmid, and empty vector for control). The latter construct

was generated by site-directed mutagenesis using a Quick-

Change II XL site-directed mutagenesis kit (Agilent Technol-

ogies) to introduce a Stop codon after the conserved Arginine

residue 555, corresponding to the furin cleavage site.

Cell Aggregates
Three-dimensional matrix assays were performed by co-

culturing GnV-3 cell aggregates with ME explants dissected from

adult female rats as described above. In another set of

experiments, GnV-3 cell aggregates were co-cultured with COS-

7 cells transfected either with full-length Sema3A (Sema3A-FL) or

65 kDa Sema3A, or with the control vector, as previously

described [60].

For the aggregates, cells were collected by trypsinization,

resuspended in 5 ml of growth-factor-free Matrigel (BD Biosci-

ences, San Jose, CA) (106 cells/ml for both GnV-3 and COS-7),

and placed on the lid of a culture dish. As cell aggregates were

formed in the droplets, they were plated onto Millicell inserts

coated with growth-factor free Matrigel (Millipore) and main-

tained in culture for 72 h. Cultures were grown for 2–3 d in

Neurobasal medium containing B27 and gentamycin before

staining. To test whether Sema3A acts on GnRH-1 processes in

an Nrp1-dependent fashion, a rat-Nrp1-neutralizing antibody

(1 mg/ml, R&D Systems, AF566) was added to the growth

medium of the co-cultures. The following day, the cultures were

fixed with 4% paraformaldehyde in 0.01 M phosphate buffer,

pH 7.4, and permeabilized with 0.3% Triton X-100 (Sigma) for

1 h at room temperature. Finally, they were stained with Alexa

568–X phalloidin (Molecular Probes, Eugene, OR) for 45 min at

37uC before image analysis. Quantification of GnV3 fiber

growth was performed on digitized photomicrographs using the

NeuronJ plugin of ImageJ software (National Institutes of

Health).

Image Analysis
For confocal observations and analyses, an inverted laser

scanning Axio observer microscope (LSM 710, Zeiss) with EC

Plan NeoFluor 106/0.3 NA, 206/0.5 NA, and 406/1.3 NA
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(Zeiss) objectives was used (Imaging Core Facility of IFR114 of the

University of Lille 2, France). ImageJ (National Institutes of

Health, Bethesda, MD) and Photoshop CS5 (Adobe Systems, San

Jose, CA) were used to process, adjust, and merge the photomon-

tages.

Intracerebral Infusion of Nrp1- or Sema3A-Neutralizing
Antibodies

To determine the importance of Nrp1 in the central control

of reproductive function, in vivo experiments were performed to

neutralize Nrp1 receptor-ligand interactions within the ME.

Anti- Nrp1 or -Sema3A IgGs (R&D Systems) were chronically

infused into the ME (bregma 23.6 mm, 9.5 mm depth from

the skull surface) [61] through a stereotaxically implanted

infusion cannula (Plastics One, Roanoke, VA) connected to

subcutaneously implanted osmotic minipumps (model 1007D;

Alzet, Palo Alto, CA). The pump had a flow rate of 0.5 ml/h

and a capacity of 100 ml, resulting in a delivery period of 7 d.

Each pump was loaded with sterile DPBS (Invitrogen)

containing the Nrp1-neutralizing antibody (0.25 mg/ml final)

or no antibody. After connection to the infusion device and

overnight priming in 0.9% NaCl at 37uC, the assembly was

implanted into cycling 190–200 g female rats with regular

estrous cycles. Estrous cycles were monitored before and after

surgery.

Following infusion for 7 d, animals were killed to assess the

implantation site of the cannula and check for exhaustion of

the infused solution. MEs from Nrp1 and PBS-infused animals

were collected, snap frozen in dry ice, and stored at 280uC.

To determine whether the infused Nrp1 antibodies actually

targeted the ME and bound endogenous Nrp1, protein extracts

from MEs were prepared and subjected to immunoprecipita-

tion using Nrp1 antibodies as described above. The sepharose

beads from the preclearing step allowed IgGs to be collected

from the MEs. The beads were then separated by centrifuga-

tion, washed twice with ice-cold lysis buffer, and boiled for

5 min in 50 ml of 26NuPAGE LDS sample buffer (Invitrogen).

After centrifugation, the supernatants were analyzed by

Western blotting for Nrp1. Anti-Sema3A-treated animals and

their PBS-treated controls were perfused transcardially with

fixative and processed for immunohistochemistry as described

above. AlexaFluor 488–conjugated anti-mouse antibodies

(1:400) were used to detect the binding of the intracranially

infused Sema3A antibodies in situ; vascular endothelial cells

were visualized using TRITC-conjugated Bandeiraea simplicifolia

lectin.

TAT-Cre Delivery
A TAT-Cre fusion protein produced as detailed previously [35]

was injected into the tail vein (40 ml at 2.1 mg/ml) of mice 1 wk

before they were placed for 62 h in a cage that had previously held

a sexually experienced male to induce, a protocol used to induce a

preovulatory surge in adult virgin mice [37].

Quantitative RT-PCR Analyses from Mouse Hypothalamic
Explants

For Sema3a gene expression analysis, mRNAs obtained from

microdissected ME and mediobasal hypothalamus explants were

reverse transcribed using SuperScript III Reverse Transcriptase

(Life Technologies). Real-time PCR was carried out on Applied

Biosystems 7900HT Fast Real-Time PCR System using the

SEMA3A (Sema3a_Mm00436469_m1) exon-boundary-specific

TaqMan Gene Expression Assays (Applied Biosystems).

Plasma LH Assay
Plasma LH was measured using a Rodent LH ELISA kit

(Endocrine Technologies, Newark, CA) with a sensitivity of

0.03 ng/ml and 7% intra-assay and 10% inter-assay coefficients

of variance.

Statistics
All analyses were performed using Prism 5 (GraphPad Software)

and assessed for normality (Shapiro-Wilk test) and variance, when

appropriate. Sample sizes were chosen according to the standard

practice in the field. Before statistical analysis, percentages were

subjected to arc-sine transformation to convert them from a

binomial to a normal distribution [62]. Data were compared by a

two-tailed unpaired Student’s t test, one-way ANOVA for multiple

comparisons, or two-way repeated-measures ANOVA. A Tukey’s

post hoc test was performed when appropriate. The significance

level was set at p,0.05. Data groups are indicated as mean 6

SEM. The number of biologically independent experiments, p

values, and degrees of freedom are indicated in the figure legends.

Supporting Information

Figure S1 RT-PCR analysis of Sema3A, PV1, b3-Tubulin
(b3Tub), DARPP-32, TSH, and GAPDH transcripts (gel
image) in PV1-positive (PV1-pos) and PV1-negative cells
isolated by FACS from the ME of adult female rats.
(TIF)

Figure S2 Cultured mouse endothelial cells. (A) Immu-

nopurified endothelial cells of the ME cultured in vitro are labeled

with TRITC-conjugated Bandeiraea simplicifolia lectin (BslI, red)

and exhibit PV1 immunoreactivity (green). Scale bar, 20 mm. (B)

SVEC4–10 mouse endothelial cells mainly release p65 Sema3A,

the proteolytic product of a 95 kDa precursor, released by furin

cleavage.

(TIF)

Figure S3 Nrp1 is expressed by vascular endothelial
cells of the ME. Confocal images showing the localization of

Nrp1 immunoreactivity (green) in coronal sections of the ME of

adult female rats. Vascular endothelial cells are labeled with

TRITC-conjugated Bandeiraea simplicifolia lectin (BslI, red).

Note that in addition to its abundance in the parenchyma of the

ME (top panels), Nrp1 immunoreactivity is also found in

endothelial cells of portal blood capillaries (bottom panels, arrows).

Bottom panels are high-magnification images of the framed areas

shown in (A). Scale bars, 100 mm in top and 50 mm in bottom

panels.

(TIF)

Figure S4 Nrp1- and Sema3A-neutralizing antibodies
were efficiently delivered into the ME of adult female
rats. (A) Immunoprecipitation (IPP) and immunoblot (IB)

analyses showing Nrp1 targeting by Nrp1-neutralizing antibodies

(Nrp1-Ab) infused into the ME. At the end of the infusion period,

MEs were microdissected, proteins extracted, and equal amounts

of proteins incubated with protein A-sepharose beads to

precipitate free IgGs (preclearing). The precipitated proteins were

subjected to Western blotting and the supernatant used for

immunoprecipitation. Note that in protein extracts from PBS-

infused animals, no Nrp1 immunoreactivity was seen in the

precleared fraction of the samples, while a strong Nrp1

immunoreactive signal was obtained after immunoprecipitation.

In contrast, in protein extracts from the ME of Nrp1-Ab-treated

rats, Nrp1 immunoreactivity was found in both the precleared and

immunoprecipitated fractions of samples, showing the proportion
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of endogenous Nrp1 receptors bound and unbound by the infused

antibody, respectively. SB, well loaded with sample buffer only. (B)

Representative images showing the binding of intracranially

infused Sema3A-neutralizing antibodies (green fluorescence, Alexa

488) in the ME. Arrows show the injection site. Note that the

Sema3A-neutralizing antibodies selectively target the capillary

zone of the ME, in which vascular endothelial cells are labeled

with TRITC-conjugated Bandeiraea simplicifolia lectin (BSLI),

and the surrounding nervous parenchyma. ARH, arcuate nucleus

of the hypothalamus (ARH). (C) Representative Western blot

image of conditioned media from transfected COS-7 cells

producing the 65 kDa or the 95 kDa full-length Sema3A proteins.

(JPG)

Figure S5 Full-length photographs of each of the
Western blots presented in Figure 1F, Figure 1G,
Figure 1H, Figure S1, and Figure S3 (IB, immunoblot).
(TIF)
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