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Abstract

Background: Bladder cancer (BC) is regarded as one of the most fatal cancer around the world. Nevertheless, there
still lack of sufficient markers to predict the prognosis of BC patients. Herein, we aim to establish a prognosis
predicting signature based on long-noncoding RNA (IncRNA) for the invasive BC patients.

Methods: The IncRNA expression profile was downloaded from The Cancer Genome Atlas (TCGA) database, along
with the correlated clinicopathological information. The univariate Cox regression test was employed to screen out
the recurrence-free survival (RFS)-related IncRNAs. Then, the LASSO method was conducted to construct the
signature based on these RFS-related INcRNA candidates. Genes correlated with these fourteen IncRNAs were
extracted from the mRNA expression profile, with the Pearson correlation coefficient > 0.60 or < — 0.40.
Subsequently, the Proteomap pathway enrichment analyses were conducted to classify the function of these
correlated genes. Furthermore, the multivariate analyses were executed to reveal the independent role of the
proposed signature with the clinicopathological features.
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Results: We established an IncRNA-based RFS predicting signature by the LASSO Cox regression test, and proved
its usage and stability on both the training and validation cohorts by the Kaplan-Meier and receiver operating
characteristic (ROC) curves. Notably, the multivariate Cox regression analysis found that our classifier was an
independent indicator for muscle-invasive BC patients rather than sex, age and tumor grade, with higher predictive
value than the existing ones. Besides, we did the pathway analyses for these genes that highly correlated with the
proposed fourteen INcRNAs, as well as the differentially expressed genes (DEGs) derived from the high-risk vs. low-
risk groups, and the recurrence vs. non-recurrence groups, respectively. Notably, these results were consistent, and

these genes were mostly enriched in the transcription factors, G protein-coupled receptors, MAPK signaling
pathways, which were proved significantly associated with tumor progression and drug resistance.

Conclusions: Our results suggested that the fourteen-IncRNA-based RFS predicting signature is an independent
indicator for BC patients. Further prospective studies with more samples are needed to verify our findings.
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Background

Bladder cancer (BC) is known as the ninth most fre-
quent malignancy around the world. Because of high
rate of recurrence, it has been one of the most expensive
solid cancer once the patients seed for continued surveil-
lance [1]. Further, the high recurrence rate of BC is
partly owning to the insufficient number of prognosis-
related biomarkers. Thus, to find out more favorable
biomarkers for early detection and prognosis prediction
of bladder cancer is becoming more critical.

The long non-coding RNAs (IncRNAs) are character-
ized as RNA transcripts >200 bases, but they cannot
translate into proteins [2, 3]. Currently, plenty of studies
have indicated that IncRNAs participate in diverse bio-
logical processes, such as cell proliferation [4], differenti-
ation [5], chromatin modification, and so on [6]. The
IncRNAs have been revealed playing critical roles in
tumorigenesis and progression. Referring to previous
studies, a series of IncRNAs, such as MALAT1, TUGI,
H19, played a critical role in predicting the prognosis,
the risk of metastasis [7-11], as well as drug treatment
resistance [12]. Mechanisms studies found the function
of IncRNA is partly depended on its location. For ex-
ample, the IncRNA-HOTAIR, located in the nuclear,
regulates the gene expression through recruiting the
chromatin modifiers on the promoter region of tran-
scriptional factors, enhancing their transcriptional activ-
ities. For these IncRNAs located in the cytoplasm,
regulates the protein expression mostly through post-
transcription, such as influencing the protein stability.

Besides, the IncRNAs could also serve as competing
endogenous RNAs to influence the expression of tar-
geted genes by competing with the microRNAs (miR-
NAs). In addition to the functional role of IncRNAs,
many other studies have highlighted their role in pre-
dicting the prognosis of cancer patients. For example,
Yang et al. [13] identified a six-IncRNA-based signature,
which can predict the recurrence risk of ovarian cancer.

In Song et al’s [14] work, they established a IncRNA-
based signature that provides the prognostic value for
outcomes of gastric cancer patients. Similar studies were
also conducted for thyroid papillary carcinoma [15],
pancreatic cancer [16] and esophageal squamous cell
carcinoma [17], and revealed satisfied outcomes. Al-
though few studies have tried to construct gene-based
signature for bladder cancer patients, there is no study
specifically focus on muscle-invasive BC patients, who
mostly have poor survival outcome than these patients
with in situ tumors.

Here, we performed a systematic screening of
IncRNAs that related to the recurrence-free survival
(RFS) of muscle-invasive BC patients, and established a
fourteen-IncRNA-based signature. Our study provides
the tool for clinicians to develop the personalized medi-
cine for muscle-invasive BC patients.

Methods

Bladder cancer datasets and patient information

Clinical information, particularly for RFS (status and
follow-up time), and the RNA expression profile for
IncRNAs in invasive BC tissues were directly download
from TCGA database (https://cancergenome.nih.gov/). A
total of 320 patients were diagnosed as muscle-invasive
BC, and then they were divided into the training and val-
idating groups (224 vs. 96), randomly.

Signature construction and risk stratification

The IncRNAs were subjected to the univariable Cox re-
gression analysis to find out IncRNAs that correlated
with the RFS of muscle-invasive BC patients. Then, the
LASSO Cox regression analysis was conducted to estab-
lish the risk signature based on these RFS-related
IncRNA candidates. The risk value of each patient was
depended on the expression of IncRNAs, and their
matched co-efficient. The formula of our signature was
presented as below:


https://cancergenome.nih.gov/
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The patients in both the training and validation co-
horts were ranked by the risk scores, and then they
were classified into high- and low-risk according to
the median risk score derived from the training
cohort.

Kaplan-Meier (K-M) and receiving operating curve (ROC)
The K-M analysis was applied to find out the RFS differ-
ence between the low- and high-risk groups, and the
ROC curve was used to determine the prognostic value
of our signature in both the training and validation co-
horts. Hence, the multivariate analyses were executed to
determine the independent effect of our signature with
clinicopathological features (such as sex, age, tumor
grade and tumor stage). All these analyses were con-
ducted based on R software (version 3.5.2) with the fol-
lowing R packages: ‘glmnet’, ‘survivalROC’ and ‘ggplot2’.
Besides, the P-value less than 0.05 was considered as sta-
tistically significant.

Differential expression and functional analysis

Differential expression analysis was performed by DESeq2
[18], and differentially expressed genes (DEGs) were de-
fined as fold change more than 1 and adjusted p-value less
than 0.05. Functional categories of genes were analyzed
using Proteomap (https://www.proteomaps.net/).

Results

Signature establishment

The muscle-invasive BC patients (n = 320) were divided
into the training cohort (n = 224) and a validation cohort
(n =96), randomly. Subsequently, the univariate Cox re-
gression test was executed to verify the RFS-related
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IncRNAs (Fig. S1, P-value less than 0.05). The predicting
signature was constructed based on the training cohort
with the LASSO method. As a result, the formula of the
signature was defined as below (Fig. 1): Risk score =
(0.052146 x expression value of C21lorf34) - (0.20576 x
expression value of C22orf45) + (0.164629 x expression
value of C4orfl2)+(0.136011 x expression value of
C70rf13) + (0.057299 x expression value of CACNA2D1)
- (0.10285 x expression value of HCG4P6) - (0.18816 x
expression value of INE2) - (0.14616 x expression value
of LOC115110) - (0.12243 x expression value of
LOC283663) -  (0.09584 x expression  value  of
LOC554202) -  (0.09684 x expression  value  of
SNHG10) + (0.095918 x expression value of SOX20T) +
(0.123121 x expression value of STL) + (0.207295 x ex-
pression value of SYS1-DBNDD?2). Referring to the for-
mula, the risk score for the patients in both the training
and validation cohorts was generated. Patients were
ranked according to their risk scores, and referring to
the median risk score of the training cohort as the cutoff
point, these patients were assigned into low- and high-
risk groups.

Survival and ROC analyses

We managed the K-M analysis with the log-rank test
to compare the difference in recurrence rate between
the low- and high-risk groups. As shown in Fig. 2a,
we found that the patients with the high-risk scores
tended to experience a higher recurrence rate than
for those with low-risk scores in the training cohort
(P<0.0001). The similar results also presented in the
validation set (P=0.0022; Fig. 2b). Furthermore, the
ROC curves were applied to determine the predictive
values of our signature. The results showed that the
AUC value of the training cohort was 0.796 (95%CI:
71.6-87.7), while it was 0.748 (95%CI, 61.8—-87.7) in
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Fig. 1 Used the LASSO Cox regression test to construct the IncRNA-based recurrence-free survival predicting classifier. a. LASSO coefficient
profiles of the fourteen features for RFS. b. Tuning parameter (lamda) selection in the LASSO model used 10-fold cross-validation via minimum
criteria for RFS. ¢. Forest plot showing multivariate Cox regression analysis of the effect of different INcRNAs on patient RFS
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the validation cohort (Fig. 2c¢ and d), indicating that
our signature had a moderate predictive accuracy and
reliability in evaluating the prognosis for muscle-
invasive BC patients.

Multivariate analyses

We performed the multivariable Cox regression analysis
to adjust the clinical variables (age, sex, tumor stage and
grade), and the results showed our fourteen-IncRNA-
based RFS and tumor stage (stage III + IV) remained to
be the independent prognostic factors for muscle-
invasive BC patients’ RFS in the overall dataset (Fig. 3a).
The HR (HR =5.01, 95%CI: 2.72-9.2) for the integrated
IncRNA signature was greater than tumor stage (HR =
1.95, 95%CI: 1.05-3.6), and it implied that the signature
had superior performance compared with the tumor
stage.

Besides, we also compared our classifier with other
clinicopathological features (age, sex, tumor grade, and
tumor stage). We found the signature showed a high
AUC value of 0.80, which was better than any of the
other features (Fig. 3b). The nomogram was performed
to determine the synthesis effects by combining our sig-
nature with clinicopathological features, and the results
indicated that the nomogram had the best predicting
values (AUC = 81.4, 95%CI: 75.5-87.3).

In addition, the subgroup analyses were executed re-
ferring to the clinicopathological features (age, sex,
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tumor grade, and tumor stage), and the results showed
that the fourteen-IncRNA-based REFS signature still
could classify the risk stratification in spite of age (< 60,
and > 60), sex (male, and female) (Fig. 4a-d). Further, our
signature was also effective for these patients with higher
stage (III/IV; P <0.0001) and grade (T3 + T4; P <0.0001)
(Fig. 4e-h).

Identification of eight IncRNA signature associated
biological pathways and processes

To reveal the underlying mechanisms that how these
fourteen IncRNAs influenced tumor progression. We ex-
tracted the mRNA expression profile from the TCGA
database. For these genes highly correlated with the
fourteen IncRNAs were enrolled (Pearson correlation co-
efficient > 0.5 or < — 0.5). Then, the proteomap pathway
analysis was performed to classify their functions. The
results found that these genes were mostly enriched in
Transcription factors, Peptidases, Ion channels, G
protein-coupled receptors, Glycan metabolism, MAPK
signaling, Wnt signaling, and ErbB signaling pathways,
which were proved highly associated with tumor initi-
ation, progression and drug resistance (Fig. 5a). Notably,
the DEGs were also obtained by comparing the recur-
rence set vs. non-recurrence set, and high-risk vs. low-
risk groups, respectively, with similar results obtained
(Fig. 5b and c). All these results proved the application
value of our signature in predicting the RFS prognosis
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for muscle-invasive BC patients, and provided the poten-
tial mechanisms for how these IncRNAs influenced the
BC progression.

Discussion

The disease progression of muscle-invasive BC patients
is dependent on many risk factors including phenotypes
and genotypes. However, clinical criteria such as age,
gender, pathological TNM stage and tumor grade may
not reflect the entire biology of muscle-invasive BC.
Here, we investigated the efficacy of the 14-IncRNA-
based gene signature to predict the RFS of muscle-
invasive BC patients. Despite previously developed gene
signature-based prognostic models, it is still valuable to
update new models to improve the management of
muscle-invasive BC. An effective gene signature could
guide patient counseling and help people to identify can-
didates who need more aggressive management. We
demonstrated that this model has more prediction
power than independent traditional clinical features. Al-
though it is lack of novelty and function work in our
study and our results require further investigation of the
efficacy of the 14-IncRNA-based signature panel in pa-
tients, this panel could be extremely beneficial to identify
patients at elevated risk of recurrence that may require
adjuvant therapy.

We identified a set of 14 IncRNAs that showed differ-
ential expressions between high-and low-risk cancer pa-
tients included in the data sets (Fig. S2). Such
differentiations signified their potential roles in carcino-
genesis. Recent researches has found that IncRNA
LOC554202 is significantly downregulated in bladder
cancer tissues compared with adjacent noncancerous tis-
sues, and IncRNA LOC554202 expression level in blad-
der cancer patients was negatively associated with
advanced TNM stage [19]. SNHGI10 is known to be

over-expressed in hepatocellular carcinoma, and we
found it facilitates hepatocarcinogenesis and metastasis
[20]. SOX2 overlapping transcript mainly play crucial
role in tumor initiation and/or progression as well as
regulating pluripotent state of stem cells [21]. CACN
A2D1 is most the most extensively investigated and vali-
dated of these markers. A retrospective study showed
that positive expression of Cacna2dl was significantly
associated with advanced FIGO stage (P <0.001), histo-
logical subtype (P=0.017) and tumor differentiation
(P=0.015) [22]. Data coming from Sui et al’s research
[23] have confirmed that radio-resistance of non-small
cell lung cancer induced by CaCna2D1. The roles of the
rest of the IncRNA genes identified in bladder cancer re-
main unclear.

Conclusion

By applying public TCGA data, we successfully built and
validated a RFS prediction model of muscle-invasive BC
based on a novel 14-IncRNA signature. Comparing with
independent clinical features, this model has more effi-
ciency to predict RFS of muscle-invasive BC. The model
may help facilitate doctor-patient consultations, guide
muscle-invasive BC treatment strategy and eventually
benefit patients.

Supplementary information
Supplementary information accompanies this paper at https://doi.org/10.
1186/512911-020-1115-2.

Additional file 1: Supplementary Figure 1. Kaplan-Meier curves show
23 IncRNAs which significantly related to recurrence-free survival of MIBC
in the training data.

Additional file 2: Supplementary Figure 2. Expression level of the
fourteen prognostic INcCRNA markers in high- and low-risk MIBC groups,
respectively.
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