
METHOD Open Access

DeepMILO: a deep learning approach to
predict the impact of non-coding sequence
variants on 3D chromatin structure
Tuan Trieu1,2,3*, Alexander Martinez-Fundichely1,2,3 and Ekta Khurana1,2,3,4*

Abstract

Non-coding variants have been shown to be related to disease by alteration of 3D genome structures. We propose
a deep learning method, DeepMILO, to predict the effects of variants on CTCF/cohesin-mediated insulator loops.
Application of DeepMILO on variants from whole-genome sequences of 1834 patients of twelve cancer types
revealed 672 insulator loops disrupted in at least 10% of patients. Our results show mutations at loop anchors are
associated with upregulation of the cancer driver genes BCL2 and MYC in malignant lymphoma thus pointing to a
possible new mechanism for their dysregulation via alteration of insulator loops.
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Background
The human genome is organized into three-dimensional
(3D) hierarchical structures such as chromosomal com-
partments, topologically associated domains (TADs),
and chromatin loops. Chromosome conformation cap-
ture techniques such as Hi-C [1] and ChIA-PET [2] can
be used to identify these 3D structures. In particular,
ChIA-PET assays capture chromatin interactions be-
tween loci mediated by a specific protein [2, 3]. Multiple
studies have found that chromatin loops mediated by
CTCF and cohesin (SMC1, SMC3, RAD21, and either
STAG2 or STAG1) bound on both anchors at the loop
ends isolate genes from active enhancers and their dis-
ruption can cause dysregulation of nearby genes [3–7].
These chromatin loops are called insulator loops. Muta-
tions at anchors of such insulator loops may break or
weaken loops and allow proto-oncogenes to interact
with enhancers outside of the loops or to inhibit regula-
tory elements of tumor suppressors from interacting
with their proper target genes [5]. Thus, methods to

identify the mutations that are likely to disrupt the insu-
lator loops are needed.
To the best of our knowledge, there is currently no

method to identify mutations that can alter insulator
loops. A natural approach is to model insulator loops
and then observe how loops are changed in the presence
of mutations. However, modeling insulator loops is chal-
lenging because the precise DNA sequence rules and
mechanism of chromatin loop formation are not clear.
While the majority of CTCF/cohesin-mediated loops are
“hairpin loops” [3] with anchors containing CTCF motifs
in convergent orientation, anchors with tandem CTCF
motifs (i.e., CTCF motifs with the same orientation) can
form “coiled loops” [3]. Moreover, multiple studies have
shown that transcription factors (TFs) other than CTCF
and cohesin may play an important role in loop forma-
tion [8, 9]. Recent experiments [7] support the loop ex-
trusion model [10, 11], which suggests that structural
maintenance of chromosome (SMC) proteins (e.g., cohe-
sin or condensin) extrude chromatin until blocked by
two CTCF proteins bound at convergent CTCF motif
sites to form loops. Yet, it is not clear how and when
CTCF proteins can prevent SMC proteins from
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extruding, and how SMC proteins can translocate along
the chromatin at the rapid speeds observed in experi-
ments [7, 12, 13]. In modeling insulator loops, a model
has to learn DNA sequence patterns of CTCF-bound re-
gions that can stop cohesin proteins from extruding be-
cause most CTCF-bound regions in fact do not form
loops [14]. It becomes even more challenging to model
insulator loops when DNA sequence of anchor regions
contains multiple CTCF motifs with opposite orienta-
tions. Additionally, loops involve two loci, a start point
and a stop point of the extrusion process, and loops can
interconnect [3], so the model should be able to identify
pairs of DNA fragments of regions that form loops. Re-
cently, Hansen et al. [15] found evidence of RNA bind-
ing by CTCF to mediate a class of chromatin loops that
show different DNA sequence patterns compared with
RNA-independent loops. Thus, it is clear that there are
more DNA sequence patterns besides CTCF motifs that
are important for insulator loop formation and methods
relying solely on the presence of CTCF motifs and/or
CTCF motif orientation to predict or to model insulator
loops are unlikely to do well.
Lollipop [16] is a computational method that attempts

to predict CTCF-mediated loops from a range of genetic
and epigenetic features. However, the method cannot be
used to predict the impact of mutations on loops be-
cause it does not take into consideration specific DNA
sequences and cannot account for sequence differences
caused by mutations. CTCF-MP [17] also predicts
CTCF-mediated loops from genetic and epigenetic fea-
tures. It uses a model based on word2vec [18] to learn
DNA sequence features and boosted trees to predict
loops. CTCF-MP can account for sequence changes by
mutations and can be used to predict the impact of mu-
tations on loops. In spite of that, the word2vec model
may not be able to learn complex DNA sequence fea-
tures as evidenced by the inability of CTCF-MP to deal
with loop anchors containing several CTCF motifs.
Convolutional neural network (CNN), a class of deep

learning neural networks, has been successfully used to
learn DNA sequence patterns such as those for DNA
and RNA binding proteins [19], DNA methylation [20],
or chromatin-profiling data [21]. Another class of deep
neural networks is recurrent neural network (RNN),
which is commonly used for learning tasks involving se-
quential data such as language translation and speech
recognition. Yet, it has not been used widely on DNA se-
quence, which is a type of sequential data where the
order and relationship between the bases are important
for its function. While CNNs are good at capturing local
patterns in sequences, RNNs like long short-term mem-
ory (LSTM) networks can capture long distance depend-
encies in sequential data. Here, we show that RNN can
perform comparably with CNN model in learning DNA

sequence patterns of anchors of insulator loops. Further-
more, they learned different features and combining
their features delivered a better model compared to indi-
vidual RNN or CNN models. Using features learned by a
CNN and an RNN, we propose DeepMILO, a Deep
learning approach for Modeling Insulator LOops, to
learn DNA sequence features of insulator loops. The
model can separate DNA sequences of insulator loop
anchors bound by both CTCF and cohesin proteins from
DNA sequences of CTCF ChIP-seq peaks bound by only
CTCF and DNA sequences of regions without CTCF
binding. DeepMILO can pair DNA sequences of anchors
forming loops to distinguish insulator loops from differ-
ent types of non-loops (i.e., fake loops) with high accur-
acy. Using DeepMILO, users can predict the impact of
variants obtained by whole-genome sequencing of their
samples on insulator loops from the cell type of interest
(Fig. 1). We applied DeepMILO to 1834 patient samples
from 12 International Cancer Genome Consortium
(ICGC) cohorts to study how mutations are associated
with insulator loop changes in different cancer types.

Results
We first developed an “anchor model” to learn DNA se-
quence features of anchor regions of insulator loops. To
pair two anchors to form an insulator loop, we built a
model to distinguish left vs. right anchors of insulator
loops using the learned features from the anchor model.
This model is referred to as the “anchor orientation
model.” The anchor and anchor orientation models were
then combined to create DeepMILO with the capability
of identifying anchors and pairing them with their part-
ners to model DNA sequences of insulator loops. Given
a pair of DNA sequences of anchors, this model outputs
a number between 0 and 1 that can be interpreted as the
loop probability or loop strength. The models were
trained, validated, and tested with insulator loops from
four cell lines GM12878, K562, MCF7, and Hela cap-
tured by cohesin (RAD21) ChIA-PET with PET peaks
overlapping CTCF ChIP-seq peaks [5] or by CTCF
ChIA-PET with PET peaks overlapping cohesin
(RAD21) ChIP-seq peaks [3]. Anchors of insulator loops
require co-occupancy of both CTCF and cohesin com-
plex (SMC1, SMC3, RAD21, and either STAG2 or
STAG1) [4, 22]; therefore, we only use loops with both
CTCF and cohesin at their anchors. The data from chro-
mosomes 7 and 8 was held out for testing, and the data
from chromosome 16 was used for validation. Training
datasets have approximately the same numbers of posi-
tive and negative samples, but test sets are imbalanced
and include all possible negative samples. Due to the
high numbers of true negatives, we used area under the
precision-recall curve (AUPRC) approximated by aver-
age precision to measure the performance of the models.
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RNN and CNN features complement each other
We built a CNN model and an RNN model to extract
features directly from DNA sequences of anchors. The
CNN model has three dilated CNNs with dilation rates
of 1, 3, and 7 (see the “Methods” section). The RNN
model uses bidirectional long short-term memory blocks
[23] (see the “Methods” section). The models were
trained separately to identify anchors of insulator loops.
Individually, the CNN performed better than the RNN
model (AUPRC of 0.866 for CNN vs. 0.840 for RNN)
(Fig. 2b) for the task of separating sequences of insulator
anchors (true anchors—Fig. 2a) from sequences of CTCF
ChIP-seq peaks (non-anchor type 1—Fig. 2a). Both posi-
tive and negative samples have active CTCF motifs, but
positive samples (true anchors) are also bound by cohe-
sin proteins. High AUPRC values indicate that additional
sequence rules govern the presence of insulator loop an-
chors besides the presence of actively bound CTCF mo-
tifs in a given cell type and our models were able to
learn these rules.
We then built the anchor model by combining learned

features from the RNN and CNN models (Fig. 2c). This

model performed significantly better compared with the
individual RNN and CNN models for the non-anchor
type 1 test set (AUPRC of 0.903) (Fig. 2b). The result
suggests that the RNN and CNN models learned differ-
ent sets of features that complement each other for the
task of identifying DNA sequences of insulator loop
anchors.

Performance of the anchor model on different test sets
The anchor model was built from learned features of a
CNN and an RNN as discussed above (Fig. 2c). The
model was tested with test sets containing anchors from
chromosomes 7 and 8. We used three different test sets.
They have the same set of true anchors as positive sam-
ples but differ in negative samples (Fig. 2a). The first test
set contains negative samples from regions containing
CTCF motifs overlapping CTCF ChIP-seq peaks but are
not anchors of any insulator loop (non-anchor type 1).
The second set consists of regions with CTCF motifs
but not bound by CTCF protein as negative samples
(non-anchor type 2). The third test set includes regions
without CTCF motifs and peaks as negative samples

Fig. 1 Overall approach for the identification of insulator loops and genes affected by mutations in patients. Anchors of insulator loops and non-
loops are used to train DeepMILO to learn sequence features of insulator loops. The model is then applied to patients’ mutation data (i.e.,
structural variants, single nucleotide variants, and indels) to detect insulator loop changes associated with mutations. Insulator loops can be the
set of default insulator loops from 4 cell lines GM12878, K562, MCF7, and Hela or a set of cell type-specific insulator loops provided by users
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(non-anchor type 3). The first test set is the most diffi-
cult one as many negative samples can have similar
DNA sequence patterns with positive samples.
The results from the three test sets are shown in

Fig. 2d. While the model performed well for the non-
anchor type 1 test set achieving an AUPRC of 0.903
(also discussed above as part of Fig. 2b CNN + RNN), it
performed even better for other test sets. For non-
anchor type 2, i.e., when negative samples contain just
CTCF motifs but are not bound by CTCF, the AUPRC
is 0.937. And as expected, the model performed best for
non-anchor type 3, i.e., when negative samples contain
no CTCF motifs or peaks (AUPRC = 0.958). The results

from non-anchor types 1 and 2 suggest that anchors of
insulator loops have other sequence features besides the
presence of CTCF motif and our model learned these
features well.

Motifs at insulator loop anchors
We then investigated what parts of sequences were be-
ing used by the CNN model for classification. Although
it is expected that CTCF motif is enriched at insulator
loop anchors, this analysis was done to reveal if other
TF motifs are also enriched. We used DNA sequences of
700 true anchors and performed class activation map
(CAM) visualization [24] to generate heatmaps showing

Fig. 2 Datasets of anchors and non-anchors, and performance of models on these datasets. Numbers inside brackets in c and d are AUPRCs. a
Different types of non-anchors used for training and testing. b The CNN model outperformed the RNN model, and their combination delivered
the best performance for the non-anchor type 1 test set. Proportion of positive samples is 0.45. c Architecture of the anchor model consisting of
a CNN and an RNN. d Performance of the anchor model (CNN + RNN) on test sets. Proportions of positive samples in datasets are 0.45, 0.12, and
0.075 for non-anchor types 1, 2, and 3, respectively
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how different parts of the sequences were being used by
the CNN model. CAM assigned a score to each base of
a sequence indicating how the base activated the class of
the sequence (as an anchor). For each anchor, we per-
formed peak calling (details in the “Methods” section) to
identify regions of high intensity in the CAM signal out-
put (referred to as CAM peaks). On average, there are
29 CAM peaks per anchor. We aggregated positions of
CAM peaks relative to anchor centers over the 700 an-
chors (Additional file 1: Fig. S1) and found that CAM
peaks are distributed relatively evenly across the 4000
bases of anchors. This result shows that the CNN model
used many parts of sequences to distinguish anchors
from non-anchors. We then used Analysis of Motif En-
richment (MEME Suite) [25] to identify known motifs
(HOCOMOCO v11 FULL) enriched at CAM peaks (E
value < 0.0001) and found 38 motifs (the list of motifs is
shown in Additional file 2: Table S1). As a key element of
insulator anchors, CTCF motif is significantly enriched. In
addition, we note that motifs of some other members of
the zinc finger TF family (ZN770, ZN121, ZN335, and
IKZF1) appear significantly enriched. It is interesting that
ZFX is among the enriched motifs. This result is in con-
cordance with the previous analysis in [16].

Anchor orientation model to distinguish left and right
anchors
While most insulator loops contain CTCF motifs in con-
vergent orientation at the paired anchor regions, an an-
chor element can contain several CTCF motifs with
different orientations. Moreover, the paired anchors of
some loops contain tandem CTCF motifs [3]. Therefore,
CTCF motif orientation alone cannot be used to distin-
guish the two anchors of insulator loops. We used the
learned features of the anchor model to build the anchor
orientation model to distinguish left anchors from right
anchors. This model shares its features with the CNN and
RNN of the anchor model. DNA sequences of anchors in
chromosomes 7 and 8 were used to test the model regard-
less of the number and orientation of their CTCF motifs.
The results show that the left and right anchors can be
well separated with an AUPRC of 0.96. We note that
49.4% of anchors in the test set contain multiple CTCF
motifs, which cannot be handled by methods relying on
CTCF motif orientation. While models like CTCF-MP
[17] or Lollipop [16] require CTCF motif orientation in
their input, our results show that the anchor orientation
model has learned features to distinguish left and right an-
chors of loops de novo from the sequence.

Loop model for learning features of pairs of DNA
sequences of anchors of insulator loops
As loops often interconnect and one anchor can be in-
volved in several loops [3], pairing anchors forming

loops is not trivial. We combined the anchor model and
anchor orientation model to build DeepMILO to model
insulator loops and effects of mutations on these loops
(Fig. 3b).
To ensure a fair evaluation of the model performance,

five different types of test sets were created to test the
model. They have the same set of positive samples from
true insulator loops. However, their negative samples are
different as illustrated in Fig. 3a. We also constrained
the distance between two anchors of negative samples
(non-loops) by the 75th percentile of distances between
paired anchors of true insulator loops. The negative
samples in the first type of test set consist of non-loops
formed from two true anchors with convergent CTCF
motifs (non-loop type 1). This type of test set is the most
difficult one as many non-loops possess similar patterns
with true loops. We note that some of the non-loops in
this set could be actual loops that were not captured in
ChIA-PET experiments. The second type of test set in-
cludes non-loops from two true anchors but containing
tandem CTCF motifs (non-loop type 2). The third type
of test set contains non-loops from two true anchors
with divergent CTCF motifs (non-loop type 3). The
fourth type of test set consists of non-loops with one
true anchor and one non-anchor containing a CTCF
motif in convergent orientation with the CTCF motif at
the true anchor (non-loop type 4). The fifth type of test
set includes non-loops with one true anchor and one
non-anchor containing no CTCF motif or peak (non-
loop type 5). The results from test sets are shown in
Fig. 3c.
For the most difficult test set, the non-loop type 1 test

set, DeepMILO achieved an AUPRC of 0.684. A naïve
model using CTCF motif orientation only would achieve
an AUPRC of ~ 0.429 (proportion of positive samples).
For the non-loop type 2 and 3 test sets, DeepMILO per-
formed very well (AUPRCs of 0.898 and 0.995, respect-
ively). For the non-loop type 4 test set, DeepMILO also
performed well with an AUPRC of 0.850. This test set
contains non-loops with paired anchors containing con-
vergent CTCF motifs so that they are relatively difficult
to classify. Moreover, the proportion of positive samples
is very small (0.073). Models relying solely on CTCF
motif orientation would achieve an AUPRC of ~ 0.073
for this test set. Lastly, DeepMILO performed very well
on non-loop type 5 test set with one non-anchor without
CTCF motif (AUPRC of 0.774). We compared Deep-
MILO with a model based on word2vec [18] and
boosted trees similar to CTCF-MP [17] using DNA se-
quence features (Additional file 3).
Next, we checked how well tandem loops (insulator

loops with the same orientation of CTCF motifs at an-
chors) are satisfied. To determine if an insulator loop is
satisfied in the test set, we picked the loop probability
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threshold that yielded equal precision and recall in the
validation set. There are 949 tandem insulator loops in
the test set, and 65% of them are satisfied (i.e., predicted
as positive) based on prediction from our model. This
result demonstrates that our model has learned patterns
of tandem insulator loops that cannot be learned by
models relying on convergent CTCF motif orientations.
We provide DeepMILO as a software tool to predict

the impact of sequence variants on insulator loops.
Given a set of variants, DeepMILO evaluates their im-
pact on a set of ~ 74,000 insulator loops from four cell
lines GM12878, K562, Hela, and MCF7 (default option)
or a set of insulator loops from a cell type of interest (in-
put by the user) and outputs loop probabilities with and
without variants (Fig. 1). Users can then compare loop
probabilities to identify altered loops. It is also possible

to evaluate the effects of individual variants on insulator
loops to identify functional variants.

Validation of DeepMILO with known loop-disrupting
deletions
We next tested DeepMILO on two known deletions that
disrupt insulator loops. Hnisz et al. [5] introduced two
deletions found in T-ALL patients using CRISPR/Cas9
at anchors of insulator loops containing the oncogenes
TAL1 and LMO2. The authors showed that the deletions
increased interactions between enhancers and promoters
that were insulated by anchor elements in the wild type
cells leading to upregulation of TAL1 and LMO2 in the
edited cells. We evaluated the impact of these two dele-
tions on insulator loops. Among the ~ 74,000 insulator
loops, two loops cover the TAL1 gene and 19 loops

Fig. 3 Datasets of loops and non-loops, and performance of DeepMILO on these datasets. Numbers inside brackets in c are AUPRCs. a Different
types of non-loops for training and testing the loop model. b Details of DeepMILO; combining pretrained anchor model and pretrained anchor
orientation model helped training to converge faster. c Performance of DeepMILO on different test sets. Proportions of positive samples are 0.43,
0.61, 0.72, 0.072, and 0.063 for non-loop types 1, 2, 3, 4, and 5 datasets, respectively
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cover the LMO2 gene (Additional file 1: Fig. S2). The de-
letion in neighborhood of LMO2 is of length 25 kb
(Additional file 1: Fig. S2). DeepMILO predicted loop
probabilities of the 19 loops after the deletions are re-
duced to 0.0008 from 0.24–0.91. The result indicates that
the model correctly predicted the impact of the deletion
on insulator loop disruption. For the case of TAL1, the de-
letion is 400 bp (Additional file 1: Fig. S2 c). With the de-
letion, DeepMILO predicted the loop probabilities
decreased to less than 0.26 from 0.89 and 0.91, suggesting
that the insulator loops are weakened or disrupted. These
results are consistent with the experimental results in [5].
Given the large size of the two deletions, it is expected

that they can disrupt the associated insulator loops. To
test the sensitivity of DeepMILO with small mutations
(single nucleotide variants and indels) and if small muta-
tions are sufficient to disrupt insulator loops, we simu-
lated 400 small deletions of one base for every position
of the deletion related to TAL1 and used DeepMILO to
predict the impact of these small deletions. Comparing
loop probabilities without and with individual mutations,
we identified 11 consecutive mutations at the center of
the deletion with highest reductions in loop probability
(Additional file 1: Fig. S2 c). We find that the DNA se-
quence of these 11 positions matches the CTCF motif
well (p value = 1.96e−03, Additional file 1: Fig. S2 c). The
reduction in loop probability is as high as 0.70, indicat-
ing that small mutations of one base could result in sig-
nificant impact on insulator loops and that DeepMILO
is sensitive to small mutations. These results demon-
strate that DeepMILO can be used to identify the exact
bases among large deleted sequence whose alteration
would be associated with loop disruption. We note that
these results were based on individual single nucleotide
mutations and therefore do not rule out the possibility
of small mutations of several bases or combinations of
small mutations outside CTCF motif causing significant
effects on insulator loops.

Identification of disrupted insulator loops in 1834 patient
samples from twelve cancer cohorts
The majority of somatic variants in cancer cells reside in
non-coding regions [26]. Some of these variants can
affect 3D chromatin structures, which can in turn acti-
vate proto-oncogenes [5, 27]. We sought to apply Deep-
MILO to somatic variants from whole-genome
sequences of twelve ICGC cohorts of cancer patients
with a total of 1834 samples to identify disrupted insula-
tor loops associated with non-coding variants. We only
consider small variants (single nucleotide variants and
indels) because their effect is difficult to predict and not
all cohorts have structural variant data. To determine if
a loop probability reduction is significant, we use the
90th percentile of all loop probability reductions across

all samples and insulator loops as a cutoff threshold
(distribution of probability reductions shown in
Additional file 1: Fig. S3). Among ~ 74,000 insulator
loops, there are 672 loops disrupted in at least 10% of
patients (183 patients). Mutational burden is strongly
correlated with the numbers of disrupted loops (Fig. 4 a,
b; 0.87 Spearman’s rank correlation between medians).
Thus, in general, more mutations are associated with
more disrupted insulator loops. This result indicates that
cancers with higher mutational burden are likely to have
higher chromatin instability. Leiomyosarcomas (LMS_FR
cohort), a type of soft tissue sarcoma, is an exception. It
has the most disrupted insulator loops though it has far
fewer number of mutations compared to melanoma
(MELA_AU cohort) (median number of mutations
and disrupted loops are 28,868 and 1660 in LMS_FR,
respectively, and 63,571 and 420 in MELA_AU, re-
spectively). This may be related to the transcriptional
changes associated with tumor evolution in leiomyo-
sarcomas [28].
Next, we looked for genes with expression changes as-

sociated with disrupted insulator loops when matching
RNA-seq data is available for a large number of samples
and there are disrupted insulator loops in at least 10% of
patients (to ensure sufficient sample sizes for statistical
testing). In the ICGC cohorts, only malignant lymphoma
(MALY) cohort satisfies the conditions. The cohort has
241 patients with whole-genome sequences, and 104 pa-
tients also have matching RNA-seq data. We identified
18 insulator loops disrupted in at least 10% of patients
(24/241 patients). There are six genes inside these 18
loops. Among these six genes, there are four three can-
cer genes: MYC, BCL2, and KDSR. BCL2 and MYC show
differential expression in patients with decrease in loop
probabilities vs. the other patients (Fig. 4 c, d; Wilcoxon
signed-rank test). We did not find structural variants or
significant differences in copy number for MYC and
BCL2, suggesting that changes in the strength of insula-
tor loops could contribute to their upregulation.

Discussion and conclusions
We present DeepMILO for modeling insulator loops
and for predicting the effects of variants on these loops.
DeepMILO has learned sequence features of insulator
loops beyond the presence and orientation of CTCF mo-
tifs. It can identify insulator loops with high AUPRC.
DeepMILO uses features learned by a CNN model and
an RNN model. We show that RNN can perform com-
parably with CNN in learning DNA sequence patterns
of insulator loop anchors and that combining learned
features of RNN and CNN models delivers a better
model compared with individual models. Furthermore,
we find that small mutations of one base can result in
significant impact on 3D insulator loops and that our
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model is sensitive enough to predict the impact of such
small mutations. Using DeepMILO, we identified insulator
loops predicted to change in multiple cancer patients and
genes affected by these loops. Our model suggests a pos-
sible new mechanism for upregulation of BCL2 and MYC
in malignant lymphoma via alteration of insulator loops.
DeepMILO can be extended for other 3D structures such
as enhancer-promoter loops and TADs to identify the
non-coding variants altering 3D chromatin structures in
general. Identification of these variants together with al-
tered 3D structures can provide insights into the mechan-
ism of aberrant gene expression in disease.

Methods
Data preparation
We used CTCF/cohesin insulator loop data of the cell
lines GM12878, K562, Hela, and MCF7 to train and test

our models. These loops were captured by cohesin
(RAD21) ChIA-PET with PET peaks overlapped by
CTCF ChIP-seq peaks [5] or captured by CTCF ChIA-
PET with PET peaks overlapped by cohesin (RAD21)
ChIP-seq peaks [3]. CTCF and RAD21 ChIP-seq data
were obtained from ENCODE [29].
Anchors of loops were normalized as follows. Two an-

chors b1 and b2 with lengths l1 and l2 are considered as
equal and merged into one anchor if their overlap is lar-
ger than 0.9 × l1 or 0.9 × l2. After merging equal anchors,
we obtained a set of normalized anchors and loops were
formed from these anchors. Anchors were then trimmed
off or expanded to have a length of 4000 bases (~ me-
dian length of anchors captured by cohesin ChIA-PET)
centered at their peaks. A sequence is converted into a
one-hot encoding matrix of size [4000 × 5]. Due to the
computationally intensive nature of LSTM, only 800

Fig. 4 Application of DeepMILO on patient samples. LMS, soft tissue cancer—leiomyosarcoma; SKCA, skin adenocarcinoma; MELA, skin cancer;
BTCA, biliary tract cancer; ESAD, esophageal adenocarcinoma; LIRI, liver cancer; OV, ovarian cancer; RECA, renal cell cancer; MALY, malignant
lymphoma; PACA, pancreatic cancer; BRCA, breast ER+ and HER2− cancer; BOCA, soft tissue cancer—Ewing sarcoma. a Number of disrupted
insulator loops in ICGC cohorts. b Mutation burden in ICGC cohorts. c, d Oncogenes BCL2 and MYC show differential expression between patients
with decrease in loop probability and other patients (MALY cohort, Wilcoxon signed-rank test)
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bases centered around the middle points of sequences
were inputted into the RNN model.
Data from chromosomes 7 and 8 was held out for test-

ing, and data from chromosome 16 was used for valid-
ation. We checked performance of our models with a
test set from chromosomes 1 and 14, and found that
performance of models was similar (data not shown), in-
dicating that data from chromosomes 7 and 8 was not
easier for models. Negative anchor samples containing
CTCF ChIP-seq peaks were derived from CTCF ChIP-
seq signal and were centered around the middle points
of peaks. Negative anchor samples containing CTCF
motifs were calculated from the location of CTCF motifs
detected by FIMO [25] using a p value threshold of
0.00005, and they were also centered around CTCF mo-
tifs. Negative anchor samples without CTCF motifs are
all regions of 4000 bases that do not overlap any CTCF
motif.
Positive and negative samples were balanced in train-

ing and validation. Test sets are imbalanced and contain
all possible negative samples. For each sequence, its
complementary reverse sequence was also included to
increase the amount of training data. Additionally, by
training the model with complementary reverse se-
quences, the strand of sequences can be ignored when
running the model. In preparation of the data to train
the “anchor orientation model,” we removed anchors
that can be considered as both left and right anchors.
Left and right anchors were considered as negative and
positive samples, respectively.

CNN, RNN, and anchor model for learning features of
anchors
We developed a deep convolutional neural network (CNN)
and a recurrent neural network (RNN) with bidirectional
long short-term memory cells to learn DNA sequence pat-
terns of anchors of insulator loops. Learned features from
these two models were combined to build the anchor
model to distinguish anchors from non-anchors.
DNA sequences of anchor and non-anchor regions

were used to train the models. In training, validation,
and test sets, positive samples include true anchors and
negative samples consist of the three types of non-
anchors with a ratio of 50%:30%:20% for non-anchor
types 1, 2, and 3, respectively.
A DNA sequence was converted to a one-hot encod-

ing matrix with m rows and 5 columns, where m is the
length of the sequence and 5 columns corresponding to
5 bases A, C, G, T, and N. The models were trained to
output a number in the range of [0, 1] that can be inter-
preted as anchor probability of a given DNA sequence.
It is expected that probabilities of DNA sequences of an-
chor regions are closer to 1 and probabilities of DNA se-
quences of non-anchor regions are close to 0.

The CNN and RNN models were trained separately,
and their features were later combined for the anchor
model. The same training and validation datasets were
used to train the three models. The CNN model has two
convolutional layers. The first layer of the network is a
convolutional layer with 256 filters of size [17 × 5]. Fil-
ters scan through input sequences and are applied to
each allele separately. This layer is followed by a batch
normalization [30], a leaky rectified linear, and a dropout
layer [31]. The batch normalization layer stabilizes the
output from the first layer before it goes through the
leaky rectified linear layer and speeds up the
optimization during training. The dropout layer prevents
the network from overfitting. Our experiments found
that a negative slope coefficient of 0.2 for the leaky recti-
fied linear function and a dropout rate of 0.3 produced
the best result. Following these layers are three parallel
dilated convolutional layers with dilation rates of 1, 3,
and 7. They have 512 filters of size [5 × 1], and their out-
puts are concatenated. These dilated convolutional layers
are supposed to combine features from the first convolu-
tional layers to learn higher level features. Our experi-
ments showed that these convolutional layers allowed us
to achieve better performance with less training time.
However, adding more convolutional layers did not yield
a clearly better performance while significantly increas-
ing the complexity of the model. The dilated convolu-
tional layers are followed by a batch normalization, a
leaky rectified linear, a global max pooling, and a drop-
out layer. The global max pooling layer is intended to
capture if the input contains specific patterns learned by
filters of convolutional layers. The output from these
layers is then concatenated and inputted into two fully
connected layers with 256 and 128 nodes, respectively.
The last layer of the model is a sigmoid activation node
that outputs a probability of the input sequence as an-
chor of an insulator loop. We used a binary cross en-
tropy loss function as objective function. And it was
minimized using the RMSprop algorithm.
The RNN model consists of two stacked bidirectional

LSTM layers (BLSTM) that can capture long-term de-
pendency in long sequences. Bidirectional LSTM pro-
cesses sequences in both directions, forward and
backward directions, and therefore often captures the
context better. Each BLSTM layer has 64 hidden units.
A dropout layer with a dropout rate of 0.2 follows each
layer to prevent overfitting. Output from BLSTM layers
is inputted into a time distributed layer. Following the
time distributed layer are fully connected layers with the
same settings as in the CNN model.
To combine the learned features of the CNN and

RNN models, their fully connected layers and output
layers were stripped down after training and outputs
from the remaining layers of the two models were
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concatenated and inputted into two new fully connected
layers with 512 and 256 nodes as in the CNN and RNN
model. The models were implemented in Keras (https://
keras.io).

Peak calling to identify CAM peaks
Based on the nucleotide score signal of the class activa-
tion map (CAM) [24], we performed peak calling to
identify the bases with high intensity. We fitted a
smooth curve by non-parametric local polynomial re-
gression (LOESS) using α = 0.4 grade of smoothness.
This curve captured the trend of focal high intensity be-
cause the fitting was weighted toward the nearest sur-
rounding score values. Then, we called peaks for 40 bp
sliding windows.

Anchor orientation model to distinguish left and right
anchors
We constructed the anchor orientation model from
learned features of the anchor model. The two fully con-
nected layers of the anchor model were replaced by two
new fully connected layers of 256 and 128 nodes, re-
spectively. We then trained this model to distinguish left
and right anchors of insulator loops. Left and right an-
chors were considered as negative and positive samples,
respectively. The model is expected to produce values
close to 0 for left anchors and values close to 1 for right
anchors.

Loop model for learning sequence patterns of insulator
loops
We built DeepMILO by combining learned features of
the anchor and anchor orientation models as shown in
(Fig. 3b). The output layer of the anchor model was re-
moved, and the two fully connected layers were replaced
by two new layers with the same settings to make a new
sub-model. Then, the output from this new sub-model
was concatenated with outputs from the anchor and an-
chor orientation model. The loop model uses sequence
features of anchors and predicted outcomes from the an-
chor model and the anchor orientation model for its
prediction. In training, validation, and test sets, positive
samples are true insulator loop and negative samples
consists of non-loop types 1, 2, 3, 4, and 5 with a ratio
of 50%:10%:10%:20%:10%, respectively.
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