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Organisms use various forms and orientations of chitin nanofibres to make
structures with a wide range of functions, from insect wings to mussel shells.
Lophotrochozoan animals such as snails and annelid worms possess an
ancient ‘biomineralization toolkit’, enabling them to flexibly and rapidly
evolve unique hard parts. The scaly-foot snail is a gastropod endemic to
deep-sea hydrothermal vents, unique in producing dermal sclerites used
as sites of sulfur detoxification. Once considered to be strictly proteinaceous,
recent data pointed to the presence of chitin in these sclerites, but direct
evidence is still lacking. Here, we show that β-chitin fibres (approx. 5% of
native weight) are indeed the building framework, through a combination
of solid-state nuclear magnetic resonance spectroscopy, wide-angle X-ray
diffraction, and electron microscopy. The fibres are uniaxially oriented,
likely forming a structural basis for column-like channels into which the
scaly-foot snail is known to actively secrete sulfur waste—expanding the
known function of chitinous hard parts in animals. Our results add to the
existing evidence that animals are capable of modifying and co-opting
chitin synthesis pathways flexibly and rapidly, in order to serve novel func-
tions during their evolution.
1. Introduction
Chitin is a biopolymer produced by a wide range of organisms and in a great var-
iety of forms, such as mesh sheets and rods made of elementary crystalline
nanofibres [1,2]. Natural chitin nanofibres are arranged in a variety of orientations:
uniaxial orientation (e.g. squid pen and crab tendon), biaxial orientation (e.g. sibo-
glinid tubeworms), twisted plywood stack (e.g. lobster carapace), and isotropic
orientation (e.g. peritrophic membranes in arthropods, annelids and tunicates,
and mussel shells) [3–7]. These chitinous architectures facilitate the efficient
growth of inorganic domains [8] and serve as a backbone for the secretion of
inorganic (calcium carbonate or apatite) and organic (protein) compounds [9–12].

Inhabiting ‘extreme environments’ such as deep-sea hot vents requires
unique adaptations by the organisms, including the evolution of hard parts
that may have interesting properties. Lophotrochozoan animals such as mol-
luscs (such as snails, clams, and squids) and annelids (such as polychaete
worms and earthworms) possess an ancient ‘biomineralization toolkit’ that
can be traced to late Ediacaran or early Cambrian [13]. Previous studies indicate
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Figure 1. Scaly-foot snail in Solitaire hydrothermal vent field and its scales.
(a) Aggregations of the scaly-foot snail (red arrows) in situ in Solitaire field.
An adult individual of the scaly-foot snail is shown in the inset. (b) Scale in
the native state. (c) Schematic representation of scale.
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that by dynamically and flexibly modifying the expression
patterns of genes contained in this toolkit, these animals are
capable of rapidly evolving unique chitinous hard structures
during their evolution, in relatively short periods of time [14–
16]. In many cases, these hard parts are chitinous and animals
also modify and co-opt chitin synthesis pathways from exist-
ing hard parts to produce the new morphological features—
often with very different appearances and novel functions
[16]. Unravelling the chemical and structural properties of
chitinous scaffolds in such hard parts is expected to provide
new insights to their uses [17–19].

One significant example is the dermal sclerites in the
scaly-foot snail (Chrysomallon squamiferum [20]) found in a
number of deep-sea hot vents in the Indian Ocean, the only
gastropod mollusc possessing true dermal scales. These
imbricating scales were first thought to have a defensive pur-
pose [21,22], but recently their true function was revealed to
be a detoxification site used by the animal to actively secrete
sulfur waste [23], most likely from their sulfur-oxidizing
endosymbiont [24]. The scales are secreted from the base
(where they are attached to the foot), and growth is accre-
tionary in the longitudinal direction, similar to human
fingernails. The sulfur is secreted in column-like channels
within the scales, and in localities where the vent fluid is
iron-rich, the sulfur columns react with abiotically diffusing
iron ions to form iron sulfide nanoparticles [23], including
pyrite and greigite [25]. Those from the iron-rich Kairei
vent field, for example, become metallic black in appearance
from the crystallized iron sulfide particles, whereas those
from the iron-poor Solitaire vent field lack iron sulfide min-
erals and are whitish in colour [25].

Originally, the scales were considered to be proteinaceous
[21], but a recent genomic study has revealed high expression
of genes related to chitin secretion-like chitin synthase and
chitin-binding peritrophin-A in the scale-secreting epithelial
cells [14], suggesting that it is in fact a protein–chitin compo-
site similar to other biological structures such as molluscan
shells and arthropod exoskeleton [26]. Gene expression ana-
lyses of the scale-secreting tissue revealed that the animal
has likely co-opted chitin synthesis pathways from shell
secretion in order to serve as a framework for the scales,
although the expression patterns of the ‘biomineralization
toolkit’ genes were completely different [14]. Together,
these findings indicate the sclerite of the scaly-foot snail is
likely actually composed of an unusual chitinous framework,
but its chitinous nature has not been confirmed with direct
evidence. Chitinous hard parts are typically tools used for
predation, defence, locomotion, or structural support; using
such hard parts as a sulfur detoxification site is unknown
among animals. Here, based on spectroscopic and micro-
scopic observations of the scales, we examined the presence
of chitin fibres and their orientation in this unique biological
structure, in order to substantiate its position as a chitinous
novelty that expands the known functions of chitinous hard
parts in animals.
2. Methods
2.1. Materials
Scaly-foot snails with whitish sclerites in native, unaltered
condition were collected from the iron-poor Solitaire vent field
(19°33.410 S, 65°50.890 E, 2606 m depth, February 2013;
figure 1a) using a suction sampler mounted on the deep sub-
mergence vehicle (DSV) Shinkai 6500 during the R/V Yokosuka
cruise YK13-02. The snails (inset in figure 1a) were immediately
frozen in a –80°C freezer upon recovery on-board the research
vessel, until the scales were removed in the laboratory. The
average water temperature inside the scaly-foot snail colony
was 27 ± 6°C [27].

All reagents used were purchased from Nacalai tesque Inc.,
Fuji Film Wako Pure Chemical Co., Kanto Chemical Co. Inc.,
or Tokyo Kasei Industry Co. Ltd, and used as received. For
water source during the experiments, we used deionized water
from a Merck Milli-Q Integral 5.

2.2. Deproteination of scaly-foot snail’s scales
Three frozen scaly-foot snails were defrosted at room tempera-
ture and the whitish scales were removed using tweezers
(figure 1b,c). The scales were immersed in 70% ethanol and
sonicated for 3 min thrice to remove surface adsorbents includ-
ing bacteria, washed with ethanol and oven-dried at 60°C
overnight, resulting in brown-coloured dried scales. These
dried scales still contained some invaginating foot tissue,
and therefore the region near the root was trimmed off by a
scalpel.

Proteins were removed from the pre-cleaned scales as
reported [28]. In a glass beaker, 524.8 mg of dried scales were
immersed in 7% HCl aq (20 ml) overnight at room temperature.
The colourless solution was removed and washed with deio-
nized water, and 20 ml of 1 M NaOH aq was added to it. The
solution became yellow after 4 h of immersion, after which the
solution was replaced with fresh NaOH aq. The replacement
was performed thrice, once every 12 h, resulting in transparent
scales in the end. The scales were then immersed in water for
3 h, washed again with clean water, dehydrated in a graded etha-
nol series (50–100%), substituted with t-butanol, and freeze-dried
to obtain deproteinated scales (30.3 mg), which were whitish to
brownish in colour. The removal of protein from white-coloured
scales of the scaly-foot snail in an alkaline solution yielded trans-
parent gels, which were sufficiently stiff for handling with
tweezers, and further drying yielded dried solid scales white
to brown in coloration. The scales retained their original shape
but the width and height shrunk to 72 ± 6% and 65 ± 18% (aver-
age ± s.d., N = 6), respectively, and the total weight of the scales
decreased to 5.8%. Optical micrographs were obtained using a
Keyence VHX-5000 equipped with a VH-ZST zoom lens at
each step of the chemical treatment. As a reference, a squid
pen (the gladius) of a Japanese flying squid (Todarodes pacificus)
was deproteinated in the same manner.
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2.3. Scanning electron microscopic observation
Scanning electron microscopy (SEM) imaging with energy-
dispersive X-ray spectroscopy (EDS) analyses were performed
on a Helios G4 UX (Thermo Fisher Scientific) equipped with
an Octane Elite Super EDS detector (AMETEK) in Japan
Agency for Marine-Earth Science and Technology (JAMSTEC).
The SEM–EDS was operated at a landing voltage of 1 kV for
SEM imaging and 20 kV for elemental analyses without any con-
ductive coating. A dried, deproteinated scale was mounted on an
aluminium pin stub using a piece of double-sided carbon tape
(Okenshoji Inc.). The mounted scale was fractured using
tweezers to expose its cross-section.

2.4. Spectroscopic mapping
Microscopic transmission Fourier-transform infrared (FT-IR)
spectroscopy mapping images were collected on a JASCO FT/
IR-6200 type-A spectrometer equipped with an IRT-7000 IR
microscope. The deproteinated and dried scales were placed on
a fluorite plate and spectra were collected in a spectral range
from 1000 to 4000 cm–1 with a spatial pixel resolution of 50 ×
50 µm. Spectra were recorded at a spectral resolution of 4 cm–1

with 128 times of integration.

2.5. Wide-angle X-ray diffraction and small-angle X-ray
scattering

Wide-angle X-ray diffraction (WAXD) experiment was per-
formed using a NANO VIEWER (Rigaku Japan) at 40 kV and
40 mA or a Nanopix (Rigaku Japan) at 40 kV and 30 mA
with monochromatized and collimated Cu Kα radiation (λ =
1.548 Å). Small-angle X-ray scattering (SAXS) was carried out
with synchrotron radiation at the BL40B2 beamline of SPring-8
(Hyogo, Japan), using a native scaly-foot snail scale mounted
on a goniometer head. The X-ray (λ = 1.0 Å) was irradiated for
10 s. The distance between the sample and the imaging plate
(3191.1 mm) was calibrated using silver behenate powders (d =
5.838 nm) [29]. The obtained WAXD diagram was converted to
a one-dimensional azimuthal profile using Rigaku 2DP software.
The degree of orientation (DO) was calculated from the azi-
muthal profile of the reflection at 2θ = 8.8° using the following
equation: DO = (180°− FWHM)/(180°), where FWHM is the
full width at half maximum.

2.6. Solid-state nuclear magnetic resonance
Native whitish scales were ground to powder in a ceramic
mortar. Deproteinated scales were difficult to grind and were
instead cut into small flakes by scissors and scalpels. 13C cross-
polarization (CP) magic-angle spinning (MAS) solid-state
nuclear magnetic resonance (NMR) spectra were acquired on a
JEOL JNM-ECAII 500 spectrometer equipped with 3.2 mm
HXMAS probe and ZrO2 rotor at 125.77 MHz. The 90° proton
decoupler pulse width, contact time, relaxation delay and spin-
ning frequency were 2.5 µs, 2 ms, 5 s and 15 kHz, respectively.

2.7. Observation of gold-stained scale
A piece of the native, whitish scale from the scaly-foot snail was
cut into two pieces along with the longitudinal axis to enhance
the chemical treatment of the internal surface, following the con-
ventional procedure of periodic acid–methenamine silver (PAM)
staining of polysaccharides with gold chloride in an Eppendorf
tube [30]. The colour of the scales changed from cream to red
after immersion in thiosemicarbazide solution. After methena-
mine–silver nitrate treatment, the pieces were immersed in
sodium tetrachlorogold solution for 5 min followed by washing
with Na2S2O5 solution for 5 min and three times in water. The
resulting wet sample was dehydrated in a graded ethanol
series and embedded in epoxy resin (TAAB) following Luft’s
method [31]. The resin blocks were trimmed with a razor and
sliced to 100 nm and 1 µm thick sections using an ultramicro-
tome (Ultracut S or EM UC7, Leica) with a diamond knife (45°,
Diatome), and collected on a formvar-supported Cu/Rh grid
mesh.

The 1 μm thick sections were imaged in SEM–EDS using a
scanning transmission electron microscopy (STEM) detector,
and the 100 nm thick sections were imaged using a transmission
electron microscope (TEM). In the STEM imaging, the grid was
fixed with an aluminium jig, resulting in strong background sig-
nals of aluminium. TEM imaging was performed on Tecnai G2
20 (Thermo Fisher Scientific) operating at 200 kV and equipped
with a bottom-mounted 2 k × 2 k Eagle charge-coupled device
(CCD) camera (Thermo Fisher Scientific). Image montage was
manually prepared using Affinity Photo 1.9.1 and sizes were
measured and analysed using ImageJ 2.1.0/1.53c [32].
3. Results
3.1. Identification of chitin in the native scaly-foot

snail scale
First, the presence of crystalline chitin in the native scale of
scaly-foot snail was detected via solid-state 13C CP/MAS
NMR spectroscopy (figure 2a), the pulse sequence of which
was optimized for the detection of crystalline polysaccharides
such as cellulose [33]. The NMR spectrum was in good agree-
ment with that of chitin: chemical shifts at 22.4–23.5 (acetyl
CH3), 54.5–55.7 (C2), 60.2–61.4 (C6), 73.9–75.0 (C3 and C5),
102.8–104.0 (C1) and 173.0–174.0 (C=O) ppm [34–37]. The
signals originating from proteins were not noticeable in the
spectrum of the native scale, despite the high protein content
of about 95% (see Methods section). Such absence of signals
was also observed in the 13C CP/MAS spectrum of the chit-
inous tube of a deep-sea siboglinid tubeworm. It is possible
that efficient magnetization transfer to carbon atoms in the
proteins in the scale may not have taken place with the
pulse sequence used in this study. However, the reason
behind their absence remains unclear [34].

To further understand the crystalline structure and the
alignment of chitin fibres in the scales, WAXD (figure 2b–d)
was performed. Diffraction profiles of the native scale at differ-
ent positions (figure 2b) showed broad peaks centred around
2θ = 8.8° and 20–25° originating from chitin, accompanied by
several sharp peaks positioned between 2θ = 20° and 45°, all
indexed with barite crystal (BaSO4), one of the possible min-
erals naturally precipitating from the Solitaire vent fluid [38].
As the scales grow from the root, the distal parts near the tip
are older and have been exposed longer to vent fluids in the
environment [27]; this enrichment pattern is therefore in agree-
ment with the secretionmechanism of the scale [39]. Due to the
broad nature of peaks from chitin in the native-state scales, it is
difficult to distinguish the chitin crystal allomorph in the native
scale, namely α or β [40,41], from these data alone.

The two-dimensional X-ray diffraction diagram (figure 2c)
displays the alignment of chitin. The reflections from chitin
crystal were observed as equatorial reflection spots in the
native scale (arrows in figure 2c), whereas all the barite-
originated reflections were present as ring-shaped powder dif-
fraction pattern. The azimuthal profile of the reflections
centred at 2θ= 8.8° (figure 2d) clearly shows the unidirectional
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Figure 2. Characterization of the crystalline component of native scaly-foot
snail’s scale. (a) 13C CP/MAS NMR spectrum of the native scale. (b) WAXD
patterns of native scaly-foot snail scales at different positions. (c) Diffraction
pattern of a native scale taken at the centre in the through-view direction as
depicted in schematic image. Reflections at 2θ = 8.8° of chitin are indicated
with arrows, and azimuthal angle χ is indicated. (d ) Azimuthal plot of reflec-
tions at 2θ = 8.8° of chitin. The line shape was fitted by a Gaussian function
represented by solid lines in grey, and the full width at half maximum was
calculated. (e) STEM image of thin section of PAM-stained scale sectioned
perpendicular to the longitudinal direction. The orientation of the scale is
noted in the inset by letters and arrows: L, longitudinal; W, width; H,
height. ( f ) STEM–EDS (Au L) mapping of a semi-thin section using another
thin section of (e).
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alignment of chitin nanofibres along the secretion direction with
a DO of approximately 70%, which was calculated from full
width at half maximum of the azimuthal profile.

The spatial distribution of the chitin fibres within the
native scale was further imaged in STEM using the PAM
staining method, in which chitin fibres were stained with in
situ generated gold nanoparticles (figure 2e,f ). The imaging
was performed on thin sections sliced perpendicular to the
longitudinal axis of the scale. The white spots in STEM
image and orange spots in EDS mapping image represent
the gold particles bound to chitin. The gold particles were
located in close proximity to each other, implying an aggre-
gated layer structure of chitin with a thickness of several
tens of micrometres.

Additionally, SAXS measurement of the native scale
revealed uniaxial alignment on a larger scale (up to 200 nm;
electronic supplementary material, figure S1). The two-
dimensional X-ray scattering diagram showed uniaxial
orientation along the secretion direction, evidenced by the
ellipsoidal shape scattering pattern (electronic supplementary
material, figure S1a). The diffraction profile obtained from the
equatorial direction (I(q) versus q; electronic supplementary
material, figure S1b) and Kratky plot thereof (q2 · I(q)
versus q; electronic supplementary material, figure S1c)
exhibited two peaks at 0.0067 and 0.0115 Å−1, indicating the
periodicity of 90 and 55 nm, respectively. These do not
arise from the chitin nanofibres themselves but from the pre-
viously reported uniaxially aligned sulfur-rich columns in the
scale, mostly 100–150 nm in diameter with some at 50 nm or
less [17].

3.2. Characterization of chitin in the deproteinated
scaly-foot snail scale

To further analyse chitin in the scale, inorganic and abundant
protein components were removed through a mild acid–base
treatment (figure 3a). Transmission FT-IR mapping of the
deproteinated scale was performed to investigate the spatial
homogeneity of chitin fibres along the width direction
(figure 3b,c). Characteristic bands at approximately 3450
(OH stretch), approximately 3280 (N–H stretch), 1620–1670
(amide-I) and 1555 cm–1 (amide-II) were found, which
matched well with the spectra of chitin from the squid pen
[42,43]. The IR spectral patterns at different positions were
similar with regards to their line shape, relative intensity
among peaks, and peak position, indicating the deproteinated
scale principally consists of chitin.

The solid-state NMR spectrum of the deproteinated scale
was almost identical to that of the native-state scale (elec-
tronic supplementary material, figure S2), indicating that
after the mild acid–base treatment the chitin structure was
maintained. The degree of acetylation (DA) was calculated
from the spectrum of the native scale to be 83% by
DA (%) = (Iacetyl CH3/IC1) × 100, where Iacetyl CH3 and IC1
denote relative integrals of corresponding carbon signals
[44], which is in accordance with that of chitin in insects
and molluscs [45,46].

In the WAXD profiles (figure 3d ), a characteristic peak
stood out at 2θ = 8.5° upon the removal of proteins. This
reflection corresponds to a d-spacing of 10.4 Å, which is
indexed as (010) plane of the monohydrate of β-chitin
[36,47]. The formation of hydrates is one of the unique charac-
teristics in β-chitin, with which one can distinguish the
chitin allomorphs [48]. Owing to the absence of hydrogen
bonds between hydrophobically stacked molecular sheets in
the β-chitin crystal, β-chitin can incorporate water molecules
between molecular sheets upon hydration, leading to the
expansion of d-spacing along [010] direction from 9.2 Å
(2θ = 9.6°, anhydrous [41,47,49]) to 10.4 Å (2θ = 8.5°, monohy-
drate [36,47]) or 11.1 Å (2θ = 8.0°, dihydrate [36,47,50]), while
no such peak shift is observed when α-chitin is hydrated.
However, this method is not effective for poorly crystalline
samples (small crystal size or low crystallinity), as the
width of the peak increases upon hydration and makes it dif-
ficult to detect the hydration-induced peak shift. Recently, we
developed a novel method [51] based on the incorporation of
ethylenediamine (EDA) into chitin crystals [52–54]: both α-
and β-chitin show a clear peak shift originating from the
incorporation of EDA molecules between hydrophobically
stacked molecular sheets, but the d-spacing is wider in the
case of β-chitin due to the absence of hydrogen bonds
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between molecular sheets, exhibiting d-spacing of 14.4 Å
(2θ = 6.1°, (010) plane of type II β-chitin EDA complex [53])
and 11.4 Å (2θ = 7.8°, (020) plane of α-chitin EDA complex
[52]). With this EDA complexation method, the lowest peak
position of the deproteinated scale shifted to 2θ = 6.2°
(figure 3e), confirming that chitin in the scaly-foot snail’s
scales is indeed the β form. This β-chitin exists in the form
of nanofibres with a diameter of 7–50 nm observed in the
high-resolution SEM images of the mechanically fractured
cross-section (figure 3f,g) showing the bundled nanofibrous
structure, mostly oriented along the longitudinal axis. Note
that the drying process inevitably caused aggregation
of adjacent fibres, and the fibre diameter does not necessa-
rily reflect the true diameter of chitin fibres within
native-state scales.

It should be noted that the peaks from barite crystals
stood out more strikingly in WAXD profiles after the removal
of proteins, due to the insoluble nature of barite crystals.
SEM–EDS analyses of the deproteinated scale (electronic sup-
plementary material, figure S3) revealed that they were
carbonaceous, with white powders of barite containing
other alkaline earth metals attached, difficult to remove
through chemical treatment without damaging the organic
material. The presence of barite particles implies that our
measured weight of the deproteinated scale is a slight over-
estimation and the weight ratio of the organic fibres may be
less than 5% of the native scale.
4. Discussion
Our results show that chitin is the central scaffolding material
used in the scales of scaly-foot snail, unambiguously confirm-
ing that the scale is a protein–chitin composite and not purely
proteinaceous as previously thought. The whole-genome
assembly of the snail [14] revealed an expansion of gene
families related to chitin-related metabolic processes and
chitin binding, in line with our results. The snail possesses
a diverse range of chitin synthases ranging from type I to
four groups (A–D) of type II, with a paralogue of the type-
IIC chitin synthase being especially dominant in the scale-
secreting epithelium [14]. Our results confirm this chitin
synthase does indeed produce chitin to build the organic fra-
mework. Different types of chitin synthase were highly
expressed in the scale-secreting epithelial cells compared to
the shell-secreting mantle cells, suggesting the scales may
produce chitin in a different manner from the shell.

Linear polysaccharides such as cellulose and chitin have a
molecular direction: one end is the reducing end and the
other is the non-reducing end. Chitin crystals are categorized
into α or β according to this molecular directionality. While
the molecular direction of adjacent chitin chains is opposite
in α-chitin (anti-parallel packing), all chitin molecules align
in the same direction in β-chitin (parallel packing). It is
known that the extension of β-chitin always occurs at the
non-reducing end [55,56]. The production of β-chitin in
scaly-foot snail scales is in accordance with the accretionary
secretion mechanism of the scale from the root: chitin
chains are secreted from one end (the scale-secreting epi-
thelium at the root), resulting in the same molecular
direction for all fibres and generating uniaxially oriented β-
chitin. In the case of the scaly-foot snail scales, the extension
must be occurring at the root, where the scale-secreting epi-
thelium is located [23]. The scales exhibit uninterrupted
sulfur-enriched columns proposed to be a detoxification site
[23], and the uniaxially oriented β-chitin framework likely
helps with the formation of these column-like structures.

Our results also show that about 95% of the scale is not
comprised of chitin. From gene expression analyses of the
scaly-foot snail [17], we know that the paralogues of
the chitin-binding peritrophin-A were especially highly
expressed in the scale-secreting epithelium, indicating the
protein product(s) of this gene is likely a major component
of the other 95%. How exactly the gene product(s) interact
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with chitin to form the final sclerite structure, however,
warrants future studies.
oyalsocietypublishing.org/journal/rsif
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5. Conclusion
We revealed that β-chitin is a key structural component of
scaly-foot snail scales, through a combination of solid-state
NMR, WAXD, and electron microscopy. The weight ratio of
chitin comprised approximately 5% of the scale’s total dry
weight, while the other 95% is likely proteinaceous. β-
Chitin is present in the form of uniaxially oriented fibre bun-
dles elongated from the root outwards in the longitudinal
axis, likely acting as a structural basis for forming sulfur-
enriched columns along the same axis into which the snail
is known to actively secrete sulfur waste. Chitin-based hard
parts serve a wide range of functions in different organisms,
and here they likely assist in detoxification of sulfur waste
from endosymbiosis. By confirming that the scaly-foot
snail’s unique sclerites are chitinous in nature, our results
expand the function of chitinous hard parts and add to the
evidence that animals are capable of modifying and co-
opting chitin synthesis pathways flexibly and rapidly in
order to serve novel functions during evolution.
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