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Abstract: The interest in 3,4-dihydropyrimidine-2(1H)-(thio)ones is increasing every day, mainly due
to their paramount biological relevance. The Biginelli reaction is the classical approach to reaching
these scaffolds, although the product diversity suffers from some limitations. In order to overcome
these restrictions, two main approaches have been devised. The first one involves the modification
of the conventional components of the Biginelli reaction and the second one refers to the postmodi-
fication of the Biginelli products. Both strategies have been extensively revised in this manuscript.
Regarding the first one, initially, the modification of one of the components was covered. Although
examples of modifications of the three of them were described, by far the modification of the keto ester
counterpart was the most popular approach, and a wide variety of different enolizable carbonylic
compounds were used; moreover, changes in two or the three components were also described,
broadening the substitution of the final dihydropyrimidines. Together with these modifications, the
use of Biginelli adducts as a starting point for further modification was also a very useful strategy to
decorate the final heterocyclic structure.

Keywords: 3,4-dihydropyrimidinones; Biginelli; multicomponent reactions; privileged structures;
biological activity

1. Introduction

The recurrent presence of some structural fragments in biologically important com-
pounds and drugs with diverse biological activities was used by Evans to introduce the
term “privileged structures” in 1988 [1] (later updated by Patchett and Nargund) [2]; these
scaffolds are able to interact with more than one receptor or enzyme, playing a relevant
role as a starting point in the drug discovery process. Among the fragments labelled as
“privileged structures”, 3,4-dihydropyrimidinones (DHPMs) and their derivatives occupy
a prominent place; these cores are of immense biological importance; play an important
role as essential building blocks in the synthesis of DNA and RNA, and subtle changes in
their structure provide a wide range of biological activities such as anti-inflammatory, anti-
HIV, anti-tubercular, antifungal, anticancer, antibacterial, antifilarial, antihyperglycemic,
antihypertensive, analgesic, anticonvulsant, antioxidant, anti-TRPA1 or anti-SARS, among
others [3–10]; it is not surprising that the popularity of DHPMs lasts until present days,
and the development of new methodologies to access these structural motifs is always of
high interest [11–14].

Emblematic examples of DHPM-derivatives are monastrol and its derivatives enastron
and piperastrol [15]; these compounds inhibit Kinesin-5, a protein involved in the regulation
and function of mitosis, and are considered promising targets in cancer chemotherapy
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(Figure 1A–C). 5-Fluorouracil [16], due to its analogy with uracil, inhibits DNA formation
by irreversible union with thimidilate synthase enzyme, inducing cell death (Figure 1D).
After the discovery of the antitumoral properties of 5-fluorouracil, the incorporation of
fluorinated moieties into organic molecules became a fundamental strategy in medicinal
chemistry. (S)-L-771688 is the first α1a-adrenoceptor selective antagonist to be tested
in the clinic for the treatment of benign prostatic hyperplasia (Figure 1E) [17]. (R)-SQ
32926, considered a close structural analog of the therapeutically widely used calcium
channel blockers of the 1,4-dihydropyridine type (e.g., nifedipine) displayed interesting
hypertensive properties (Figure 1F) [18]. Nitractin is highly effective against trachoma
virus and also shows some antibacterial activity (Figure 1G) [19]. Idoxuridine, initially
developed as an anticancer drug, became an antiviral agent used for the topical treatment
of herpes simplex keratitis (Figure 1H) [20]. Batzelladine A belongs to a family of polycyclic
guanidine alkaloids that inhibit the binding of HIVgp-120-CD4 (Figure 1I) [21]. Finally,
emivirine was developed as an agent for the treatment of HIV as a non-nucleoside reverse
transcriptase inhibitor (Figure 1J) [22].
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The classical approach to accessing DHPM derivatives is the Biginelli reaction. Initially,
it involved the acid-catalyzed cyclocondensation of a urea or thiourea 1, aromatic aldehyde
2, and a beta-keto ester 3 (Scheme 1). First described in 1893 [23,24], it remained almost
unexplored until the 1980s when the power of multicomponent reactions was recognized as
a useful tool for medicinal chemists. The convergent character, operational simplicity, easily
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accessible and molecular diverse starting materials as well as the atom economy of this
transformation make the Biginelli reaction one of the most important multicomponent pro-
cesses in drug discovery, that continuously attracts research interests due to the occurrence
of DHPMs in biologically active products and drugs. On account of this research activity, a
wide variety of methodologies have been devised for the racemic and asymmetric Biginelli
reaction, together with a big number of reaction conditions that involved homogeneous
and heterogeneous catalysis, the use of ionic liquids as the solvent, immobilized catalysts
in solid supports or the use of microwave irradiation [25–36]. Additionally, a big number of
variants of this multicomponent reaction that gain access to novel DHPMs by modification
of the original fragments in a multicomponent or step-wise manner have been described.
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Scheme 1. Classical Biginelli reaction.

The Biginelli reaction was thoroughly reviewed from both, synthetic and pharmacological
points of view, covering all the literature advancements in this field. In contrast, Biginelli-like
reactions, where one or more components of the multicomponent process were modified,
were only treated by Jie-Ping Wan in 2010 [10]. Therefore, the present review summarizes
other routes to access DHMPs beyond the Biginelli reaction updating the new methodolo-
gies developed to this end. The classification of the review is depicted below: Section 2:
Modification of the urea counterpart. Section 3: Modification of the aldehyde counterpart.
Section 4: Modification of the ketoester counterpart—Section 4.1: Diketones as ketoester
component; Section 4.2: β−Keto amides as ketoester component; Section 4.3: β−Keto acids
as ketoester component; Section 4.4: Ketones as keto ester component; Section 4.5: Other
different substrates as keto ester component. Section 5: Modifications of two components.
Section 6: Modifications of all components—Alternative routes to dihydropyrimidinones.
Section 7: Structure diversification of 3,4-dihydropyrimidin-2-(1H)-(thio)one derivatives.

2. Modification of the Urea Counterpart

The first important change of the urea counterpart in a Biginelli-type reaction was the
Atwal modification [37–39]. In this approach, O,S-substituted isoureas 5 together with a pre-
formed unsaturated carbonyl compound 6 were condensed in a basic medium (Scheme 2).
Through this methodology, it was possible to improve the efficiency of the Biginelli synthe-
sis, especially with aliphatic and aromatic aldehydes slightly hindered by ortho-substituents.
The unsaturated carbonyl compound 6 was obtained via Knoevenagel condensation from
the corresponding β-keto esters 3 and aldehydes 2 in a separated synthesis.
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Scheme 2. Atwal modification of the Biginelli synthesis.

Using this approach, Rovnyak et al. prepared uniquely designed dihydropyrimidines
8–10 starting from conveniently functionalized α-benzylidene β-keto esters 6; these deriva-
tives were synthesized in order to establish structural and conformational determinants in
calcium channel modulation (Scheme 3) [40].
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Scheme 3. Structural and conformational restrictions of calcium channel modulators 8–10.

However, preformation of the α-benzylidene β-keto esters was not mandatory in all
cases and the classical three-component reaction could be performed directly in a basic
medium using O-methyl isourea 5, ethyl acetoacetate 3 and substituted benzaldehydes 2
to form DHPMs 11 (Scheme 4); these compounds were derivatized through the selective
reaction with phenacyl bromides 12 at N3, to obtain derivatives 13 that showed good
antihypertensive, anti-inflammatory, and analgesic activity, as well as low ulcerogenic
activity. The N3 selectivity could be a consequence of the richer electron density of N3
compared to N1 [41].
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Some other variations of the urea component in Biginelli-like reactions include the
use of guanidine to obtain 2-amino-1,4-dihydropyrimidines, however, the direct three-
component Biginelli reaction with guanidine is useful only with benzoyl acetates and aryl
aldehydes, and fails to give useful yields using acetoacetates. A more general Biginelli-
based method for preparing 2-imino-5-carboxy-3,4-dihydropyrimidines 18 was developed
by Nilsson and Overman in 2006 [42]. Two alternatives are shown in Scheme 5, starting
from pyrazole carboxamidine 14 in a four-step sequence, or starting from the triazone-
protected guanidine 15 in a two-step sequence. Both alternatives utilize acetoacetates 3 and
are compatible with aliphatic aldehydes.
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Ultrasound irradiation has also been used to promote the direct three-component
Biginelli reaction with guanidine hydrochloride, acetoacetates and aromatic aldehydes [43].

At the beginning of the XXI century, the Biginelli reaction was extended by replacing
the urea component with 5-amino-1,2,4-triazoles. Theoretically, four possible compounds
could be obtained taking into account two regioisomers with or without dehydration. In fact,
3-alkylthio-5-amino-1,2,4-triazoles 19 gave two different dihydrotriazolo-pyrimidines 20 and
21 (Scheme 6), the selectivity strongly depending on the substitution of the reactants [44].
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N-Substituted ureas and thioureas have also been used in Biginelli-like reactions [45–47].
Inspired by the mechanisms of biocatalysts, in 2016, the Saá research group developed the
concept of noncovalent organocatalysis by means of networks of cooperative hydrogen bonds,
utilizing arylideneureas 22 in the asymmetric reaction with ethyl acetoacetate 3 (Scheme 7).
Arylideneureas can act as donor-acceptor in hydrogen bonds, thus they are capable of assem-
bling with the chiral catalyst I and at the same time activate the nucleophile, rendering final
DHPMs 4 with excellent enantioselectivities [48].
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Scheme 7. Arylideneureas 22 as substrates in the asymmetric synthesis of DHPMs 4.

The use of selenourea 23 as the starting material is one of the most efficient methods
for the synthesis of selenium-containing heterocycles [49], and it has been used to prepare
selenoxopyrimidines 24 by means of a one-pot multicomponent reaction with ethyl acetoac-
etate 3 and aromatic aldehydes 2 in acidic medium (Scheme 8). The synthesized compounds
were shown to possess a significant antimicrobial and anticancer activity in vitro [50].
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Finally, NH-free sulfonimidamides 25 have also been used as the urea component in
Biginelli-type multicomponent reactions (MCRs), to provide 2,3-dihydro-1,2,6-thiadiazine
1-oxides 26, generally in high yields (Scheme 9). As the sulphur in sulfonimidamides is
stereogenic the reaction produces two diastereoisomers with variable selectivities. The
couplings are performed in a planetary ball mill (PM) under solvent-free mechanochemical
conditions, catalysed by acetic acid or ytterbium triflate [51].
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3. Modification of the Aldehyde Counterpart

The original Biginelli reaction was described with aromatic aldehydes. Although the
reaction with aliphatic aldehydes is less efficient, their participation in this MCR is now
widespread and, in this section, the use of aliphatic aldehydes will not be considered as a
modification of the aldehyde component.

The first reported example of a modification at the aldehyde building block in the
Biginelli reaction was the use of acylals 27 [52]; this masked carbonyl functionality, together
with ethyl acetoacetate 3 and urea or thiourea 1 were employed to give dihydropyrimidi-
nones 4 under acid catalysis. The reaction was catalyzed by 12-tungstophosphoric acid
(PW), 12-molybdophosphoric acid (PMo) or zinc chloride and performed in a one-pot
procedure under solvent-free conditions (Scheme 10).
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The best conditions to prepare the DHPMs were achieved when 10 mol%, 20 mol%,
and 80 mol% of PW, PMo, and ZnCl2 were used, respectively; these optimum conditions
were applied to a series of substituted aromatic acylals 27 observing that with electron-
donating containing substituents the reaction proceeded faster and gave high yields in
short reaction times.

Stucchi et al. described the use of N-substituted isatins 28 as carbonyl substrates in an
asymmetric, Brønsted acid catalyzed Biginelli-like reaction [53]. The use of BINOL-derived
phosphoric acid catalyst II allowed the authors to obtain enantioenriched spiro(indoline-
pyrimidine)-diones derivatives 29 in moderate-to-good yields (Scheme 11).



Pharmaceuticals 2022, 15, 948 8 of 63Pharmaceuticals 2022, 15, 948 8 of 65 
 

 

 
Scheme 11. Synthesis of spiro(indoline-pyrimidine)-diones 29. 

The halogen substitution at the aryl ring had little effect on both yield and ee. Like-
wise, methyl and benzyl acetoacetates provided similar results leading to good yields and 
moderate ee’s in the final products; however, the N-Me isatin gave a better result than the 
corresponding N-benzyl, N-p-nitrobenzyl, and N-p-methoxybenzyl ones in terms of yield 
(93% to up to 63%), although suffering a drop in ee (50% to up to 80%). Surprisingly, nei-
ther thiourea in place of urea nor various linear or cyclic β-diketones instead of alkyl aceto-
acetates gave good results. With thiourea, no reaction occurred, whereas, with β-
diketones, a complex mixture of products was obtained. 

Recently, A. A. Malik and coworkers described the synthesis of dihydropyrimidones 
4 via sequential Kornblum oxidation/Biginelli reaction [54]. The method involves the in-
situ generation of benzaldehydes 2 from benzyl halides 30, under catalyst-free conditions, 
which were subsequently converted into dihydropyrimidones 4 in a one-pot manner un-
der microwave (MW) irradiation (Scheme 12). 

 
Scheme 12. Synthesis of DHPMs 4 from benzyl bromides 30 as the aldehyde component. 

The key step for this transformation was the oxidation of benzyl halide to aldehyde 
using Kornblum oxidation conditions [55]. The best synthetic results for this oxidation 
were obtained when the reaction was performed under microwave irradiation at 80 °C 
using DMSO as the solvent and in the absence of a catalyst. Under these conditions, the 
tandem one-pot synthesis of dihydropyrimidones was achieved by reacting benzyl bro-
mide (1.0 mmol) in the presence of urea (1.0 mmol) and ethyl acetoacetate (1.2 mmol) in 
1.5 mmol of DMSO. 

The scope of the reaction was evaluated using different substituted benzyl halides. 
In general, both electron-withdrawing and electron-releasing substituents attached to the 
benzyl substrate reacted successfully and afforded the desired products in good yields; 
however, benzyl substrates with electron-withdrawing substituents needed more time for 
completion with lower yields compared to benzyl halides with electron-releasing groups. 

The product purification through aqueous recrystallization avoids the use of large 
quantities of volatile and toxic organic solvents, which makes the method environmen-
tally and nature-friendly. 

  

Scheme 11. Synthesis of spiro(indoline-pyrimidine)-diones 29.

The halogen substitution at the aryl ring had little effect on both yield and ee. Likewise,
methyl and benzyl acetoacetates provided similar results leading to good yields and
moderate ee’s in the final products; however, the N-Me isatin gave a better result than
the corresponding N-benzyl, N-p-nitrobenzyl, and N-p-methoxybenzyl ones in terms of
yield (93% to up to 63%), although suffering a drop in ee (50% to up to 80%). Surprisingly,
neither thiourea in place of urea nor various linear or cyclic β-diketones instead of alkyl
acetoacetates gave good results. With thiourea, no reaction occurred, whereas, with β-
diketones, a complex mixture of products was obtained.

Recently, A. A. Malik and coworkers described the synthesis of dihydropyrimidones
4 via sequential Kornblum oxidation/Biginelli reaction [54]. The method involves the in-
situ generation of benzaldehydes 2 from benzyl halides 30, under catalyst-free conditions,
which were subsequently converted into dihydropyrimidones 4 in a one-pot manner under
microwave (MW) irradiation (Scheme 12).
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Scheme 12. Synthesis of DHPMs 4 from benzyl bromides 30 as the aldehyde component.

The key step for this transformation was the oxidation of benzyl halide to aldehyde
using Kornblum oxidation conditions [55]. The best synthetic results for this oxidation were
obtained when the reaction was performed under microwave irradiation at 80 ◦C using DMSO
as the solvent and in the absence of a catalyst. Under these conditions, the tandem one-pot
synthesis of dihydropyrimidones was achieved by reacting benzyl bromide (1.0 mmol) in the
presence of urea (1.0 mmol) and ethyl acetoacetate (1.2 mmol) in 1.5 mmol of DMSO.

The scope of the reaction was evaluated using different substituted benzyl halides.
In general, both electron-withdrawing and electron-releasing substituents attached to the
benzyl substrate reacted successfully and afforded the desired products in good yields;
however, benzyl substrates with electron-withdrawing substituents needed more time for
completion with lower yields compared to benzyl halides with electron-releasing groups.

The product purification through aqueous recrystallization avoids the use of large
quantities of volatile and toxic organic solvents, which makes the method environmentally
and nature-friendly.
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4. Modification of the Keto Ester Counterpart
4.1. Diketones as the Keto Ester Component

1,3-diketone compounds have been extensively used as substrates for the Biginelli
reaction as the enolizable component. We will review below the most representative examples.

Shaabani and coworkers described the use of ammonium chloride as a catalyst in a
one-pot Biginelli condensation reaction of aldehydes 2, 1,3-dicarbonyl compounds 31, and
urea or thiourea 1 under solvent-free conditions [56]. The best results were obtained with
a 0.5:1:1:1.5 ratio of ammonium chloride, aldehyde, 1,3-dicarbonyl compound, and urea
or thiourea. Particularly, the use of acetylacetone as the dicarbonyl compound afforded
the corresponding 3,4-dihydropyrimidin-2-(1H)-ones 32 with good yields, under these
conditions (Scheme 13).
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Montmorillonite has also been used as an efficient environmentally friendly catalyst for
the synthesis of 3,4-dihydropirimidine-2(1H)-ones under one-pot three-component Biginelli
reaction under solvent-free conditions. The use of acetylacetone as the 1,3-dicarbonyl
counterpart afforded the corresponding product in good yield [57].

More recently, the use of acetylacetone as substrate in a one-pot synthesis of 3,4-dihydrop
yrimidin-2-(1H)-ones and 3,4-dihydropyrimidin-2-(1H)-thiones catalyzed by Bi(NO3)3·5H2O
or ZrCl4, respectively, under solvent-free conditions, was reported by Matias et al. [58,59].
The in vitro antiproliferative activity and QSAR studies of the synthesized compounds were
also described.

Gartner et al. published the synthesis and biological evaluation of several analogs
of monastrol. The different analogs were synthesized as racemic mixtures by using the
Biginelli reaction [60]. The most potent analogs, with enhanced inhibition of Mitotic
Kinesin Eg5 compared to monastrol, were those named by the authors as enastron 34,
dimethylenastron 35, and enastrol 36 (Scheme 14). The irradiation of a mixture of a cyclic
diketone 33, 3-hydroxybenzaldehyde, and thiourea, in a domestic microwave oven, together
with the use of polyphosphate ester (PPE) afforded enastron 34 and dimethylenastron 35
with moderate yields. Enastrol 36 was synthesized as a 3:1 diastereomeric mixture from
enastron 34 by selective Luche reduction [61] of the 5-carbonyl function (Scheme 14).
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The most potent compound, dimethylenastron 35, is up to more than 100-times more
potent than monastrol, both in vitro and with arresting mitosis of cultured cells; these novel
inhibitors have the potential to be interesting anticancer drug candidates.

Independently, Kidwai and coworkers described the synthesis of 4-aryl-7,7-dimethyl-
1,2,3,4,5,6,7,8-octahydroquinazoline-2-one/thione-5-one derivatives 37 using a Biginelli
reaction in the absence of solvent and catalyst and under microwave irradiation, employing
neat reaction conditions (Scheme 15) [62]. The use of aromatic aldehydes 2, urea/thiourea
1, and 5,5-dimethyl- 1,3-cyclohexanedione 33 (dimedone) as the 1,3-dicarbonyl compound,
led to the corresponding quinazoline derivatives 37 in good yields. The synthesized
compounds were screened for their in vitro antibacterial activity against standard strains
of Staphylococcus aureus, Escherichia coli and Pseudomonas aeruginosa.
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Later, Abnous and coworkers reported the synthesis of six Biginelli compounds
through one-step Biginelli reaction of dimedone 33 with three imidazole aldehydes, and
urea or thiourea using chlorotrimethylsilane (TMSCl) as a catalyst. The products were
evaluated for their in vitro cytotoxicities and their inhibitory effects on ATPase activity of
kinesin [63].

Following a similar process, Niralwad et al. described the microwave-assisted one-pot
synthesis of octahydroquinazolinone derivatives in high yields using dimedone, urea/thiourea,
and appropriate aromatic aldehydes under ammonium metavanadate (NH4VO3) as a catalyst
under solvent-free conditions [64]. Likewise, Badadhe and coworkers reported the use of
10 mol% of thiamine hydrochloride (VB1) as an efficient catalyst affording good to excellent
yields [65]. Additionally, Shah and coworkers published the synthesis of some new octahydro-
quinazolinone derivatives using zinc triflate (Zn(OTf)2) as a catalyst, in refluxing ethanol, in
high yield [66].

More recently, 1,3-cyclohexanedione or dimedone has been employed by Silva and
coworkers as substrates for the Biginelli synthesis of 3,4-dihydropyrimidin-2(1H)-one or
thione (DHPMs) derivatives catalyzed by two novel coordination polymers (CPs) under
solvent-free conditions and heterogeneous catalysis. The reaction conducted under contin-
uous flow conditions afforded very promising results toward a scale-up of the reaction [67].

Bariwald et al. reported the use of benzoylacetone as the 1,3-dicarbonyl counterpart in
the Biginelli reaction together with urea/thiourea and several substituted benzaldehydes
in ethanol with a catalytic amount of conc. HCl. The newly synthesized molecules were
screened for their anti-proliferative activity [68].

Another example of a Biginelli reaction with PPE catalysis employing 1,3-diketones is
the synthesis of a series of trifluoromethylated hexahydropyrimidine and tetrahydropy-
rimidine derivatives 39 was described by Agbaje et al. (Scheme 16) [69]; these fluorinated
compounds were evaluated for their in vitro cytotoxic activities in a colon cancer cell line
(COLO 320 HSR).
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Interestingly, Azizian and coworkers presented the first synthesis of novel deriva-
tives of bis(dihydropyrimidinone)benzenes 41 using chlorotrimethylsilane (TMSCl) as the
catalyst through the reaction of terephthalic aldehyde, 1,3-dicarbonyl compounds 40 and
(thio)urea or guanidine 1 under microwave irradiation conditions (Scheme 17) [70]; this
Biginelli condensation method provided products containing two different dihydropyrim-
idinone units and allowed their obtaining in with high yields (>85%) and in short reaction
times (4–6 min).
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The cytotoxic activities of these compounds were evaluated on five different human cancer
cell lines. Their cytotoxic study indicated that they possessed a weak-to-moderate activity.

The same Biginelli reaction, catalyzed by TMSCl, in dimethylformamide as the solvent,
at room temperature, without the use of microwave irradiation, was employed by Zhu
et al. [71], for the synthesis of several dihydropyrimidine derivatives. Three of them derived
from the use of 1,3-diketones as the 1,3-dicarbonyl counterpart in the Biginelli reaction.
The dihydropyrimidine derivatives were subsequently coupled with homocamptothecin to
obtain novel conjugates (hCPT-DHPM); these conjugates were effective cytotoxic agents
that showed also superior Topo I inhibition activity than hCPT itself.

The synthesis of tricyclic 3,4-dihydropyrimidine-2-thione derivatives 43 was described
by Gijsen et al. [72], via a Biginelli three-component reaction between indane-1,3-dione 42,
thiourea, and several substituted benzaldehydes 2 (Scheme 18). Subsequent derivatization
led also to some N-methylated compounds.
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that only the dextrorotary enantiomers were active. The absolute configuration of the active
enantiomer was determined to be 4R.

Recently, the use of indane-1,3-dione has also been described for the synthesis of
3-substituted 5-phenylindeno-thiazolopyrimidinone derivatives. The Biginelli reaction
proceeded under solvent-free conditions, using Poly(4-vinylpyridinium)hydrogen sulfate
as the catalyst [73]. All the synthesized molecules were investigated for their antimicrobial
potency against different microbes.

Lal and coworkers described the synthesis of curcumin derivatives using a one-pot cy-
clocondensation of curcumin (44) with substituted aromatic aldehydes 2 and urea/thiourea/
guanidine 1 in the presence of different catalysts [74–76]. The use of chitosamine hydrochlo-
ride as a biodegradable and nontoxic catalyst, under solvent-free conditions and using mi-
crowave irradiation, allowed the authors to synthesize curcumin 3,4-dihydropyrimidinones/
thiones/imines 45 in excellent yields. All compounds were evaluated for their antioxidant
and anti-inflammatory activity (Scheme 19) [76].
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The synthesis of oxygen-bridged monastrol analogs 47 was reported by Cheng et al.
using a Biginelli reaction of substituted salicylaldehydes 2, acetylacetone (46), and urea
or thiourea 1 with NaHSO4 as the catalyst under microwave irradiation and solvent-free
conditions in a short time and with good yields (Scheme 20) [77].
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Similarly, the synthesis of this kind of oxygen-bridged monastrol analogs by a Biginelli
reaction was recently reported using a natural acidic medium of Averrhoa bilimbi extract
(ABE) as an eco-friendly and economically cheap, non-toxic acidic catalytic media [78].
The advantages of this process are excellent yields of the obtained products, versatility
in handling substrates, reuse of the catalyst, use of no hazardous organic solvents, and
minimization of waste or side products.

Ramos and coworkers described the synthesis, characterization, and application of
a new ion-tagged recyclable iron catalyst to the Biginelli reaction [79]. The synthesis of
dihydropyrimidine derivatives was performed by using MAI·Fe2Cl7 (5 mol%), different
aromatic and aliphatic aldehydes, urea or thiourea, and 1,3-dicarbonyl compounds at 80 ◦C
for 2 h. In particular, the use of acetylacetone or dimedone as 1,3-dicarbonyl compounds
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led to the corresponding products in good yields; these products are potent Eg5 inhibitors
and have potent activity against MCF-7 and MDA-MB-231 cells [80].

The use of dimedone or indane-1,3-dione as the 1,3 dicarbonyl compound in the Biginelli
reaction was reported by Siddiqui et al. for the synthesis of novel bis-3,4-dihydropyrimidin-
2(1H)-one derivatives 48 in excellent yields using perchloric acid-modified poly(ethylene)glycol
6000 (PEG-HClO4) as a biodegradable and reusable catalyst at ambient temperature under
solvent-free condition at 70 ◦C (Scheme 21) [81].
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Recently, Davanagere and coworkers have reported a modified procedure for the synthe-
sis of 1,3-bis(carboxymethyl)imidazolium chloride [BCMIM][Cl], a metal-free ionic catalyst,
and its application in the one-pot multicomponent Biginelli reactions to dihydropyrimidine-
2(1H)-ones/thiones 49 in solvent-free conditions (Scheme 22) [82].
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A recent example of the use of acetylacetone as the 1,3-dicarbonyl compound in
the Biginelli reaction is the synthesis of 5-acetyl-6-methyl-4-(1,3-diphenyl-1H-pyrazol-
4-yl)-3,4-dihydropyrmidin- 2(1H)-thione, that was achieved in high yield by one-pot
three-component synthesis using CaCl2 in refluxing EtOH [83]; this compound was
used by the authors as starting material to synthesize a new series of 5-pyrazolyl; isoxa-
zolyl; pyrimidinyl derivatives and also fused isoxazolo[5,4-d]pyrimidine and pyrazolo[3,4-
d]pyrimidine; these compounds were evaluated for their antibacterial, antifungal and
anti-inflammatory activity.

4.2. Keto Amides as the Keto Ester Component
4.2.1. Barbituric Acid Derivatives

Shaabani and coworkers [84,85] described the efficient synthesis of spiro-fused hete-
rocycles using conventional heating [85] or microwave irradiation [84] under solvent-free
conditions. The microwave-assisted one-pot method involves the heating of a mixture of
Meldrum’s acid or barbituric acid derivatives 50 (instead of open chain cyclic β-dicarbonyl
compounds), urea 1 and an aromatic aldehyde 2 in the presence of a protic acid catalyst to
give a series of novel heterobicyclic compounds 51 in good yields and in a stereoselective
manner (Scheme 23). The best catalyst for the formation of the spiro-fused compounds was
found to be acetic acid or NaHSO4.
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the keto ester component.

Similarly, Mohammadi and coworkers reported the synthesis of spiropyrimidinethiones/
spiropyrimidinones-barbituric acid derivatives [86]. The one-pot reaction of barbituric acid,
different benzaldehydes and urea or thiourea in the presence of a nanoporous acid catalyst
of SBA-Pr-SO3H, under solvent-free conditions, afforded novel heterobicyclic compounds in
good yields. The spiro compounds were tested for their urease inhibitory activity against Jack
bean urease [87].

The use of thiobarbituric acid derivatives 52 was later reported by Dabholkar et al. [87]
for the Biginelli reaction with aromatic aldehydes 2 and urea or thiourea 1 using a catalytic
amount of concentrated HCl in refluxing ethanol (Scheme 24). Representative samples of
the synthesized compounds 53 were screened for their anti-microbial activity.
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ric acid 52 and thiourea 1 in the presence of catalytic amounts of 1,4-diazabicyclo[2.2.2]oc-
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The synthesis of a series of 5-indolylpyrimido[4,5-d]pyrimidinones 55 was reported by
Gupta and coworkers [88] by means of a multi-component reaction of 3-formylindoles 54,
thiobarbituric acid/barbituric acid 52 and thiourea/urea (1) in dry media (Scheme 25). The
reaction proceeded under conventional heating, microwave irradiation (MW), or grinding
together neat reactants to give the titled compounds good-to-high yields. Representative
compounds were also evaluated for their antimicrobial activity.
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The synthesis of substituted pyrimido[4,5-d]pyrimidinones 57 using a Biginelli-like
reaction was reported by Rimaz et al. [89]; this transformation proceeds through a three-
component tandem annulation of arylglyoxalmonohydrates 56 with 1,3-dimethylbarbituric
acid 52 and thiourea 1 in the presence of catalytic amounts of 1,4-diazabicyclo[2.2.2]octane
(DABCO) or L-proline. Later on, the same authors described the one-pot regioselective
and chemoselective synthesis of the above-mentioned derivatives in water using two green
catalytic systems (ZrOCl2·8H2O and DABCO); the desired products were obtained in good
to excellent yields (Scheme 26) [90].
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The synthesis of substituted pyrimido[4,5-d]pyrimidinones 57 using a Biginelli-like 
reaction was reported by Rimaz et al. [89]; this transformation proceeds through a three-
component tandem annulation of arylglyoxalmonohydrates 56 with 1,3-dimethylbarbitu-
ric acid 52 and thiourea 1 in the presence of catalytic amounts of 1,4-diazabicyclo[2.2.2]oc-
tane (DABCO) or L-proline. Later on, the same authors described the one-pot regioselec-
tive and chemoselective synthesis of the above-mentioned derivatives in water using two 
green catalytic systems (ZrOCl2.8H2O and DABCO); the desired products were obtained 
in good to excellent yields (Scheme 26) [90].  

 
Scheme 26. Synthesis of pyrimidopyrimidinones 57 using barbituric acid derivative 52 as the keto
ester component.

4.2.2. Beta-Ketoamides and Beta-Ketosulfonamides

A series of conformationally flexible and restricted dimers of monastrol were described
by Kamal and coworkers using a one-pot Biginelli multicomponent reaction [91]. The
β-keto amide intermediate 58, a derivative prepared from L-proline, was used as the 1,3-
dicarbonyl compound in the Biginelli condensation with dibenzaldehydes 59 and thiourea 1
to obtain the asymmetric dimers 60 (Scheme 27); these dimers were evaluated for cytotoxic
potency against selected human cancer cell lines and some of the compounds exhibited
more cytotoxic potency than the parent monastrol. In addition, the DNA binding ability
and antimicrobial activities of these compounds were also evaluated, but with little success.

Pharmaceuticals 2022, 15, 948 16 of 65 
 

 

Scheme 26. Synthesis of pyrimidopyrimidinones 57 using barbituric acid derivative 52 as the keto 
ester component. 

4.2.2. Beta-Ketoamides and Beta-Ketosulfonamides 
A series of conformationally flexible and restricted dimers of monastrol were de-

scribed by Kamal and coworkers using a one-pot Biginelli multicomponent reaction [91]. 
The β-keto amide intermediate 58, a derivative prepared from L-proline, was used as the 
1,3-dicarbonyl compound in the Biginelli condensation with dibenzaldehydes 59 and thi-
ourea 1 to obtain the asymmetric dimers 60 (Scheme 27); these dimers were evaluated for 
cytotoxic potency against selected human cancer cell lines and some of the compounds 
exhibited more cytotoxic potency than the parent monastrol. In addition, the DNA bind-
ing ability and antimicrobial activities of these compounds were also evaluated, but with 
little success. 

 
Scheme 27. Synthesis of monastrol dimers 60 using proline-derived ketoester 58 as the keto ester 
component. 

The synthesis of diarylpyrazole-ligated dihydropyrimidines possessing a lipophilic 
carbamoyl group 63 was reported by Yadlapalli et al. [92]. The use of acetoacetanilide 
derivatives 61 as the 1,3-dicarbonyl compound in the Biginelli reaction with 1,3-diaryl-
1H-pyrazole-4-carbaldehydes 62 and urea/thiourea 1, afforded the corresponding dihy-
dropyrimidine derivatives 63 with good-to-high yield (Scheme 28); these novel com-
pounds showed moderate anticancer activity against MCF-7 breast cancer cell lines as well 
as good to excellent antitubercular activity against MTB H37Rv. 

 
Scheme 28. Synthesis of pyrrolopyrimidinones 63 from ketoamides 61 as the keto ester component. 

A series of novel 1,2,3,4-tetrahydropyrimidine derivatives were synthesized, in mod-
erate to good yields, by Elumalai et al. [93] by reacting N-(3,5-dichloro-2-ethoxy-6-fluoro-
pyridin-4-yl)-3-oxobutanamide 64, urea or thiourea 1 and aromatic aldehydes 2 in the 
presence of a catalytic amount of p-toluen sulfonic acid (p-TsOH) (Scheme 29). The newly 
synthesized compounds 65 were evaluated for their antimycobacterial activity against 
Mycobacterium tuberculosis. 

Scheme 27. Synthesis of monastrol dimers 60 using proline-derived ketoester 58 as the keto ester component.

The synthesis of diarylpyrazole-ligated dihydropyrimidines possessing a lipophilic
carbamoyl group 63 was reported by Yadlapalli et al. [92]. The use of acetoacetanilide
derivatives 61 as the 1,3-dicarbonyl compound in the Biginelli reaction with 1,3-diaryl-
1H-pyrazole-4-carbaldehydes 62 and urea/thiourea 1, afforded the corresponding dihy-
dropyrimidine derivatives 63 with good-to-high yield (Scheme 28); these novel compounds
showed moderate anticancer activity against MCF-7 breast cancer cell lines as well as good
to excellent antitubercular activity against MTB H37Rv.
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Scheme 28. Synthesis of pyrrolopyrimidinones 63 from ketoamides 61 as the keto ester component.

A series of novel 1,2,3,4-tetrahydropyrimidine derivatives were synthesized, in moderate
to good yields, by Elumalai et al. [93] by reacting N-(3,5-dichloro-2-ethoxy-6-fluoropyridin-4-yl)-
3-oxobutanamide 64, urea or thiourea 1 and aromatic aldehydes 2 in the presence of a catalytic
amount of p-toluen sulfonic acid (p-TsOH) (Scheme 29). The newly synthesized compounds 65
were evaluated for their antimycobacterial activity against Mycobacterium tuberculosis.
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Scheme 29. Synthesis of DMPMs 65 using aryl acetamides 64 as the keto ester component.

Later on, the same authors published the use of acetazolamide derived ketoamide 66
as a substrate for the Biginelli condensation with urea or thiourea 1 and aromatic aldehydes
2 under microwave irradiation (Scheme 30) [94]. The synthesized compounds 67 were
evaluated for in vitro antimicrobial and cytotoxicity against Bacillus subtilis, Escherichia coli
and Vero cells.
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More recently, these authors published the synthesis, antimicrobial activity, and
in vitro cytotoxicity of novel sulphanilamide condensed 1,2,3,4-tetrahydropyrimidines [95].

Chikhale et al. described the synthesis of novel derivatives of benzothiazolyl pyrimidine-
5-carboxamides 69 which were synthesised by an acid-catalyzed one-pot three-component
reaction of benzothiazolyl oxobutanamide 68, substituted aryl aldehydes 2 and thiourea 1
(Scheme 31). The resulting products 69 were evaluated for their antitubercular activity to
determine MIC against Mycobacterium tuberculosis (H37Rv) [96].
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Scheme 31. Synthesis of benzothiazolylpyrimidinones 69 using acetamides 68 as keto amide component.

Ramachandran and coworkers [97] reported the syntheses of dihydropyrimidinones
using the solvent-free grindstone chemistry method: a mixture of an aromatic aldehyde,
N-phenylacetoacetamide, urea/thiourea, cupric chloride, and a few drops of concentrated
HCl was ground together to give the desired dihydropyrimidinones. The products were
studied for their antibacterial activity.

Likewise, Gein and coworkers described the synthesis of 1,2,3,6-tetrahydro-pyrimidine-
5-carboxamides by reacting arylacetoacetamides with aromatic aldehydes and urea under
solvent-free conditions at 120–150 ◦C for 5–7 min [98]. Good yields of the target compounds
were obtained and the study of their antimicrobial activity was reported.

Recently, the parallel synthesis of new Biginelli 1,4-dihydropyrimidines 71 was re-
ported by Faizan et al. [99]. The desired compounds were synthesized via parallel synthesis
by multicomponent-cyclisation reaction between aliphatic, aryl, heteroaryl aldehydes, o-
methyl acetoacetanilide 70, and excess of urea or thiourea 1 in absolute ethanol and using
p-toluen sulfonic acid as catalyst (Scheme 32).

Pharmaceuticals 2022, 15, 948 18 of 65 
 

 

Likewise, Gein and coworkers described the synthesis of 1,2,3,6-tetrahydro-pyrimi-
dine-5-carboxamides by reacting arylacetoacetamides with aromatic aldehydes and urea 
under solvent-free conditions at 120–150 °C for 5–7 min [98]. Good yields of the target 
compounds were obtained and the study of their antimicrobial activity was reported. 

Recently, the parallel synthesis of new Biginelli 1,4-dihydropyrimidines 71 was re-
ported by Faizan et al. [99]. The desired compounds were synthesized via parallel synthe-
sis by multicomponent-cyclisation reaction between aliphatic, aryl, heteroaryl aldehydes, 
o-methyl acetoacetanilide 70, and excess of urea or thiourea 1 in absolute ethanol and us-
ing p-toluen sulfonic acid as catalyst (Scheme 32).  

Good yields were obtained and evaluation of anticancer activity and structure-activ-
ity relationships via 3D QSAR studies were carried out on the products. 

 
Scheme 32. Synthesis of DHPMs 71 from acetamides 70 as the keto ester component. 

4.3. Keto Acids as the Keto Ester Component 
The use of β-keto carboxylic acids as substrates in the Biginelli reaction is scarce, 

given that a typical β-keto carboxylic acid should undergo spontaneous decarboxylation 
to give carbon dioxide and a ketone under the standard acidic reaction conditions; how-
ever, oxalacetic acid 72 does not undergo decomposition, presumably because the enol 
form is stabilized by resonance for both acids. Thus, replacing alkyl acetoacetate with ox-
alacetic acid 72 as a substrate for the Biginelli reaction led to the formation of 5-unsubsti-
tuted 3,4-dihydropyrimidin-2-(thio)-ones 73 due to in situ decarboxylation after cycliza-
tion [100]. The major drawback of this reaction is the long reaction time (12 h); however, 
it can be conducted expeditiously with good yield and applied to a variety of reagents 
under microwave irradiation (Scheme 33) [101]. 

 
Scheme 33. Synthesis of 5-unsubstituted 3,4-dihydropyrimidin-2-(thio)ones 73. 

One special case of functionalized keto carboxylic acids is aromatic γ or δ-keto acids 
74 (Scheme 34); these are used as enolizable ketones in Biginelli-like reactions because aryl 
alkanoic acids are the most studied class of non-steroidal anti-inflammatory drugs 
(NSAIDs), such as diclofenac sodium, naproxen, ibuprofen, etc. Therefore, pyrimidine de-
rivatives 75, with acetic or propanoic acid moiety at the fifth position, were synthesized 
to study their anti-inflammatory activity in vivo through the base-catalyzed condensation 
of aromatic γ or δ-keto acids 74, thiourea 1, and the appropriate aldehyde 2. Propanoic 
acid derivatives 75 (n = 2) showed significant anti-inflammatory activity, due to their im-
proved lipophilicity compare to acetic acid derivatives 75 (n = 1) [102,103]. 

Scheme 32. Synthesis of DHPMs 71 from acetamides 70 as the keto ester component.

Good yields were obtained and evaluation of anticancer activity and structure-activity
relationships via 3D QSAR studies were carried out on the products.

4.3. Keto Acids as the Keto Ester Component

The use of β-keto carboxylic acids as substrates in the Biginelli reaction is scarce,
given that a typical β-keto carboxylic acid should undergo spontaneous decarboxylation to
give carbon dioxide and a ketone under the standard acidic reaction conditions; however,
oxalacetic acid 72 does not undergo decomposition, presumably because the enol form is
stabilized by resonance for both acids. Thus, replacing alkyl acetoacetate with oxalacetic
acid 72 as a substrate for the Biginelli reaction led to the formation of 5-unsubstituted
3,4-dihydropyrimidin-2-(thio)-ones 73 due to in situ decarboxylation after cyclization [100].
The major drawback of this reaction is the long reaction time (12 h); however, it can
be conducted expeditiously with good yield and applied to a variety of reagents under
microwave irradiation (Scheme 33) [101].
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One special case of functionalized keto carboxylic acids is aromatic γ or δ-keto acids
74 (Scheme 34); these are used as enolizable ketones in Biginelli-like reactions because
aryl alkanoic acids are the most studied class of non-steroidal anti-inflammatory drugs
(NSAIDs), such as diclofenac sodium, naproxen, ibuprofen, etc. Therefore, pyrimidine
derivatives 75, with acetic or propanoic acid moiety at the fifth position, were synthesized
to study their anti-inflammatory activity in vivo through the base-catalyzed condensation
of aromatic γ or δ-keto acids 74, thiourea 1, and the appropriate aldehyde 2. Propanoic acid
derivatives 75 (n = 2) showed significant anti-inflammatory activity, due to their improved
lipophilicity compare to acetic acid derivatives 75 (n = 1) [102,103].
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4.4. Ketones as the Keto Ester Component

In contrast to numerous protocols available for Biginelli reactions, Biginelli-like re-
actions using enolizable ketones instead of β-keto esters have been less explored [104].
In 2004, Holla and coworkers synthesized 4,6-diaryl-3,4-dihydropyrimidin-2(1H)-thiones
78 in a two-step protocol. Firstly, condensation of 2,4-dichloro-5-fluoroacetophenone 76
with benzaldehydes 2 under Claisen–Schmidt reaction conditions led to the corresponding
chalcones 77. In a second step, these chalcones reacted with thiourea 1 in the presence of
ethanolic potassium hydroxide to render final DHPMs 78 in good yields (Scheme 35) [105].

This type of reaction can be performed directly by the classical three-component one-
pot synthesis with different systems. For instance, acetophenone 79 reacted with substituted
benzaldehydes 2 and urea 1 in a microwave-assisted Biginelli-like reaction in a short and
concise manner employing ZnI2 as a catalyst under solvent-free conditions to afford DHPMs
80 (Scheme 36) [106]. The same reaction can be catalyzed by MnO2/CNT(carbon nanotubes)
nanocomposites with very good activity, recovery, and reusability of the catalyst [107].
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In 2020, Desai et al. reported a simple methodology for the synthesis of pyrimidinthi-
one derivatives 82 via the condensation of substituted acetophenones 79, a pyrazol-4-
carbaldehyde 81, thiourea 1 and sulfamic acid as the catalyst, in order to test their antimi-
crobial activity. TMSCl is believed to promote aromatization of the intermediates DHPMs 
(Scheme 37) [108]. 
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Scheme 37. Synthesis of pyrimidinthione derivatives 82 as antimicrobial agents. 

The first asymmetric catalytic version of Biginelli-like reactions using enolizable ke-
tones as substrates was described by Li et al. in 2009 [104]; they found that BINOL-derived 
chiral organocatalyst III was able to catalyze the reaction of cyclic and acyclic aliphatic 
ketones 83 with aromatic aldehydes 2 and N-benzyl thiourea 1, yielding DHMPs 84 in 
excellent enantioselectivities (Scheme 38). Aromatic ketones like 1-p-tolylethanone gave 
only moderate enantioselectivity (61% ee), and enolizable aliphatic aldehydes underwent 
a self-Biginelli-like reaction excluding the ketone from the reaction. 

Scheme 36. Microwave-assisted synthesis of 4,6-diaryl-3,4-dihydropyrimidin-2(1H)-ones 80.

In 2020, Desai et al. reported a simple methodology for the synthesis of pyrim-
idinthione derivatives 82 via the condensation of substituted acetophenones 79, a pyrazol-
4-carbaldehyde 81, thiourea 1 and sulfamic acid as the catalyst, in order to test their
antimicrobial activity. TMSCl is believed to promote aromatization of the intermediates
DHPMs (Scheme 37) [108].
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The first asymmetric catalytic version of Biginelli-like reactions using enolizable ke-
tones as substrates was described by Li et al. in 2009 [104]; they found that BINOL-derived
chiral organocatalyst III was able to catalyze the reaction of cyclic and acyclic aliphatic
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ketones 83 with aromatic aldehydes 2 and N-benzyl thiourea 1, yielding DHMPs 84 in
excellent enantioselectivities (Scheme 38). Aromatic ketones like 1-p-tolylethanone gave
only moderate enantioselectivity (61% ee), and enolizable aliphatic aldehydes underwent a
self-Biginelli-like reaction excluding the ketone from the reaction.
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Scheme 38. Enantioselective organocatalytic Biginelli-like condensations with cyclic and acyclic ketones.

The chiral derivative of 1,2-benzenedisulfonimide IV was found to be an efficient
Brønsted acid catalyst to perform the standard Biginelli reaction of β-keto esters enantiose-
lectively, with very high yields and excellent enantiomeric excesses. Surprisingly, when
using acetophenones 79 as enolizable ketones instead of β-keto esters, two consecutive
cyclizations occurred leading to the meso form of adducts 85 in high yields (Scheme 39); it
seems that the nature of the acid catalyst and the absence of steric hindrances are decisive
in leading the reaction towards this type of adducts [109].
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Scheme 39. Diastereoselective synthesis of meso adducts 85.

In the case of using cyclohexanone 86 as the enolizable ketone, the low cost and facile
to prepare TADDOL-derived chiral phosphoric acid V (obtained from natural tartaric acid)
could be used to catalyze the Biginelli-like reaction with aromatic aldehydes 2 and N-benzyl
thiourea 1. The resulting enantioselectivity depends on the aldehyde substitution pattern
(Scheme 40) [110].
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solvent [115].  
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Scheme 40. Enantioselective organocatalytic Biginelli-like condensations with cyclohexanone.

Unlike bigger cycloalkanones, cyclopentanone 88 has been described to furnish aryli-
den fused pyrimidinones 89 (Scheme 41) through double α-reaction of the ketone, instead
of the classical Biginelli-like product through single α-reaction [111]; this transformation
has been performed using different catalytic systems, most of them based on acidic ionic
liquids (ILs). In the example shown in Scheme 41 (conditions a), Rahman et al. employed
the Brønsted acid catalyst VI under microwave irradiation and solvent-free conditions
to produce heterobicyclic dihydropyrimidinone derivatives 89. The ionic liquid used as
the catalyst could be reused at least six times without any noticeable decrease in catalytic
activity. Attempts to expand the Biginelli-type reaction to condensations of cyclohexanone
and/or aliphatic aldehydes lead to multiple unidentified products [112]. Later on, the
group of Professor Lu compared the efficiency of different Brønsted acidic ionic liquid
catalysts in this transformation and concluded that the eco-friendly catalyst VII gave the
best results and could be reused at least seven times without significant loss of catalytic
activity (Scheme 41, conditions b) [113].
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Scheme 41. Biginelli-like condensations of cyclopentanone catalyzed by acidic ionic liquids.

More examples of this transformation include the use of ILs immobilized in zeolites as
catalysts [114], or the use of AlCl3 in poly(ethylene)glycol (PEG) as a green and reusable
solvent [115].

Aromatic cyclic ketones such as 1-indanone 90 (Scheme 42) have also been used in
Biginelli-type condensation with substituted benzaldehydes 2 and thiourea 1 to afford
4-aryl-1,3,4,5-tetrahydro-2H-indeno[1,2-d]pyrimidine-2-thiones 91 under microwave irradi-
ation; these thiones were converted into their S-alkylated/arylated derivatives in order to
evaluate their antibacterial activities [116].
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Scheme 42. Synthesis of indeno[1,2-d]pyrimidine-2-thiones 91 under microwave irradiation.

Similarly, fused DHPMs 93 were obtained by the condensation of 6-methoxy-1-
tetralone 92, aromatic aldehydes 2, and urea or thiourea 1, in the presence of acidic IL VIII
as the catalyst under solvent-free conditions in excellent yields (Scheme 43) [117].
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Scheme 43. Biginelli-like condensations of 6-methoxy-1-tetralone catalyzed by acidic IL VIII.

The utilization of enolizable aldehydes instead of ketones is scarce; however, in 2013
Qu et al. reported a highly chemo- and regio-selective tandem reaction of alkyl aldehydes
94, arylaldehydes 2 and mono-substituted urea 1, to give highly diverse 6-unsubstituted
DHPMs 95 in reasonable yields under mild reaction conditions. The authors developed
two different methods to carry out the reaction. Thus, method A (Scheme 44) involved the
use of molecular iodine as the catalyst, whereas method B represented the first catalytic
enantioselective version of this reaction, by using chiral spirocyclic SPINOL-phosphoric
acid IX. Although the resulting enantioselectivities (ee values) were from low-to-moderate
(Scheme 44) [118].

A different family of 6-unsubstituted DHPMs 97 was prepared in 2016 by Bhat et al.
using enaminones 96 as a surrogate of the enolizable carbonylic compound, with aromatic
aldehydes 2 and urea or thiourea 1 in acetic acid (Scheme 45); these DHPMs were evaluated
for antitumor activity against cancer stem cells in vitro, and one of them (R1 = MeO,
R2 = 4-EtOC6H4, X=O) demonstrated a remarkable antitumor effect in colon cancer
xenografts in mice [119].
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Scheme 45. Synthesis of 6-unsubstituted 3,4-dihydropyrimidin-2-(thio)ones 97.

Another family of compounds with anticancer activity are the mono- and di(1,4-
disubstituted 1,2,3-triazole)-DHPM hybrids 100 and 101, respectively (Scheme 46). On the
one hand, the monotriazole-DHPM hybrids 100 were synthesized by a one-pot multicom-
ponent reaction involving a copper(I)-catalyzed alkyne-azide cycloaddition (CuAAC) and
a Biginelly-like reaction, starting from phenylacetylene 98, 1-azidopropan-2-one 99, urea
1 and aromatic aldehydes 2. On the other hand, a multistep sequence of reactions that
included bromination, azidation, and a CuAAC afforded the ditriazole-DHPM hybrids
101 [120].
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To conclude with the variants of ketones utilized as enolizable carbonylic compounds
in Biginelli-like reactions, the condensation of phenylacetone 102, aromatic aldehydes 2,
and thiourea 1 to give 4-aryl-5-phenyl-4-methyl substituted DHPMs 103, in the presence
of potassium carbonate nanoparticles (NPs) to promote the reaction, was reported very
recently; the antimicrobial activity of the synthesized compounds was also evaluated
(Scheme 47) [121].
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4.5. Other Different Substrates as the Keto Ester Component

The first example of this section was reported by Yadav et al. employing unprotected
aldoses 106 as bio renewable aldehyde component and changing the keto ester counter-
part to the mercaptoacetylating active methylene building block, 2-methyl-2-phenyl-1,3-
oxathiolan-5-one 105, in turn prepared from acetophenone 79 and 2-mercaptoacetic acid
104 [122]. The MCR takes place by heating under solvent-free microwave irradiation at
90 ◦C the aldose 106, urea or thiourea 1, the mercaptoacetylating agent 105, and the nan-
oclay montmorillonite K-10. In this manner, the thiosugar-annulated DHPMs 110 were
obtained in good yields and excellent diastereoselectivities. Initially, the acetylating agent
105 underwent Knoevenagel-type condensation with the aldose to render intermediate
107. (Thio)urea 1 was then added in a Michael type addition to render 108, which elim-
inates acetophenone intermolecularly to yield the key intermediate 109. Intramolecular
condensation of the sugar moiety and the thiol provided final products 110 (Scheme 48).
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The same authors described the synthesis of perhydropyrimidines changing the keto
ester moiety for 2-phenyl-1,3-oxazol-5-one 111, and using again unprotected aldoses 106
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as renewable aldehyde counterparts [123]. Again, the MCR took place under solvent-
free microwave irradiation, in the presence of cerium sulphate as the catalyst, rendering
iminosugar annulated perhydropyrimidines 112 and 113 in good yields and excellent di-
astereoselectivies. The outcome of the process is similar to the one shown in Scheme 48 and,
after the conjugated addition of the (thio)urea, the second nitrogen opened the isoxazolone
ring with a final intramolecular condensation of the first urea nitrogen with a hydroxyl
group of the sugar (Scheme 49).
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One year later, the same authors reported an interesting variation of the previously
developed reactions [124]. In this case, the aldehyde counterpart was an aromatic aldehyde
(2), and the MCR reaction with the (thio)urea 1 and 2-methyl-2-phenyl-1,3-oxathiolan-5-one
111 or 2-phenyl-1,3-oxazol-5-one 105 as the β-keto ester substitute, was performed in a chi-
ral ionic liquid [(Pro)2SO4]. Under those conditions, the corresponding polyfunctionalized
perhydropyrimidines 115 and 116 were obtained in excellent yields and enantioselectivies
(Scheme 50).
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the three-component reaction of an aryl aldehyde 2, urea 1 (or guanidine) in the presence
of 1,3-dimethyl-dihydropyrimidine-2,4-dione 117 as the keto ester counterpart by heat-
ing the mixture in dioxane with coated alumina (KF-alumina) for 3–5 h [125]. Following
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an analogous mechanism to the Biginelli reaction, the process gave rise to a family of
7-pyrimido[4,5-d]pyrimidin-2-ones 118 in good yields. The process was further extended
the synthesis to pyrrolo[2,3-d]pyrimidines and pyrido[2,3-d]pyrimidines 120 (n = 1 and 0,
respectively) employing substituted acetophenones 79 instead of the aldehyde component
and 1-methyl-1H-pyrrol-2(3H)-one or 1,1-methylpiperidin-2-one 119 (n = 1 and 0, respec-
tively) as the keto ester counterpart. In this manner, and by heating the reaction mixture in
ethanol at 80 ◦C, good yields of the fused pyrimidines 120 were achieved (Scheme 51).
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Naliapara and coworkers found that etidronic acid is an efficient catalyst for the
MCR of aromatic aldehydes 2, urea 1, and 1-(2-hydroxyphenyl)-2-nitroethanone 121 [126].
Etidronic acid is less acidic than other phosphoric acids such as polyphosphoric acid and
does not affect sensitive aldehydes. The reaction took place in THF under microwave
irradiation to provide excellent yields of the nitro-DHPMs 122 (Scheme 52).
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A Biginelli-type three-component reaction was developed by Shah et al. for the
synthesis of a new family of pyrimidine derivatives [127]; they used malononitrile 123
as the keto ester component, thiourea 1, and aromatic aldehydes 2 in refluxing methanol.
Resulting DMHPs 124 were treated with dimethyl sulfate and oxidized to the corresponding
pyrimidines 125 in good yields; these compounds display interesting antibacterial activities
(Scheme 53).
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Wan and coworkers reported a Biginelli-like reaction initiated by a secondary amine,
changing the keto ester component by a propiolate 126 [128]. The secondary amine would
react with the propiolate rendering a beta-enaminone that would act as the keto ester
moiety through an enamine-type addition. The heating of the three-component mixture
with the base in DMF at 90 ◦C provided the corresponding DHMPs 127 unsubstituted at
position 6 (Scheme 54); it is noteworthy that this substitution is difficult to access with
regular Biginelli conditions.
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In 2015 Sekar et al. described the synthesis of novel Biginelli scaffolds using an
eco-friendly method that involved the use of the halogen-free ionic liquid N-methyl-2-
pyrrolidonium hydrogen sulfate [(HNMP)+(HSO4)] [129]. The use of ionic liquids is advan-
tageous over conventional solvents, due to the shortening of reaction times, recyclability,
and from a green chemistry point of view. The multicomponent reaction was performed
with aromatic aldehydes, urea, and changing the keto ester component, either for 3-methyl-
1-phenyl-5 (4H)-pyrazolone or naturally occurring 2-hydoxy-4-naphthoquinone (Lawsone)
as a source of active methylene groups. The reaction takes place both under conventional
heating at 80 ◦C or with ultrasonic irradiation at rt to render the corresponding fused
DHMPs in good yields. Those derivatives were further applied as dispersed dyes on
polyester and nylon fibers.

Shah et al. described the use of pyrazolones as the keto ester component in Biginelli-
like reactions [130]. 1-Phenothiazine pyrazolone 128 is a rare case of enolizable ketone
counterpart used in Biginelli-like reaction to produce pyrazolopyrimidinethiols 129 with
a phenothiazine heterocycle embedded in the structure; these compounds exhibited anti-
tubercular activity (Scheme 55).
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Another modified Biginelli reaction was performed by Selvi et al. [131]. In this case,
the keto ester component was 6-methyl-4-hyrdoxyquinolin-2(1H)-one 130, and the MCR
with aromatic aldehydes 2 and phenyl urea 1 provided, under microwave irradiation,
1,4-dihydropyrimido[5,4-c]quinolones 131 in excellent yields (Scheme 56).
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Gill and coworkers recently developed a green methodology for the synthesis of phar-
macology promising pyrimidine-2,4-diones [132]. Based on the use of room-temperature
ionic liquids (RTILs), the authors employed diisopropyl ethyl ammonium acetate (DIPEAc)
as the solvent of the MCR of (thio)ureas 1, aldehydes 2, and ethyl cyanoacetate 132 as the
keto ester counterpart. After 45 min at room temperature, excellent yields of the DHMP-
derivatives 133 were obtained, even with aliphatic aldehydes (Scheme 57). The ionic liquid
was recycled without loss of efficacy. The final products displayed interesting in vitro
antibacterial and antifungal properties.
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Yu, Yin and coworkers reported a transition-metal and Brønsted acid co-catalyzed
MCR of (thio)urea 1, aromatic aldehydes 2, and alkynols 134 as a Biginelli-like reaction
for the synthesis of spirofuran-hydropyrimidinones 135 [133]. Alkynols 134 are versatile
organic synthons; under metal catalysis, they could undergo intramolecular hydroalkoxyla-
tion to render unusual enolizable carbonyl equivalents. The author combined this process
with the presence of a Brønsted acid co-catalyst that would promote the condensation
of the urea and the aldehyde. When PdCl2 as a metal catalyst and trifluoroacetic acid
as a Brønsted acid were combined in this reaction, the corresponding Biginelli reaction
took place in excellent yields and complete diastereoselectivities, to afford a variety of
spirofuran-hydropyrimidinone compounds 135 (Scheme 58); this is one of the few reports
that deal with the synthesis of spirocyclic DHMP-derivatives.

Bálint et al. described the synthesis of DHPM-containing phosphonates at the 5
position by using beta-ketophosphonates 136 as the keto ester component [134]. The MCR
reaction took place under solvent-free microwave irradiation to render the corresponding
Biginelli adducts 137 in good yields, even with aliphatic aldehydes (Scheme 59). The use of
ketophosphonates in the Biginelli reaction was also reported with Zn(OTf)2 in refluxing
toluene [135], or using acetic acid [136,137] or p-toluene sulfonic acid [138] as catalysts.
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Finally, Kidway et al. reported a combination of the Biginelli and Hantzsch reac-
tions [139]; they used thiobarbituric acids 52 as the keto ester component and they were
combined in a MCR with aromatic aldehydes 2 and ammonium acetate 138. After heating
under microwave irradiation in the presence of Al2O3 as the catalyst, excellent yields of
hybrid compounds 139 were obtained (Scheme 60).
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5. Modification of Two Components

Among the different strategies employed to date for synthesizing Biginelly-type
3,4-dihydropyrimidin(thio)ones, the aldehyde counterpart is usually fixed whereas the
(thio)urea and the β-keto ester components are modified; however, in the first example
of this section, the urea component is fixed and both, the aldehyde and β-keto ester
functionalities were substituted by resin-bounded γ-ketosulfones 144 (Scheme 61); these
polymer-supported compounds were prepared in three steps from a polystyrene resin
functionalized with sodium sulfonate 140: (i) sulfinate S-alkylation to give derivatives
141, (ii) sulfone anion alkylation with an epoxide 142, and (iii) oxidation of the γ-hydroxyl
sulfones 143. Finally, reaction with (thio)urea 1 in basic medium afforded DHPMs 145 in
variable overall yields [140].
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Scheme 61. Solid-phase synthesis of DHPMs 145.

Multicomponent condensation reactions of 5-aminopyrazoles 146 with cyclic 1,3-
diketones 33 and aromatic aldehydes 2 can lead to the formation of several different
tricyclic reaction products due to the presence of at least three non-equivalent nucleophilic
reaction centers in the aminopyrazole building block 146 (N1, C4, and NH2); however,
Chebanov et al. demonstrated in 2008 that the reaction can be kinetically controlled to
produce pyrazoloquinazolinones 147 under ultrasound irradiation (Scheme 62) [141].
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Scheme 62. Synthesis of pyrazoloquinazolinones 147 under ultrasound irradiation.

The first simple and efficient approach towards the one-step synthesis of 2-amino-5-
cyano-6-hydroxy-4-aryl pyrimidines 149 by three-component condensation of aromatic
aldehydes 2, ethyl cyanoacetate 132, and guanidine hydrochloride 148 in alkaline ethanol,
was developed by Deshmukh et al. in 2009. The synthesized compounds were evaluated
for their antibacterial activity and some of them showed excellent activity against Gram-
positive and Gram-negative bacteria (Scheme 63) [142].
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An efficient and convenient approach for the synthesis of [1,2,4]triazolo/benzimidazolo
quinazolinones 151 and 153, respectively, was reported by Heravi et al. in 2010 [143]. The
method is based on the condensation of 3-amino-1,2,4-triazole 150 or 2-amino benzimidazole
152 as nitrogen sources, with dimedone 33 and different aldehydes 2 in the presence of
sulfamic acid as catalyst (Scheme 64).
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Scheme 64. Synthesis of [1,2,4]triazolo/benzimidazolo quinazolinones 151 and 153.

In 2011, Ryabukhin et al. reported a systematic investigation on the use of amino-
heterocycles as synthons for combinatorial Biginelli reactions, to generate combinatorial
libraries comprising more than 2000 compounds of high structural and functional diversity.
A representative set of 89 compounds was described (Scheme 65) [144].

Pharmaceuticals 2022, 15, 948 33 of 65 
 

 

 
Scheme 65. Use of aminoheterocycles to generate combinatorial libraries of DHPMs. 

A one-pot three-component cyclocondensation of isatoic anhydride 154, NH4OAc, 
and aromatic/heteroaromatic aldehydes 2, was efficiently catalyzed by montmorillonite 
K-10 to produce the corresponding 2-substituted-2,3-dihydroquinazolin-4(1H)-ones 155 
in very good yields. The group of 2-(2-chloroquinolin-3-yl)-2,3-dihydroquinazolin-4(1H)-
ones were screened for their antitumor activity (Scheme 66) [145]. 

 
Scheme 66. Synthesis of 2-substituted-2,3-dihydroquinazolin-4(1H)-ones 155. 

If benzamidine hydrochloride 156 is employed instead of urea, 2,6-diaryl-4-(3H)-py-
rimidinones 157 and 2,6-diaryl-4-aminopyrimidines 158 can be obtained through the re-
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Scheme 65. Use of aminoheterocycles to generate combinatorial libraries of DHPMs.

A one-pot three-component cyclocondensation of isatoic anhydride 154, NH4OAc,
and aromatic/heteroaromatic aldehydes 2, was efficiently catalyzed by montmorillonite
K-10 to produce the corresponding 2-substituted-2,3-dihydroquinazolin-4(1H)-ones 155 in
very good yields. The group of 2-(2-chloroquinolin-3-yl)-2,3-dihydroquinazolin-4(1H)-ones
were screened for their antitumor activity (Scheme 66) [145].
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If benzamidine hydrochloride 156 is employed instead of urea, 2,6-diaryl-4-(3H)-
pyrimidinones 157 and 2,6-diaryl-4-aminopyrimidines 158 can be obtained through the
reaction with aromatic aldehydes 2 and ethyl cianoacetate 132, or malonitrile 123, respec-
tively (Scheme 67); this eco-friendly synthesis was performed in water under microwave
irradiation. Some of these derivatives showed significant analgesic activity in mice [146].
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Gupta et al. reported in 2014 the use of green chemical techniques, namely solvent-free
microwave irradiation and grindstone technology, to make 2-amino-5-cyano-6-hydroxy-4-
aryl pyrimidines 160 starting from substituted 3-formylindoles 159 as aromatic aldehydes;
they also evaluated their antimicrobial activities (Scheme 68) [147].
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Scheme 68. Synthesis of 2-amino-5-cyano-4-[(2-aryl)-1H-indol-3-yl]-6-hydroxypyrimidines 160.

The synthesis of benzimidazoloquinazolinones 161 can be promoted by heterogeneous
Fe3O4@chitosan as a superparamagnetic nanocatalyst, under mild reaction conditions,
using 2-aminobenzimidazole or 2-aminobenzothiazole 152 as nitrogen source, dimedone
33 and aromatic aldehydes 2 (Scheme 69) [148].
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Scheme 69. Synthesis of benzimidazolo quinazolinones 161 catalyzed by Fe3O4@chitosan nanoparticles.

Thiadiazoloquinazolinones 163 can also be prepared from diketones 33, aldehydes 2,
and thiadiazoloamines 162 as nitrogen sources, by an on-water microwave-assisted reaction
catalyzed by p-toluen sulfonic acid. Notably, not only do aromatic aldehydes work well in
this process, but formaldehyde or acetaldehyde work as well (Scheme 70) [149]; this reaction
with aromatic aldehydes has also been performed in water-ethanol mixture with tetrabuty-
lammonium hydrogen sulfate as the catalyst, and some of the thiadiazoloquinazolinones
obtained showed potent antioxidant activity [150].
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Scheme 70. Synthesis of thiadiazoloquinazolinones 163.

The condensation reaction between benzylamine and pyrazolecarbaldehydes 164 with
isatoic anhydride 154 in basic medium afforded pyrazol-4-yl-2,3-dihydroquinazolin-4(1H)-
ones 165 in excellent yields. The optical and electrochemical properties of the compounds
were studied, together with their anticancer activity (Scheme 71) [151].
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Scheme 71. Synthesis of 2-substituted-2,3-dihydroquinazolin-4(1H)-ones 165.

Magnetic nanoparticles (MNPs) can be used in heterogeneous catalysis to facilitate
the recovery of the catalyst, as seen with the Fe3O4@chitosan nanoparticles to catalyze the
formation of benzimidazolo quinazolinones in Scheme 69. An improvement of this method-
ology was reported by Kamali and Shirini in 2017 which consisted of using Fe3O4@SiO2–
ZrCl2-MNPs to enable the solvent-free synthesis of benzimidazolo quinazolinones 161
(Scheme 72) [152].

Pharmaceuticals 2022, 15, 948 35 of 65 
 

 

4(1H)-ones 165 in excellent yields. The optical and electrochemical properties of the com-
pounds were studied, together with their anticancer activity (Scheme 71) [151]. 

 
Scheme 71. Synthesis of 2-substituted-2,3-dihydroquinazolin-4(1H)-ones 165. 

Magnetic nanoparticles (MNPs) can be used in heterogeneous catalysis to facilitate 
the recovery of the catalyst, as seen with the Fe3O4@chitosan nanoparticles to catalyze the 
formation of benzimidazolo quinazolinones in Scheme 69. An improvement of this meth-
odology was reported by Kamali and Shirini in 2017 which consisted of using Fe3O4@SiO2–
ZrCl2-MNPs to enable the solvent-free synthesis of benzimidazolo quinazolinones 161 
(Scheme 72) [152]. 

 
Scheme 72. Synthesis of benzimidazolo quinazolinones 161 catalyzed by Fe3O4@SiO2–ZrCl2-MNPs. 

The application of microwave irradiation and scandium triflate as catalyst permitted, 
as well, the solvent-free synthesis of benzimidazolo quinazolinones 161, employing 2-ami-
nobenzimidazole or 2-aminobenzothiazole 152 as nitrogen source, diketones 33 and aro-
matic aldehydes 2 (Scheme 73) [153]. 

 
Scheme 73. Synthesis of benzimidazolo quinazolinones 161 catalyzed by scandium triflate. 

  

Scheme 72. Synthesis of benzimidazolo quinazolinones 161 catalyzed by Fe3O4@SiO2–ZrCl2-MNPs.

The application of microwave irradiation and scandium triflate as catalyst permitted,
as well, the solvent-free synthesis of benzimidazolo quinazolinones 161, employing 2-
aminobenzimidazole or 2-aminobenzothiazole 152 as nitrogen source, diketones 33 and
aromatic aldehydes 2 (Scheme 73) [153].
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Scheme 73. Synthesis of benzimidazolo quinazolinones 161 catalyzed by scandium triflate.

An efficient microwave-promoted three-component synthesis of thiazolo[3,2-a]pyrimidines
167 catalyzed by SiO2–ZnBr2, employing diisopropylethylamine as a base, was developed
starting from thiazol-2-amines 162, 2-(4-nitrophenyl)acetonitrile 166, and aromatic aldehydes 2
(Scheme 74) [154]. In addition, the antimicrobial activity of these compounds was evaluated.
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catalyzed by SiO2–ZnBr2.

Pyrimidine derivatives 169 and 170 were prepared from aromatic aldehydes 2, ethyl
cyanoacetate 132, and guanyl hydrazone derivatives 168, in the presence of piperidine as a
catalyst (Scheme 75). Under these conditions, some of the 3,4-dihydropyrimidines interme-
diates are directly oxidized to aromatic pyrimidines 170. The starting guanylhydrazones
168 were prepared by the Knoevenagel condensation of the respective aldehydes or ketones
with aminoguanidine hydrochloride (not depicted). The synthesized compounds were
evaluated for their antitumoral activity [155].

An alternative to forming benzimidazoloquinazolinones 161 without the use of metal-
lic catalysts was the utilization of thiamine hydrochloride, also known as vitamin B1 (X), as
an organocatalyst in an aqueous medium. The process makes use of 2-aminobenzothiazole
152 as a nitrogen source, dimedone 33, and aromatic aldehydes 2 (Scheme 76) [156].
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Scheme 76. Synthesis of benzimidazolo quinazolinones 161 catalyzed by thiamine hydrochloride X.

Unlike aldehydes, ketones are not reactive enough to engage in the classical Biginelli
reaction acting as electrophiles and they always react as a nucleophile via enolization;
however, very recently, Nishimura et al. prepared the key intermediate 171 by using
TiCl4 and pyridine in a Knoevenagel-type condensation (Scheme 77) [157]. Thus, the
cyclocondensation reaction of this compound 171 with O-methylisourea hemisulfate salt 5
gave a tautomeric mixture of dihydropyrimidines 172 and 173; this mixture was hydrolyzed
to produce 4,4-disubstituted 3,4-dihydropyrimidin-2(1H)-ones 174 in high yields; these
products had been inaccessible and hitherto unavailable for medicinal chemistry and were
assessed for their antiproliferative effect on a human promyelocytic leukemia cell line,
HL-60.
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6. Modification of All Components—Alternative Routes to Dihydropyrimidinones

An enantioselective synthesis of DHMPs in a three-step sequence, starting from
beta-dicarbonyl compounds 175 and α-amido sulfones 176 as acyl imine precursors was
developed by Schaus et al. [158,159]. The reaction took place in the presence of cinchonine as
a catalyst in basic media to render beta-amino ketones 177 with excellent enantioselectivities.
Alloc protecting group release in the presence of an isocyanate rendered the corresponding
ureas 178 that cyclized into the desired DHPMs 179 by heating in ethanol under microwave
irradiation (Scheme 78); this methodology was further applied by the same author to the
enantioselective synthesis of SNAP-7941, a chiral DHPM Inhibitor of MCH1-R (melanin-
concentrating hormone receptor antagonist) [160].
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In 2009, Fustero and coworkers developed a new synthetic strategy to access fluori-
nated DHMPs [161]; it involved a one-pot process with ethyl-3-butenoate 180, fluorinated
nitriles 181, and iso(thio)cyanates 182. The reaction was initiated by the formation of the
ester enolate by the addition of LDA (lithium diisopropyl amide) at −78 ◦C. The ambident
nature of this enolate allows the addition to the alfa- or gamma positions. After some
optimization, the authors found that with a very slow addition of the fluorinated nitrile 181
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to the enolate, the gamma addition took place preferentially, rendering lineal enamino ester
183; this intermediate reacted in a one-pot manner with heterocumulenes 182, by initial
nucleophilic addition followed by an intramolecular aza-Michael reaction (IMAMR), to
render fluorinated DHPMs 184 in moderate yields (Scheme 79).
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Perumal et al. reported the synthesis of pyridopyrimidine-2-thiones in a four-component
MCR with N-substituted 4-piperidones 185, two equivalents of an aromatic aldehyde 2 and
thiourea 1 [162]. Although two components are the same as in the classical Biginelli reaction,
this example has been included in this section because the process needed two equivalents
of the aromatic aldehyde. After 2 min with sodium ethoxide in a solvent-free reaction,
excellent yields of pyridopyrimidine-2-thiones 189 were obtained. Therefore, initially, the
double condensation with the piperidone with two equivalents of the aldehyde occurred,
rendering bis-enone 186, which underwent a conjugated addition with the thiourea. Finally,
condensation of the other nitrogen with the carbonyl group followed by tautomerization
accounts for the formation of bicyclic DHMPs 189 (Scheme 80).
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Pal and coworkers developed a MCR with isatoic anhydride 154, 2-formyl benzoic acid
190, and amines 191 to access dihydroisoindolo [2,1-a]quinazoline-5,11-dione derivatives
192 [163]; this Biginelli-like reaction was performed under the catalysis of montmorillonite
K10 in refluxing ethanol, providing DHPM-derivatives 192 in excellent yields (Scheme 81).
Those compounds were found to be potent inhibitors of TNF-α (tumor necrosis factor-
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alpha), key cytokine mediators in the inflammatory response. The same authors developed
a greener route to access DHMP-derivatives 192 using cyclodextrins as catalysts in aqueous
media under microwave irradiation [164]. After heating the MCR in a sealed vial at 120 ◦C
under microwave irradiation for 10 min, comparable yields to the previous protocol were
obtained (Scheme 81).
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El-Gohary et al. described the use of 2-amino-1,3,4-thiadiazole-5-sulfonamide 193 for
the synthesis of a wide variety of fused DHPM-derivatives (Scheme 82) [165]. Cycloconden-
sation of amine 193 with benzylidene derivatives of diethyl malonate 194 in DMF afforded
ethyl 5,6-dihydro-7-oxo-5-(substituted)phenyl-2-sulfamoyl-[1,3,4]thiadiazolo[3,2-a]pyrimidine-
6-carboxylates 195. With ethyl benzylidenecyanoacetates 196, compounds 197 analogous to 195
containing a cyano group were obtained. 5-Amino-7-oxo-6-[4-(substituted)phenyldiazenyl]-
5H,7H-[1,3,4]thiadiazolo[3,2-a]pyrimidine-2-sulfonamide derivatives 199 were obtained by reac-
tion with ethyl 2-cyano-2-[4-(substituted)phenyldiazenyl]acetates 198 in refluxing AcOH. Reac-
tion with benzylidene tetralones 200 in refluxing propylene glycol rendered benzo[h][1,3,4]thia
diazolo[2,3-b]quinazoline derivatives 201. With ethyl 2-(ethoxymethylenecyano)acetate 202
or 2-(ethoxymethylene) malononitrile 204 in refluxing glacial acetic acid, compounds 203
and 205 were obtained, respectively. The reaction of 193 with malononitrile 123 in absolute
ethanol and in the presence of a catalytic amount of triethylamine afforded 5-amino-7-imino-
7H-[1,3,4]thiadiazolo[3,2-a]pyrimidine-2-sulfonamide 206. Finally, treatment of 193 with chloro
propiopyl chloride 207 in refluxing AcOH afforded 6,7-dihydro-7-oxo-5H-[1,3,4]thiadiazolo[3,2-
a]pyrimidine-2-sulfonamide 208 (Scheme 82). All these compounds were screened in several
biological assays; it was found that they display interesting antibacterial, antifungal and anti-
cancer properties.

Sośnicki and coworkers developed an alternative route to the Biginelli reaction to ac-
cess DHPM-derivatives [166]; it involved the use of pyrimidine-2(1H) thiones 211, prepared
from 2-aryl-3-(dimethyl-amino)allylidene(dimethyl)ammonium perchlorates 210 (easily
available from aryl acetic acids 209) by reaction with thioureas 1 in the presence of MeONa.
With this pyrimidine thiones 211 in hand, the addition of aryl lithiums afforded 5,6-diaryl-
DHPMs 212 in good yields (Scheme 83); this methodology, complementary to the Biginelli
reaction, was used also with other different organometallic reagents [167–171]. Resulting
4,5-diaryl compounds exhibited important inhibition of cell proliferation, especially for
breast cancer, when compared to monastrol.

Ma and coworkers described the enantioselective synthesis of benzofused-DHPMs
215 by means of a highly enantioselective decarboxylative Mannich reaction between β-
keto acids 214 and trifluoromethyl ketimines 213 [172]. The reaction took place in the
presence of chiral sugar-derived thiourea XI, giving rise to 3,4-dihydroquinazolin-2(1H)-
one derivatives in excellent yields and outstanding enantioselectivities (Scheme 84). The
process was further extended for the same authors to non-fluorinated ketimines [173].
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Choudhury et al. described the synthesis of novel 5,6-disubstituted pyrrolo[2,3-
d]pyrimidine-2,4-diones 219 and 220 via three-component reactions between 6-amino uracil
derivatives 216, aryl glioxal 217 and either thiols or malononitrile [174]. The reaction, which
could be performed under conventional heating or microwave irradiation, in short reaction
times and good yields to access these biologically interesting pyrrolo-pyrimidinedione
derivatives (Scheme 85).
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chiral phosphoric acid (CPA) [176]. The reaction took place from pyrimidine derivatives 
227 and Hantzsch ester 228 in toluene at 40 °C with (R)-TRIP-PA XII as CPA for 24 h, 
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Panahi and Khalafi-Nezhad et al. described an MCR of carbohydrates, barbituric
acid, malononitrile or diethyl malonate and aromatic aldehydes catalyzed by TsOH [175].
Initially, they performed the reaction with sugars 221, malononitrile, diethyl malonate, or
ethyl-2-cyanoacetate (223) with barbituric acid 222. After heating the mixture in ethanol at
50 ◦C for 12 h, excellent yields of pyrano[2,3-d]pyrimidine derivatives 224 were obtained
(Scheme 86). Additionally, the authors optimized a four-component reaction with glu-
cosamine 225, barbituric acid 222, malononitrile 123 and aromatic aldehydes 2. Again, by
heating the mixture in ethanol under the presence of catalytic amounts of TsOH, excellent
yields of pyrido[2,3-d]pyrimidine derivatives 226 were obtained (Scheme 86). The synthetic
compounds shown before revealed excellent antioxidant properties.
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Scheme 86. Synthesis of pyrano[2,3-d]pyrimidine derivatives 226.

Shi and Zhou et al. reported an original synthesis of enantiomerically enriched DHMPs
by asymmetric biomimetic transfer hydrogenation of pyrimidines catalyzed by a chiral
phosphoric acid (CPA) [176]. The reaction took place from pyrimidine derivatives 227 and
Hantzsch ester 228 in toluene at 40 ◦C with (R)-TRIP-PA XII as CPA for 24 h, rendering
final Biginelli products 229 with excellent yields; it is noteworthy that the best results were
obtained with aromatic substituents at R1 and R2 reaching enantioselectivities up to 99%,
while a clear drop in efficiency occurred with aliphatic substituents (Scheme 87).
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tuted dihydropyrimidinone-4-carboxylate derivatives from deep eutectic mixtures [178]. 
The process involved the solvent-free heating of β,γ-unsaturated ketoesters 233 in low 
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Scheme 87. Enantioselective synthesis of 3,4-dihydropyrimidine-2(1H)ones through organocatalytic
transfer hydrogenation.

Jian, Shi and coworkers described the synthesis of a new family of DHMPs containing
a heteroatom at C4 by nucleophilic dearomatization of 2-hydroxy pyridines 230 [177]. The
reaction took place under the presence of catalytic amounts of ZrCl4 with phosphite esters
231 as nucleophiles rendering DHMP-containing phosphonic esters 232 (Scheme 88).
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Scheme 88. ZrCl4-catalyzed nucleophilic dearomatization of 2-hydroxypyrimidines.

König reported an environmentally benign protocol for the synthesis of 5-unsubstituted
dihydropyrimidinone-4-carboxylate derivatives from deep eutectic mixtures [178]. The
process involved the solvent-free heating of β,γ-unsaturated ketoesters 233 in low melt-
ing L-(+)-tartaric acid–N,N-dimethylurea mixtures, to render DHPMs 234 in good yields
(Scheme 89).
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Sondhi et al. described the preparation of several DHPM-derivatives by reaction of 4-
isothiocyanato-4-methylpentan-2-one 236 with several amines and diamines 235 containing
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a wide variety of carbo- and heterocycles [179]. After the addition of the amine to the
isothiocyanate at room temperature, the resulting thiourea cyclized with the carbonyl
moiety by dehydration after heating in refluxing methanol (Scheme 90). Those derivatives
showed interesting anti-inflammatory properties.

Pharmaceuticals 2022, 15, 948 44 of 65 
 

 

Sondhi et al. described the preparation of several DHPM-derivatives by reaction of 
4-isothiocyanato-4-methylpentan-2-one 236 with several amines and diamines 235 con-
taining a wide variety of carbo- and heterocycles [179]. After the addition of the amine to 
the isothiocyanate at room temperature, the resulting thiourea cyclized with the carbonyl 
moiety by dehydration after heating in refluxing methanol (Scheme 90). Those derivatives 
showed interesting anti-inflammatory properties. 

 
Scheme 90. Synthesis of DHPMs derivatives 237. 

7. Structure Diversification of 3,4-Dihydropyrimidin-2-(1H) (thio)one Derivatives 
Due to the high biological relevance of DHPMs, the generation of new derivatives 

that contain this scaffold is very important in Medicinal Chemistry. One of the best ways 
to generate diversity in the structure of the DHPM core is the decoration of the Biginelli 
adducts. In 2005 Kappe and Dallinger reviewed the advances in this field [180], which are 
summarized in Scheme 91. Modification at N1 is normally made by alkylation through 
treatment of DHMPs 4 with a base and alkyl halides since this proton is more acidic than 
the proton at N3; it was also described the introduction of phosphates using this strategy. 
Modification of C2 is probably the less usual one. With DHPM thiones as starting materi-
als, it is possible to alkylate the sulfur atom. Alternatively, with Nickel-Raney, sulfur can 
be removed. The regioselective N3-acylation can be performed with Vilsmeier reagent or, 
alternatively, with acid chlorides or anhydrides. The protection with carbamates is trou-
blesome and renders mixtures of both regioisomers. Substitution at position 4 is related 
to the starting aldehyde employed in the Biginelli reaction. Although the process is more 
consistent with aromatic aldehydes, several efficient methodologies have been devised 
with aliphatic or heteroaromatic aldehydes, or even ketones to render the corresponding 
spiro compound (see Section 3). Normally, modifications at C5 are related to the keto ester 
component. Usually, an ester group is used and, therefore, those modifications are related 
to ester chemistry, by conversion to carboxylic acids, acyl azides, or isocyanates, among 
others. Finally, since acetoacetates are usually involved in the Biginelli reaction, the usual 
substitution at C6 is a methyl group. Therefore, some strategies have been described to 
modify this methyl group, such as bromination and further substitution with a wide va-
riety of nucleophiles (Scheme 91). 

Scheme 90. Synthesis of DHPMs derivatives 237.

7. Structure Diversification of 3,4-Dihydropyrimidin-2-(1H) (thio)one Derivatives

Due to the high biological relevance of DHPMs, the generation of new derivatives
that contain this scaffold is very important in Medicinal Chemistry. One of the best ways
to generate diversity in the structure of the DHPM core is the decoration of the Biginelli
adducts. In 2005 Kappe and Dallinger reviewed the advances in this field [180], which are
summarized in Scheme 91. Modification at N1 is normally made by alkylation through
treatment of DHMPs 4 with a base and alkyl halides since this proton is more acidic than
the proton at N3; it was also described the introduction of phosphates using this strategy.
Modification of C2 is probably the less usual one. With DHPM thiones as starting materials,
it is possible to alkylate the sulfur atom. Alternatively, with Nickel-Raney, sulfur can
be removed. The regioselective N3-acylation can be performed with Vilsmeier reagent
or, alternatively, with acid chlorides or anhydrides. The protection with carbamates is
troublesome and renders mixtures of both regioisomers. Substitution at position 4 is related
to the starting aldehyde employed in the Biginelli reaction. Although the process is more
consistent with aromatic aldehydes, several efficient methodologies have been devised
with aliphatic or heteroaromatic aldehydes, or even ketones to render the corresponding
spiro compound (see Section 3). Normally, modifications at C5 are related to the keto ester
component. Usually, an ester group is used and, therefore, those modifications are related
to ester chemistry, by conversion to carboxylic acids, acyl azides, or isocyanates, among
others. Finally, since acetoacetates are usually involved in the Biginelli reaction, the usual
substitution at C6 is a methyl group. Therefore, some strategies have been described to
modify this methyl group, such as bromination and further substitution with a wide variety
of nucleophiles (Scheme 91).

With these precedents in mind, this section will cover advances from 2004. Addition-
ally, the use of more complex strategies leading to polycyclic analogues of DHPMs was
also reviewed from this point. On the other hand, chemical resolutions of racemic DHPMs
were not considered in this review.
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azide functionality to carry out the click chemistry. The authors perform the bromination 
of substrates 4 with a modified macroporous Amberlyst A-26 polystyrene resin in perbro-
minated form 238; this solid-supported brominating agent was used under flow condi-
tions to perform the bromination of the methyl group at C6. Bromo derivatives 239 were 
transformed into the corresponding azides 240 by heating with sodium azide in DMF. 
Finally, the dipolar cycloaddition was accomplished by reaction with alkynes 241 under 
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Scheme 91. Scaffold decoration of dihydropyrimidines.

Kappe and coworkers performed the modification of Biginelli adducts bearing a
methyl group at C6 [181]. Following a bromination/azidation sequence, they installed
the azide functionality to carry out the click chemistry. The authors perform the bromi-
nation of substrates 4 with a modified macroporous Amberlyst A-26 polystyrene resin in
perbrominated form 238; this solid-supported brominating agent was used under flow
conditions to perform the bromination of the methyl group at C6. Bromo derivatives 239
were transformed into the corresponding azides 240 by heating with sodium azide in DMF.
Finally, the dipolar cycloaddition was accomplished by reaction with alkynes 241 under
copper catalysis, rendering the final DHMPs 242 modified at C6 in good yields (Scheme 92).
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Singh et al. developed a route to DHMPs functionalized at the 6 position by metallation
and addition of an electrophile [182]. DHMP adducts 4 bearing a methyl group at C6 were
treated with LDA and the subsequent addition of an electrophile to render the desired
DHMPs 243 (Scheme 93).
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Scheme 93. General synthesis of C-6 functionalized DHPMs.

The same research group found that, when DHPMs were metallated at−78 ◦C, and the
reaction quenched with an acid chloride, regioselective acylation at N3 occurred, rendering
acyl DHPMs 244 in good yields (Scheme 94) [183].
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Scheme 94. Regioselective synthesis of N-acylated 3,4-dihydropyrimidin-2-ones.

Evans and coworkers employed a chiral DHMP as starting material for the total
synthesis of the tricyclic guanidine core of the natural product Batzelladine C [184]. The
steps started with a rhodium-catalyzed allylic amination reaction of Biginelli adduct 245.
The generation of the bicyclic core of the compound was accomplished by means of a highly
diastereoselective radical 1,4-addition. The tricyclic guanidine core was built using known
methodologies to finally render Batzelladine D (Scheme 95).

Mobinikhaledi et al. described the intramolecular Friedel-Crafts acylation reactions of
DMPMs 4 bearing an ester group at position 6 [185]. The reaction took place in nitrobenzene
at 90 ◦C in the presence of acetyl chloride and AlCl3 to render fused (thio)oxopyrimidine
derivatives 250 in moderate yields (Scheme 96).

Ashok and coworkers functionalized DHMPs with a thiazole ring, generating new
bicyclic structures that have shown moderate to good growth inhibition of bacteria and
fungi [186]. To this end, dihydropyrimidinthiones 4 were treated in an MCR with chloroacetic
acid and the corresponding aryl aldehyde 2 in the presence of anhydrous sodium acetate in
refluxing acetic acid. In this manner, the corresponding thiazolo[2,3-b]pyrimidin-3-(1H)-ones
251 were obtained in good yields (Scheme 97).
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Singh et al. found that is possible to metalate DHMP derivatives 4 with butyl lithium
(3.5 equiv at −10 ◦C), to further react with dielectrophiles, rendering N1, C6-linked bicyclic
DHPMs 252 [187]. The reaction proceeded in excellent yield for the formation of five-
membered rings, while the formation of the corresponding six-membered ring took place
in low yield (Scheme 98); these bicyclic scaffolds constitute important structural features of
several alkaloids.
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Scheme 98. Synthesis of N1, C6-linked bicyclic 3,4-dihydropyrimidinones.

The same authors described the use of N,N-diacyl DHPMs as acylating agents [188].
Biginelli adducts 4 were diacylated at N1 and N3 by metalation with butyl lithium followed
by the addition of an acyl chloride. Diacylated DHPMs 253 were found to be excellent
acyl transfer reagents to ammonia, primary and secondary amines, to render primary,
secondary and tertiary amides 254, 255, and 256, respectively in excellent yields (Scheme 99).
Additionally, the resulting Biginelli adduct 257 N-monoacylated could be recycled.
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Scheme 99. N1, N3-diacyl-3,4-dihydropyrimidinones as acyl group transfer reagents.

Shin et al. described the synthesis of 2-unsubstituted pyrimidine rings from Biginelli
products, not easily accessible [189]. The oxidation of dihydropirimin-2(1H)-thiones with
oxone on wet alumina or hydrogen peroxide in the presence of a catalytic amount of vanadyl
sulfate provided dihydropyrimidines 258 that were further oxidized to 2-unsubstituted
pyrimidines 259 in good yields with KMnO4. When the attempt of aromatization with
KMnO4 was performed over starting DHMPs 4, 2-hydroxypyrimidine products 260 were
obtained in moderate yields (Scheme 100).
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Similar oxidation protocols of DHPMs could also be performed with tert-butyl hy-
droperoxide in the presence of a copper(II) catalyst [190] or stoichiometric (diacetoxyiodo)
benzene [191].

Saidi et al. described the synthesis of thiadiazoloquinazolinone derivatives 263 by
reaction with 3-amino-2-mercaptoquinazolinone 261 and dialkylacetylendicarboxylates 262
in refluxing DMF [192]. After the initial 1,4-addition of the thiol moiety, intermediate 264
could undergo the intramolecular aza-Michael reaction either via a 5-exo-trigonal mode (a)
or via a 6-endo-trigonal mode (b) (Scheme 101). Only products from via a were detected.
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Gong and coworkers developed an asymmetric enantioselective version of the Big-
inelli reaction using chiral BINOL phosphoric acids as catalysts [104]; they employed this
methodology for the synthesis of compound 4, employed for the treatment of benign
prostatic hyperplasia. Biginelli adduct 4 was obtained with 91% ee. The derivatization
of the DHPM started with the sequence oxidation/bromination to obtain compound 265.
Methoxylation was performed with sodium methoxide to obtain compound 266 without
loss of enantiomeric excess. The introduction of the lateral chain of the final drug was
introduced using known methodologies (Scheme 102).
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Singh and coworkers developed a new methodology for the regioselective alkylation
at N1 of DHPMs [193]. Biginelli adducts 4 were treated under phase transfer catalysis
conditions with tetrabutyl ammonium hydrogen sulfate and 50% aqueous NaOH and
several alkyl halides, to afford excellent yields of the N1-alkylated DHPMs 267 (Scheme 103).
Those compounds showed a minor calcium channel blocking activity when compared to
nifedipine.
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Scheme 103. Synthesis of N1-alkylated DHPMs 267.

DHMPs are potential inhibitors of dihydrofolate reductase, which is an interesting
target for the treatment of mycobacterial infections; however, dihydropyrimidines are
not represented in the current clinical treatments of tuberculosis. Shah and coworkers
found that a postmodification of Biginelli adducts provided potential compounds for the
treatment of micobacteria [194]. To this end, DHMPs 4 containing a pyrazol moiety were
treated with dimethyl sulfate (DMS) in basic media to afford S-methylated products 268
(Scheme 104). Two of those compounds resulted in being more potent than isoniazide.
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Rajanarendar et al. described the modification of isoxazolyl dihydropyrimidine-thione
carboxylates 269 by condensation with isoxazole amine [47]. After heating the mixture
in diphenyl ether at 200 ◦C, a new tricyclic scaffold 270 was formed in good yields. The
biological evaluation of the products obtained showed that they exhibited good antibacterial
and antifungal properties when compared to standard antibiotics (Scheme 105).
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Scheme 105. Synthesis of pyrimidoquinolinone derivatives 270.

The same research group described the transformation of Biginelli adducts in tetrahy-
dropyrimidines [195]. The desulfuration of DHPM 4 took place under mild conditions
with Ni-Raney, affording compound 271 with an iminic moiety suitable to react with nucle-
ophiles. Thus, the addition of organolithium or Grignard derivatives proceeded in good
yields to render the corresponding tetrahydropyridines 272 (Scheme 106); those compounds
displayed cytostatic properties.
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Again, Singh et al. described the transformation of Biginelli adducts into pyrim-
idines [196]. The initial step was the oxidation of DHPMs 4 with pyridinium chlorochro-
mate (PCC) [197]. The next step was the treatment of compounds 273 with POCl3, to render
chloropyrimidine derivatives 274 that were finally converted into final pyrimidines 275
by exposure to the corresponding amines or alcohols (Scheme 107). In vitro evaluation of
those derivatives showed that they display inhibitory activity of Mycobacterium tuberculosis
and they are modulators of cytostatic activity.

When this protocol was performed with 4-aminoquinolines as final amines, the corre-
sponding pyrimidines showed interesting in vitro anti-plasmodian properties [198].

Singh et al. also described the modification of Biginelli adducts at N3 [199]. Starting
from DHPMs 4, protected at N1 (since is the most reactive nitrogen), the treatment with
POCl3 at 105 ◦C afforded compounds 276, with the phosphorus oxychloride group at N3.
Those derivatives are very reactive and were used without purification. Thus, reaction
with ammonia gas yielded diaminophosphinyl DHPMs 277 in good yields. Reaction with
primary amines or ethanol afforded the corresponding addition products 278 in moderate
yields. Finally, the use of diamines or aminoalcohols rendered the corresponding cyclic
DHPMs 279 in good yields (Scheme 108); those derivatives were subjected to calcium
chanel binding studies albeit they were less active than nifedipine.
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Scheme 108. Synthesis of N3 organophosphorous derivatives of dihydropyrimidinones.

Aly and coworkers reported the synthesis of new chromene, pyrane, and pyranopy-
ridine derivatives bearing the 2-thiobarbituric acid moiety [200]. Initially, they performed
the Knoevenagel condensation of 2-thioxo-dihydropyrimidine-4,6(1H,5H)-dione 280 with aro-
matic aldehyde 2 in refluxing ethanol and piperidine as the base to render chromeno[2,3-
d]pyrimidinederivative 281. 7-Aminopyrano[2,3-d]pyrimidine-6-carbonitrile derivative 283
was synthesized in good yield after treatment of 280 and 2-(3,4,5-trimethoxybenzylidene)malon
onitrile 282 under refluxing ethanol, in the presence of catalytic amounts of piperidine. In a simi-
lar manner, reaction with ethyl 3-(4-chlorophenyl)-2-cyanoacrylate 284 afforded ethyl 7-amino-5-
(4-chlorophenyl)-4-oxo-2-thioxo-2,3,4,5-tetrahydro-1H-pyrano[2,3-d]pyrimidine-6-carboxylate
285. In addition, the reaction of pyrano[2,3-d]pyrimidine 283 with malononitrile 123 in the
presence of piperidine afforded pyridopyranopyrimidine 286. 2-Arylsulfonylamino pyrano[2,3-
d]pyrimidine 288 was obtained by refluxing compound 283 with benzenesulfonyl chloride 287
in dry benzene. Finally, heating compound 283 with formic acid caused cyclization to give
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pyrimidopyranopyrimidine derivative 289 (Scheme 109). The novel pyrimidines fused at C5
and C6 positions showed good antimicrobial activity.
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Pyrrolo[2,3-d]pyrimidines are scaffolds present in a wide variety of compounds with 
diverse biological activities; however, there are not many methods available to access 
them. Bhuyan et al. described a microwave-assisted MCR from N,N-dimethyl-6-aminou-
racil 290, aryl glyoxal 291, and aromatic amines 235 [201]. The reaction took place in AcOH 
at 110 °C, rendering a new family of 5-arylamino-pyrrolo[2,3-d]pyrimidines 292 in excel-
lent yields (Scheme 110). 

Scheme 109. Synthesis of fused chromeno- and pyrano-[2,3-d]pyrimidine derivatives.

Pyrrolo[2,3-d]pyrimidines are scaffolds present in a wide variety of compounds with
diverse biological activities; however, there are not many methods available to access them.
Bhuyan et al. described a microwave-assisted MCR from N,N-dimethyl-6-aminouracil 290,
aryl glyoxal 291, and aromatic amines 235 [201]. The reaction took place in AcOH at 110 ◦C,
rendering a new family of 5-arylamino-pyrrolo[2,3-d]pyrimidines 292 in excellent yields
(Scheme 110).
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Scheme 110. One-pot three-component reaction for the synthesis of 5-arylamino-pyrrolo-[2,3-
d]pyrimidines.

Zhang et al. reported the synthesis of pyrido[4,3-d]pyridines by means of an iron-
catalyzed vinilogous aldol reaction of Biginelli adducts 293 with aryl aldehydes 2 followed
by a base-catalyzed intramolecular aza-Michael reaction [202]. The authors identified
that the presence of a methyl group in Biginelli products at position 6, due to the use of
acetoacetates normally used in the reaction, could be functionalized by the formation of the
corresponding enolate. Fe(III) chloride promoted the vinylogous aldol reaction of Biginelli
substrates 293 with aryl aldehydes 2 to render (E)-6-arylvinyl-dihydropyrimidin-2(1H)-
ones 294; it is important to mention that the presence of the amide moiety in position 6
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is necessary to effect this condensation, and the process is very efficient with aromatic
substituents while the use of heteroaromatic or aliphatic ones produced a clear drop
of the efficiency of the process. Derivatives 294 were further cyclized by means of an
intramolecular aza-Michael reaction in the presence of NaOH to furnish pyrido[4,3-d]-
pyrimidines 295 in good yields (Scheme 111).
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Scheme 111. Iron-catalyzed vinylogous aldol condensation of Biginelli products and its derivatization
to pyridopyrimidinones 295.

Verma et al. employed Biginelli adducts 296 as starting materials for the synthesis of
imidazopyridines 299 [203]. Thus DHMPs 296, containing an amide moiety at C5 were
heated with pyrane tetraol 297 and chloroacetic acid 298 in refluxing ethanol, rendering
final imidazopyridines 299 containing the sugar moiety in good yields (Scheme 112); those
compounds were subjected to several biological assays, and the authors found that they
display antifungal, antibacterial, antioxidant, and anticancer activity.
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Guo, Zou, and coworkers developed an enantioselective synthesis of DMHPs 302
with aliphatic aldehydes catalyzed by a chiral phosphoric acid with excellent enantioselec-
tivities [204]. Those compounds were used as starting materials for the total synthesis of
natural products Crambescin A and Batzelladine A and several analogues. Chiral DHPMs
4 were treated initially with BuLi and 1,2-dichloroethane to install the pyrrolidine ring.
The resulting compounds 300 were then treated with triethyl oxonium tetrafluoroborate to
render imidates 301 which in turn were transformed into the corresponding guanidines
302 by heating with ammonium propionate. In this manner, the guanidine core of the
natural products was created; those compounds were previously described as advanced
intermediates of Crambescin A and Batzelladine A [205] and therefore, this strategy could
be considered as a formal synthesis of both natural products (Scheme 113).



Pharmaceuticals 2022, 15, 948 53 of 63

Pharmaceuticals 2022, 15, 948 55 of 65 
 

 

Guo, Zou, and coworkers developed an enantioselective synthesis of DMHPs 302 
with aliphatic aldehydes catalyzed by a chiral phosphoric acid with excellent enantiose-
lectivities [204]. Those compounds were used as starting materials for the total synthesis 
of natural products Crambescin A and Batzelladine A and several analogues. Chiral 
DHPMs 4 were treated initially with BuLi and 1,2-dichloroethane to install the pyrrolidine 
ring. The resulting compounds 300 were then treated with triethyl oxonium tetrafluorob-
orate to render imidates 301 which in turn were transformed into the corresponding guan-
idines 302 by heating with ammonium propionate. In this manner, the guanidine core of 
the natural products was created; those compounds were previously described as ad-
vanced intermediates of Crambescin A and Batzelladine A [205] and therefore, this strat-
egy could be considered as a formal synthesis of both natural products (Scheme 113). 

 
Scheme 113. Modification of DHPMs towards the synthesis of the bicyclic guanidine core of 
crambescin A. 

Bavantula and coworkers described the synthesis of a series of newly fused thia-
zolo[2,3-b]pyrimidinones bearing a pyrazolylcoumarin moiety [206]. Thiazolo pyrimidi-
nones and pyrazolo coumarins are known as bioactive pharmacophores, and the authors 
decided to combine them in order to evaluate the potential synergistic influence of both 
motives. Starting from Biginelli products 303, they were treated in a three-component re-
action with chloroacetic acid 298 and 3-(2-oxo-2H-chromen-3-yl)-1-aryl-1H-pyrazole-4-
carbaldehydes 304 in a mixture of acetic acid and acetic anhydride. After 4–6 h at reflux, 
excellent yields of polycycles 305 were obtained (Scheme 114). Biological studies of these 
derivatives showed that they display both antibacterial and antitumoral activity. 

 
Scheme 114. Synthesis of fused thiazolo[2,3-b]pyrimidinone-pyrazolylcoumarin hybrids. 

  

Scheme 113. Modification of DHPMs towards the synthesis of the bicyclic guanidine core of
crambescin A.

Bavantula and coworkers described the synthesis of a series of newly fused thiazolo[2,3-
b]pyrimidinones bearing a pyrazolylcoumarin moiety [206]. Thiazolo pyrimidinones and
pyrazolo coumarins are known as bioactive pharmacophores, and the authors decided
to combine them in order to evaluate the potential synergistic influence of both motives.
Starting from Biginelli products 303, they were treated in a three-component reaction with
chloroacetic acid 298 and 3-(2-oxo-2H-chromen-3-yl)-1-aryl-1H-pyrazole-4-carbaldehydes
304 in a mixture of acetic acid and acetic anhydride. After 4–6 h at reflux, excellent yields of
polycycles 305 were obtained (Scheme 114). Biological studies of these derivatives showed
that they display both antibacterial and antitumoral activity.
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Nagaraja et al. used an MCR to functionalize Biginelli adducts 4 with a pyrazol
moiety [207,208]. To this end, the condensation of DHPMs 4 with diaryl pyrazoles 306 and
chloroacetic acid in a mixture of acetic acid/acetic anhydride led the authors to synthesize
a new family of pyrazole integrated thiazolo[2,3-b]dihydropyrimidinone derivatives 307 in
generally good yields (Scheme 115); biological evaluation of the final products showed that
those compounds display a dual anti-inflammatory and antimicrobial activity.
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Both enantiomers of DHPMs typically exhibit different or even opposite biological
activities and their asymmetric synthesis is of crucial importance. In this context, Massi
and coworkers reported the enantioselective acylation of DHPMs with aromatic enals
employing chiral N-heterocyclic carbenes (NHC) as the catalyst [209]. To this end, starting
racemic Biginelli adducts 4 were treated with enals 308 in the presence of chiral NHC
XIII and the oxidant 309 at room temperature. Under these conditions, enantioenriched
acylated DHMPs 310 were obtained albeit with moderate enantioselectivities (Scheme 116).
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8. Conclusions

Considering the number of DHPM-containing drugs discovered and used in the treat-
ment of multiple diseases, it is not surprising that the amount of newly synthesized DHPMs
has exponentially increased in the last two decades. The classical approach to access those
scaffolds is the multicomponent Biginelli reaction, discovered more than a century ago. The
rebirth in the 1980s of the Biginelli reaction has driven huge synthetic efforts to improve
the efficacy of this transformation; however, these efforts have mostly focused on the
improvement of the reaction conditions. Additionally, the inherent limitations of the use of
three specific components compromise the access of several substitution patterns in the
final DHPMs. Mainly in the present century, several variations of these components have
been evaluated, together with the modification of the DHPM scaffold itself, which made
it possible to synthesize novel Biginelli-like derivatives that possessed new promising
biological activities; this review summarized all those efforts, showing the great diversity
of new synthetic approaches developed to build different DHPM derivatives.

Regarding the biological relevance of the DHPM substructure, we will witness in the
future the appearance of new synthetic methods to increase the synthetic tools already
existing to construct DHPMs.
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