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Abstract: This paper presents an innovative method for multiple lead electrocardiogram (ECG)
monitoring based on Compressed Sensing (CS). The proposed method extends to multiple leads
signals, a dynamic Compressed Sensing method, that were previously developed on a single lead.
The dynamic sensing method makes use of a sensing matrix in which its elements are dynamically
obtained from the signal to be compressed. In this method, for the application to multiple leads, it
is proposed to use a single sensing matrix for which its elements are obtained from a combination
of multiple leads. The proposed method is evaluated on a wide set of signals and acquired on
healthy subjects and on subjects affected by different pathologies, such as myocardial infarction,
cardiomyopathy, and bundle branch block. The experimental results demonstrated that the proposed
method can be adopted for a Compression Ratio (CR) up to 10, without compromising signal quality.
In particular, for CR = 10, it exhibits a percentage of root-mean-squared difference average among a
wide set of ECG signals lower than 3%.

Keywords: electrocardiogram; Compressed Sensing; multiple measurement vector reconstruction;
signal recovery; biomedical measurement system; wearable devices; Internet of Things

1. Introduction

Electrocardiogram (ECG) has always been among the most investigated signals due to
multiple reasons. ECG monitoring allows preventing cardiovascular and many correlated
diseases (such as diabetes and hypertension) [1], and it is widely adopted in surgical
interventions, sport activity monitoring, and daily home healthcare [2]. As stated in [3,4],
the standard 12-lead ECG recording is able to effectively reflect rich spatial information
of the heart’s movements allowing the recognition of specific pathological features [5];
thus, it is widely used in clinic and hospital applications. In a standard 12-lead monitoring
system, heart activity is detected by employing up to 10 electrodes placed in standardized
positions, which provide information regarding the following: three bipolar limb leads
I, II, and III; three augmented limb leads, aVR, aVL, and aVF; and six precordial leads,
V1, V2, V3, V4, V5, and V6. The cardiologist is able to make a diagnosis by comparing the
ECG signals acquired from the different leads with reference ECG waveforms reported
in the scientific literature. The minimum number and set of selected leads depend on the
need of observing specific waveforms that could be then related to specific pathologies.
As a consequence, an analysis aimed at determining the minimum number of sensors to
be used, as reported in [6], cannot be carried out unless referring to specific pathologies.
Although providing complete ECG information, the acquisition of 12-lead ECG in people’s
daily lives is still a challenge [3]. In fact, several devices are occasionally used for at-home
patient monitoring; nevertheless, they are still not convenient and comfortable enough for
24/7 usage due to the obtrusive 12-lead setting [3].

Nowadays, continuous remote monitoring of physiological parameters is demanded
for patients performing therapy at home, and it is currently allowed by Internet-of-Things
technology, which in this case takes the term of Internet of Medical Things (IoMT). IoMT
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generally constitutes an elaborated paradigm, with medical things meaning wearable
devices and smart sensors tied to human bodies (sometimes implanted in bodies), allowing
the acquisition of biosignals and other vital parameters. Standard configurations of IoMT
remote monitoring systems, where ECG signal is acquired at Nyquist rate, do not suit
storage and transmission requirements as a huge amount of data need to be stored and
transmitted [7], especially when a high number of patients is monitored [8]. Moreover,
power consumption is often related to signal data rate, since data transmission is the
main cause of energy dissipation in many interfaces (such as Wireless Local Area Network
(WLAN) and Wireless Wide Area Network (WWAN) interfaces) [9].

In Wavelet or Fourier domains, ECG signals are demonstrated to be sparse [9], i.e.,
they can be represented by a reduced number of samples. Relying on sparsity property,
the technique of Compressed Sensing (CS) has been proposed in order to reduce the
number of samples representing the signals of interest and to reconstruct their digital
version without compromising signal quality [10]. The CS has been vastly investigated
in the field of biomedical signal processing not only for ECG monitoring but also for
electroencephalogram, electromyogram, electrooculogram, galvanic skin response, and
heart sound signals [9,11,12]. Adopting CS entails a reduction in data rate with respect to
signal information content. Among the resulting benefits, it is possible to mention not only
an increase in battery lifespan of sensor nodes but also an easier allocation of time slots for
communications, e.g., when multiple systems are used sharing the same band or different
physiological signals are acquired simultaneously.

ECG acquisition based on CS has been implemented both in hardware and software
by means of analog or digital methods. The main advantage of analog methods, typically
known as compressive sampling, consists in decreasing the sampling rate by employing
architectures working below the Nyquist limit [13]. On the other hand, digital methods are
not intended to sample under the Nyquist rate but are intended to reduce the number of
samples to be transmitted. Digital approaches have the main advantage of lower power
consumption due to the lack of dissipating devices (such as mixers) in hardware implemen-
tations; thus, they are considered preferable in wireless applications [9]. In reality, other
compression algorithms for ECG signals are built on transforms in Fourier or Wavelet do-
mains [14–18] or on fractal-based transforms [19]. These algorithms are potentially able to
reconstruct the original ECG signal with good performance. Nevertheless, their high com-
putational complexity and buffer requirements do not adapt to real time implementations
of ECG monitoring [14,15]. Differently from the aforementioned compression algorithms,
the CS reduces instead the computational complexity related to the compression phase
such that it complies with the limited physical resources of IoMT sensor nodes. Instead,
the most computationally heavy task which consists of the waveform reconstruction re-
lies in the higher layers of the IoMT architecture that are usually deployed in the cloud
where powerful resources are available. Research is also in progress in order to perform
anomaly detection directly from compressed samples without the need of reconstructing
the waveforms [20].

Although multiple electrodes and leads are actually adopted by measurement systems
in biomedical field, ECG monitoring through CS has been addressed in the literature
mainly in the case of one electrode with one lead [9,13,21–26]. The aim of this paper is to
propose a digital CS-based method for ECG monitoring of multi-lead signals. Obviously,
a significant part of the information content sensed by various electrodes is common to
all the signals on the different leads. Such property is exploited by the proposed method
by jointly reconstructing the multi-lead signals from the same support. The multi-lead
proposed method implements a dynamic deterministic approach [26] in the sense that the
compression mechanism is adapted to the acquired signals to include more information
on cardiac features and improve reconstruction quality. The method is designed to be
implemented in the Ambient-Intelligent Tele-monitoring and Telemetry for Incepting and
Catering Over hUman Sustainability (ATTICUS) system described in [27]. This system
consists of a smart T-shirt, called S-WEAR, capable of monitoring from one up to six
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ECG leads. S-WEAR has a modular architecture which can be adapted for multi-leads
monitoring without substantially increasing overall costs of the entire system and without
compromising its comfort. The ATTICUS system is characterized by a three-level Decision
Support System (DSS). The first level is installed in the S-WEAR and allows automatically
detecting a limited set of anomalies, such as when the heart rate is too high. The second level
is installed on an electronic device, called S-BOX, that is installed at the patient’s home, and
is able to detect a broader range of anomalies, such as irregular heartbeat. Finally, the third
level is installed on the server, and it makes use of advanced machine-learning techniques
to decide if it is necessary to notify the alarm of the physician at the monitoring center.
They allow automatic detection: atrial fibrillation, ventricular tachycardia, congestive
heart failure, and four types of arrhythmia conditions. Some of these machine learning
techniques work on multi-lead acquisitions for assuring high accuracy [27]. If an alarm is
sent to the physician, long recordings of the acquired multi-lead signals before and after
the detected event are sent to her/him in order to make a diagnosis. This requires the
storage of a large amount of data that need to be compressed.

A preliminary version of the method has been introduced in [28], where the multi-lead
reconstruction was carried out by dynamically evaluating the signal frame acquired on the
first lead through a threshold set by a percentile. In the work presented here, the following
innovations have been added: (i) the dynamic sensing matrix is built from a combination
of the most significant leads in terms of information content, i.e., lead II and aVF, instead
of the first lead; (ii) for the reconstruction, a comparison in terms of signal quality and
execution time between Multiple Sparse Bayesian Learning (M-SBL) and the Multiple
FOCal Underdetermined System Solver (M-FOCUSS) is performed; (iii) experimental
validation is extended with a set of signals of subjects affected by specific pathologies; and
(iv) an experimental comparison with other four relevant literature methods proposing CS
for multi-lead ECG monitoring has been added.

The rest of the paper is organized as follows. An overview of the CS-based methods
available in the literature for the compression of multi-lead ECG signals is proposed
in Section 2. Section 3 presents the proposed method by detailing the two phases of
compression and reconstruction. In Section 4, the implementation of the proposed method
is described. Section 5 illustrates the experimental results of the proposed method for
several sets of signals. Specifically, in Section 5.1, an analysis versus the regularization
parameter used in the reconstruction algorithm is presented. In Section 5.2, the performance
of the proposed method versus the compression ratio and the number of leads is analyzed.
In Section 5.3, an experimental comparison of the results of the proposed method with those
achieved other four relevant literature methods is reported. Lastly, Section 6 is devoted to
conclusions.

2. Related Works

As stated above, in the literature, few studies are focused on the use of CS methods for
multi-lead monitoring [7,29–31]. Those methods outperform the single lead CS methods
because they rely on the fact that the ECG signals from multi-lead channels are not inde-
pendent but they have the electrical heart vector as a common source of information. In
particular, the ECG signals on the different leads correspond to the projections in different
directions of the electrical heart vector.

In [31], the adopted multi-lead CS method is based on Filtered Modulated-Multiplexer
(FM-Mux) architecture. In this case, firstly, each ECG signal is modulated with a pseudo-
random sequence having a rate higher than the analyzed bandwidth. Secondly, the signals
are convoluted with low-pass linear time-invariant (LTI) filters having a bandwidth equal
to the rate of the sequence. Finally, the signals are added together onto a single chan-
nel and uniformly sampled by an Analog-to-Digital Converter (ADC) at a rate lower
than the Nyquist one and equal to the rate of the pseudo-random sequence. The results
of [31] demonstrated that the reconstruction quality in terms of PRD is lower than 9% by
considering a Compression Ratio (CR) of 5.
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In [30], the ECG signals are acquired by ADCs working at the Nyquist rate and then
compressed by multiplying the acquired samples with a sparse binary matrix. The results
demonstrate that the adopted method achieves good reconstruction quality, i.e., PRD lower
than 9%, for CR around 3.

A multi-lead CS method, based on the same sparse binary matrix as before is pro-
posed in [7]. In this case, the performance of several Weighted mixed-norm minimization
(WMNM)-based joint sparse recovery algorithms was assessed, and a PRD around 7% was
achieved with a CR of 7 by means of the Prior Weighted MNM (PWMNM) algorithm.

In [29], a sparse binary matrix was adopted as a sensing matrix together with a sparsity
matrix based on the Daubechies 6 wavelet. In this case, a PRD lower than 9% was achieved
with a CR around 4 [29].

The above-mentioned methods are based on sensing matrices that are randomly built;
on the other hand, in the work here presented, a deterministic matrix is adopted. This
deterministic matrix was already tested in [26] for single lead monitoring. In this paper,
its use is analyzed in the case of multi-lead monitoring with the aim of outperforming the
performance in terms of reconstruction quality of random-based approaches.

3. The Proposed Method

IoMT networks allow constantly assessing the health status of subjects monitored
through biomedical measurement systems [26]. The working principle of a generic IoMT-
enabled system is based on the transfer of information from several sensor nodes to a cloud
server that constitute a physical layer and the information integration layer of the IoMT
model [32], respectively. Each sensor node acquires and transmits the biosignal samples.
The cloud server stores the received samples, which are later employed to recover original
information about the health status. Therefore, in an IoMT network—which can be shared
also among thousands of nodes—considerable data rates have to be handled.

Generically, the sensor node of the ECG monitoring system consists of multiple
electrodes that form L leads. The ECG signal on each lead xl(t), with l = 1, 2, . . . , L, is
acquired through an analog front-end and an Analog-to-Digital Converter (ADC) working
at the Nyquist rate. A record of N acquired samples is here represented as the vector
xl . Overall, in the time frame of each record, the ECG monitoring system acquires and
transmits a matrix of N × L samples.

X = [x1, x2, . . . , xL]. (1)

Let each vector acquired at the Nyquist rate, i.e., each column xl of the matrix X,
be sparse, i.e., represented by a few non-null coefficients in a given transform domain
described by a sparsity matrix Ψ ∈ RN×N . In this case, each vector xl can be expressed as
follows:

xl = Ψcl , (2)

where cl is a vector of the signal coefficients with few nonzero elements. Overal, the matrix
X can be expressed as follows:

X = ΨC, (3)

with C = [c1, c2, . . . , cL].
The ECG signal is usually sparse in several Wavelet and Fourier domains. As reported

in [9], one of the sparsity matrices achieving the highest reconstruction performance is
obtained by means of the Mexican hat wavelet kernel. In this paper, a Mexican hat wavelet
matrix Ψ′ defined according to [33] is used:

Ψ′ =

[
ψ(2, 0), ψ(2, 2), . . . , ψ

(
2, 2
⌊

N − 1
2

⌋)
, ψ(4, 0), ψ(4, 4), . . . , ψ

(
4, 4
⌊

N − 1
4

⌋)
, . . . , ψ(N, 0)

]
, (4)
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where ψ(a, b) ∈ RN×1 is a vector that describes the Mexican hat wavelet function having
a = 2m, and m = {1, . . . , blog2(N)c} and b =

{
0, a, 2a, . . . , a

⌊
N−1

a

⌋}
denote scale and

translation parameters, respectively:

ψ(a, b) =
2√

3a · π1/4
·
[

1−
(

n− b
a

)2
]
· e−

1
2 (

n−b
a )

2

, (5)

with n = [0, . . . , N − 1]T .
The multi-lead method proposed in this paper for ECG monitoring is intended to

optimize, through CS [10], the transfer of information in IoMT networks. In particular,
as depicted in Figure 1, the sensor node sub-samples the multi-lead ECG signals coming
from electrodes, while the cloud server jointly reconstructs them. The sensor node can
be implemented by simple hardware consisting of electrodes and leads along with a
microcontroller and a radio frequency interface, since the ECG signals are firstly acquired
at the Nyquist rate and then compressed. The joint reconstruction is instead relied on by
the cloud server and is typically characterized by unconstrained resources. The multi-
lead proposed method consisting in the two phases of compression and reconstruction is
detailed in the following.

Figure 1. Multi-lead method based on dynamic CS.

In the sensor node, the vector acquired on each lead, xl , is compressed in an M-
dimensional measurement space, with M < N. The core idea behind the proposed method
is the formulation of a dynamic sensing matrix Φ of size M× N that sub-samples every
frame of N samples of the multi-lead signals and that is effective for a joint reconstruc-
tion. In particular, data reduction in sub-sampling systems is typically expressed by the
Compression Ratio (CR).

CR =
N
M

. (6)

In order to build the dynamic sensing matrix Φ, a vector p of N binary digits must be
preliminarily introduced. The vector p is defined from a vector x0 ∈ RN that constitutes a
proper combination of the leads with the most significant contribution. Specifically, the
vector x0 is built as the root mean square of the bipolar limb lead II and the augmented
limb lead aVF.

x0 =

√
1
2
(x2

I I + x2
aVF). (7)
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Actually, different lead combinations can also be considered. For example, another
combination allowing to sub-sample with high CR values is the root mean square of the
leads II, aVR and V6, where one lead for each lead group is selected. Generally, lead II is the
most commonly used one for accurately assessing cardiac rhythm as it usually provides a
good view of the P wave [34], while including precordial leads may help to follow R wave
progression. Another vector, called xp, is obtained from the vector x0, and the average xavg
of x0 is defined as follows.

xp = | x0 − xavg | . (8)

Then, a threshold value xth is determined starting from the vector xp. The threshold
xth is given by the 60th percentile computed on the N samples of xp. The percentile value
is fixed on the basis of an experimental analysis. The vector p is evaluated by comparing
xp with xth. In particular, it contains 1 when the corresponding sample of xp is higher than
or equal to xth; otherwise, it is 0:

p(n) =

{
1, if xp(n) ≥ xth

0, if xp(n) < xth
(9)

where p(n) is the n-th element of the vector p, with n = 1 . . . , N. In this manner, the vector
p presents ones where the ECG acquired in the selected leads has higher amplitude. Finally,
the sensing matrix Φ ∈ {0, 1}M×N is built by the vector p circularly shifting on each row
by an amount equal to CR.

Φ =


p(1) p(2) . . . p(N)

p(N − CR + 1) p(N − CR + 2) . . . p(N − CR)
...

...
. . .

...
p(CR + 1) p(CR + 2) . . . p(CR)

. (10)

The compression consists of the multiplication of the the vector xl acquired on each
lead by the sensing matrix Φ, thus obtaining M compressed samples or overall the matrix
Y = [y1, y2, . . . , yL] of size M× L.

Y = ΦX. (11)

The compression process can be interpreted as the cross-correlation of each vector
acquired on the different leads with the p vector. The matrix Y and the vector p are then
transmitted to the cloud server.

In the cloud server, the ECG received in compressed form can be reconstructed at the
Nyquist rate. First of all, the sensing matrix Φ is rebuilt within the cloud server in the same
manner as in the sensor node, thanks to the vector p. Moreover, the use of a sparsity matrix
is required for the ECG reconstruction. In addition to the columns reported in (4), a further
N-size column u =

(
1/
√

N
)
· [1, . . . , 1]T is employed to take into account a possible offset

in the signal.

Ψ =
[
Ψ′, u

]
. (12)

It is worth noting that the signals on the different leads are highly correlated, since
they have the heart as common source and are synchronous. Therefore, they will share
the same support, and the nonzero elements of each column c·l will lie mostly in the same
positions. This means that the matrix C is row-sparse; that is, it has few nonzero rows.
Exploiting this consideration, the matrix X can be reconstructed by starting from the matrix
of compressed samples Y (11), the dynamic sensing matrix Φ (10), and the Mexican hat
wavelet matrix Ψ (12) and by solving a joint sparse recovery problem that can be expressed
as the following [35]:
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Ĉ = arg min
C
‖Y−ΦΨC‖2

F + λJ, (13)

where ‖ · ‖F denotes the Frobenius norm, λ is a regularization parameter that must be
chosen to balance quality in the estimation of the cost function with sparsity [35,36], and
J is a cost function that uses a p-norm, with p ∈ [0, 1], in order to lead towards a sparse
solution:

J =
N

∑
n=1
‖cn·‖p

2 , (14)

with cn· the n-th row of C. The cost function (14) counts the number of non-null rows in C,
and it is the extension to matrices of the `0-norm that counts the non-null elements in a
vector [35,36]. Once the Ĉ has been obtained, the matrix X̂ is evaluated as follows.

X̂ = Ψ · Ĉ. (15)

The reconstruction is performed on each frame of M× L transmitted samples that are
compressed in the sensor node from the N × L acquired samples. Fundamentally, through
the proposed method, only the M× L matrix Y of the compressed samples is transmitted
together with the N-size vector p in place of the N × L matrix X of the samples acquired
at the Nyquist rate. The main advantage of the proposed method is the dynamic ECG
evaluation. In other CS implementations for ECG monitoring, the sensing matrix Φ is
usually randomly constructed according to a probability distribution [9,13,21,25,29]. As
an example, in [21], the reconstruction performance of different CS methods is compared
by considering several distributions, such as Bernoulli or Gaussian. However, adopting
random matrices entails that the reconstruction performance may significantly vary de-
pending on the correlation between the entries of the sensing matrix and the acquired
samples. Such limitation is overcome in the proposed ECG monitoring system, since the
sensing matrix is not randomly generated. Deterministic matrices have been already pro-
posed in [22,23] as a viable alternative for ECG compression that does not require random
number generation on the chip [22]. Indeed, random number generation on chip can be a
heavy computational load for sensor nodes equipped with simple microcontrollers, while
deterministic matrices could easily be employed also in wearable devices. The substantial
difference of the proposed method with the other deterministic methods [22,23] is that the
dynamic sensing matrix is built as a circulant matrix that depends on a combination of
the leads with the most significant contribution. Thus, being adapted to the distribution
of the acquired ECG, it contains more information on the signal features, guaranteeing
better reconstruction quality. Finally, it is important to point out that the proposed method
exploits the common information content that all the multi-lead signals share. In fact, only
one sensing matrix and one sparsity matrix are adopted regardless the number of leads.

4. Implementation of the Proposed Method

The implementation of the proposed method for multi-lead ECG monitoring is pre-
sented in this Section. Both the phases of compression in the sensor node and reconstruction
in the cloud server, described in previous Section 3, were implemented in the MATLAB
environment. ECG signals from the Physikalisch-Technische Bundesanstalt (PTB) Diag-
nostic ECG Database, available online at the PhysioNet website [37], were examined. For
each monitored patient, the signals related to the monitoring of 12 leads are available. For
reducing the signal distortions due to the power line disturbances, the signals were filtered
by a notch filter at the harmonics fh = h · f , with f = 50 Hz and h = 1, 2, . . . , 9. Each signal
of the PTB database is sampled at 1 kSamples/s. The duration of the signal frame was
chosen equal to 1 s; therefore, the size of each frame results in N = 1000. The size of M
depends, instead, on the adopted CR.

When proposing a compression method, a good practice consists in verifying that the
compression does not alter significantly the clinical information contained in the signal. The
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performance of a compression method for ECG signals and other biosignals is typically eval-
uated by the percentage of root-mean-squared difference (PRD) [9,12,13,21,23–26,28,29].
In this paper, the PRD is computed for the ECG signal related to each lead l:

PRD =
‖xl − x̂l‖2
‖xl‖2

× 100%, (16)

where xl is the vector of the ECG samples acquired at the Nyquist rate, and x̂l is the
reconstructed vector, with ‖ · ‖2 indicating the `2-norm. In ECG monitoring, clinical
information contained in the original signal acquired at the Nyquist rate is considered
generally preserved if the reconstructed signal exhibits a PRD lower than 9% [21]. Therefore,
in analyzing the proposed method, particular attention will be paid to such value as upper
bound for good reconstruction and monitoring.

In order to provide an idea of the reconstruction quality achieved by the proposed
method for multi-lead ECG monitoring, Figures 2 and 3 illustrate some recordings from
the PTB database labeled as myocardial infarction. The minimization problem (13) with
12 measurement vectors was solved by using the M-FOCUSS algorithm [35], with regu-
larization parameters fixed to 3× 10−3. The original signals are drawn with black lines,
while the signals reconstructed from M = 200 compressed samples (i.e., with CR = 5)
are represented by red dashed lines. In particular, in Figure 2, the lead I of the signal
s0416 is shown for a time window of 10 s where different deflections of the QRS complex
can be appreciated. Figure 3 depicts, instead, all of the 12 leads of the signal s0010 for a
time window of 1 s corresponding to a single frame. Moreover, for each lead, the abso-
lute value of the difference ∆ between original and reconstructed signals is reported too.
What is worth noting is that all the 12 leads are correctly reconstructed. In fact, a good
overlapping with the original signals can be appreciated not only for leads II and aVF
(Figure 3b,f), which are employed to build the sensing matrix but also for all the other
leads. The performance in terms of PRD confirms the graphical results since the ob-
tained value for the signal of Figure 2 is 1.09%, while the obtained values for the signal of
Figure 3 vary from a minimum of 1.99% for lead V2 to a maximum of 5.08% for lead I. In
any case, the PRD for CR = 5 is much lower than the limit of 9%.

Figure 2. Lead I of the signal s0416 (myocardial infarction) from the PTB database for a time window of 10 s: the original
frame is in black, and the frame reconstructed with CR = 5 is in red.
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(a) I (b) II (c) III

(d) aVR (e) aVL (f) aVF

(g) V1 (h) V2 (i) V3

(j) V4 (k) V5 (l) V6

Figure 3. Twelve-leads ECG of the signal s0010 (myocardial infarction) from the PTB database for a time window of 1 s: (a)
lead I, (b) lead II, (c) lead III, (d) lead aVR, (e) lead aVL, (f) lead aVF, (g) lead V1, (h) lead V2, (i) lead V3, (j) lead V4, (k) lead
V5, (l) lead V6. On the top, the original frames are in black, and the frames reconstructed with CR = 5 are in red; on the
bottom, the absolute difference ∆ between reconstructed and original frames.

5. Experimental Results

This section illustrates the performance of the proposed method for multi-lead re-
construction. The performance was evaluated in terms of PRD by several investiga-
tions on wide sets of signals from PTB database. The assessment was carried out in the
MATLAB environment.
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5.1. Analysis of Regularization Parameter

In order to compare the proposed method with the method [29], the multi-lead ECG
monitoring based on the proposed dynamic method was initially implemented on the
same signal set of [29]. The considered set comprises the following 10 signals labeled as
myocardial infarction, either from men or women, with at least 60 years.

S1 = {s0010; s0026; s0035; s0037; s0039; s0045; s0047; s0052; s0053; s0056}. (17)

As a first step, the proposed method was implemented by considering two minimiza-
tion algorithms to solve the reconstruction problem (13) with 12 measurement vectors: the
Multiple Sparse Bayesian Learning (M-SBL) and the Multiple FOCal Underdetermined
System Solver (M-FOCUSS) [35,36]. The two algorithms were evaluated depending on the
regularization parameter λ for a time window of 10 s in terms of PRD and execution time.
In more detail, for an overall performance evaluation, the PRD computed according to (16)
for each lead of each signal of S1 (17) was averaged over the 10 signals and the 12 leads.
On the other hand, in order to take into account the actual duration employed by the two
algorithms for the reconstruction of all the 12 leads simultaneously, the execution time was
averaged over the frames of N samples related to S1. This analysis was carried out for a
time window of 10 s by setting CR = 2.

The experimental results of the two algorithms are presented in Figure 4. The PRD
average, shown in Figure 4a, exhibits two different minimum values (marked in red) on
the basis of the considered algorithm. In particular, the minimum value obtained by M-SBL
algorithm is 1.39% corresponding to λ = 10−4, while the minimum value obtained by
M-FOCUSS algorithm is equal to 1.31% for λ = 3× 10−3. The execution time, shown
in Figure 4b, presents instead for both the algorithms a decreasing trend as the λ values
increase. Specifically, the execution times corresponding to the λ values related to the
minimum PRD values are 10.02 s and 8.17 s for M-SBL and M-FOCUSS, respectively (as
marked in red in Figure 4b). According to [28], the temporal M-FOCUSS algorithm [38]
was analyzed too. However, this algorithm exhibited a PRD trend similar to M-FOCUSS
but with a higher minimum PRD value and an execution time higher than 40 s. It is certain
that M-FOCUSS not only provides the absolute minimum of PRD average but also the
minimum execution time among the analyzed algorithms. Therefore, hereinafter, the
adopted algorithm is only M-FOCUSS with the regularization parameter fixed to 3× 10−3.

(a) (b)

Figure 4. (a) Average PRD and (b) execution time of M-SBL and M-FOCUSS algorithms versus the regularization parameter
λ, computed on the signal set S1.

5.2. Performance Analysis

The performance of the proposed method was analyzed versus the number of leads as
well as the compression ratio. To this aim, at first, the PRD was computed according to (16)
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for each considered lead; secondly, the PRD values related to the leads with the same label
were averaged. Finally, average and standard deviations were evaluated over all the PRD
values related to the different leads. For the results referring to a single lead, the average
reports the test results, while the standard deviation is not reported.

The first investigation is intended to evaluate the performance of the proposed
method as the number of leads employed by the ECG monitoring system increases.
Specifically, the ECG monitoring system was considered composed by a number of leads
L = {1, 3, 6, 8, 10, 12}. The analysis was conducted on the signal set S1 (17) for a time
window of 30 s.

The results of this investigation are presented in Figure 5, depending on CR =
{2, 4, 6, 8, 10}. As expected, the average (Figure 5a) and the standard deviation (Figure 5b)
increase with the CR values. It is worth noting that a significant reduction in the average
PRD is achieved when multiple leads are used compared with the single lead case, thus
demonstrating the advantage of a joint reconstruction from multiple leads. Such reduction
increases with the number of leads. The best performance, both as average and standard
deviation, is achieved by adopting all the conventional 12 leads. Then, by analyzing the
average, it can be observed that 10 leads guarantee a trend similar to 12 leads. The perfor-
mance decreases gradually by reducing the number of leads. Instead, as concerning the
standard deviation, the results of 6, 8, and 10 leads are comparable. Therefore, if the higher
number of measurement vectors is more difficult and heavier with respect to matching on
the one hand, then on the other hand it adds further information on the coefficients of the
ECG signal. According to the obtained results, the proposed approach generally exhibits
an excellent performance for multi-lead ECG signal recovery. In fact, the results show
a very low PRD up to CR = 6, reaching CR = 10 maximum values comprised between
(5.17± 1.87)% and (6.57± 2.17)%, which is lower than the bound of 9% that is considered
acceptable in medical applications [21].

(a) (b)

Figure 5. (a) Average and (b) standard deviation of PRD versus CR for the set of signals S1 (myocardial infarction).

Finally, for a more extensive examination of the performance of the proposed method,
the PRD was also investigated on other sets of signals. In particular, since the previous
assessments were carried out only on set S1, characterized by all signals labeled in the PTB
database as myocardial infarction, a further analysis was conducted on signals identified
by different labels. Hence, the following sets of 10 signals were also considered:

S2 = {s0436; s0468; s0470; s0471; s0472; s0473; s0474; s0496; s0503; s0551}, (18)

S3 = {s0383; s0423; s0437; s0444; s0456; s0488; s0489; s0492; s0493; s0498}, (19)
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S4 = {s0421; s0424; s0430; s0431; s0435; s0439; s0441; s0442; s0448; s0451}, (20)

S5 = {s0002; s0340; s0432; s0484; s0485; s0494; s0508; s0509; s0510; s0546}, (21)

where S2 consists of signals acquired on people not suffering from any pathology and labeled
as healthy controls, while S3, S4 and S5 are sets of signals labeled by cardiac pathologies. In
particular, S3 and S4 comprise signals labeled, respectively, as cardiomyopathy and bundle
branch block. The reconstruction of all the 12 leads is reported in Figure 6 in the case of
cardiomyopathy and in Figure 7 in the case of bundle branch block. S5 includes, instead, several
other pathologies: unstable angina, stable angina, myocarditis, hypertrophy, and dysrhythmia.
The conventional number of 12 leads was chosen to evaluate the method in its full configuration.
Moreover, in this case, the analysis was carried out for a time window of 30 s.

(a) I (b) II (c) III

(d) aVR (e) aVL (f) aVF

(g) V1 (h) V2 (i) V3

(j) V4 (k) V5 (l) V6

Figure 6. Twelve-leads ECG of the signal s0488 (cardiomyopathy) from the PTB database for a time window of 1 s: (a) lead I,
(b) lead II, (c) lead III, (d) lead aVR, (e) lead aVL, (f) lead aVF, (g) lead V1, (h) lead V2, (i) lead V3, (j) lead V4, (k) lead V5, (l)
lead V6. On the top, the original frames are in black, and the frames reconstructed with CR = 5 are in red; on the bottom,
the absolute difference ∆ between reconstructed and original frames.
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(a) I (b) II (c) III

(d) aVR (e) aVL (f) aVF

(g) V1 (h) V2 (i) V3

(j) V4 (k) V5 (l) V6

Figure 7. Twelve-leads ECG of the signal s0431 (bundle branch block) from the PTB database for a time window of 1 s: (a)
lead I, (b) lead II, (c) lead III, (d) lead aVR, (e) lead aVL, (f) lead aVF, (g) lead V1, (h) lead V2, (i) lead V3, (j) lead V4, (k) lead
V5, (l) lead V6. On the top, the original frames are in black, and the frames reconstructed with CR = 5 are in red; on the
bottom the absolute difference ∆ between reconstructed and original frames.

Figure 8 illustrates the obtained PRD values for CR = {2, 4, 6, 8, 10}. The PRDs are
even smaller than the ones obtained for set S1. In particular, the average, in Figure 8a, is
characterized by a linear trend with CR. From the analysis of Figure 8b, it can be noted
that the standard deviations are lower than 1% for all the considered CR, so PRD values do
not significantly deviate from the averaged values. Thus, the proposed method is capable
of reconstructing well not only ECG signals related to healthy subjects but also to subjects
affected by specific pathologies of cardiomyopathy and bundle branch block. In fact, for
these two sets of signals, the proposed method provides maximum PRD values for CR = 10
equal to (2.21± 0.58)% and (2.38± 0.38)%, respectively.
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(a) (b)

Figure 8. (a) Average and (b) standard deviation of PRD versus CR for sets of signals S2, S3, S4 and S5 .

5.3. Comparison with Literature Methods

The proposed method was compared with the methods [7,29–31], all applying Com-
pressed Sensing on multi-lead ECG signals and using the same signal database considered
in this work. A first analysis has been carried out by comparing the results of the proposed
method with those of the method [29]. In this case, the first 10 leads of the S1 (17) dataset
have been considered, and the average PRDs for each lead have been evaluated. The PRD
was firstly computed lead by lead according to (16) for each signal of the set for a time
window of 30 s. Then, the average of the PRD values related to the leads with the same
label was evaluated.

Table 1 summarizes the results for CR = {4, 8} obtained by the proposed method and
the method in [29]. As reported in the table, better results can be observed in the case of
the proposed method for all the leads and for both the considered CR values. A further
improvement can be appreciated also by comparing these results to the ones obtained
by applying a preliminary version of the proposed method presented in [28]. The best
result is achieved for lead I, and more generally, the values obtained through the proposed
method are half of the values obtained by the random approach. It should be underlined
that the bound of 9% is not reached for any of the leads, which is different from [29] where
such bound is exceeded for most of the leads when CR = 8 and for lead I in both of the
considered CRs.

Table 1. PRD values for the set of signals S1 in comparison to the values obtained in [29].

CR Multi-Lead Reconstruction
PRD (%)

I II III aVR aVL aVF V1 V2 V3 V4

4 Zhang [29] 11.95 5.96 6.81 8.09 9.23 6.31 4.69 3.18 4.11 3.71
proposed method 6.10 2.75 2.74 3.91 4.39 2.38 2.23 1.50 1.52 1.61

8 Zhang [29] 21.68 10.91 13.05 14.89 17.01 12.07 9.69 7.76 10.97 10.26
proposed method 8.97 4.36 4.29 5.92 6.50 3.87 3.74 2.70 2.95 3.15

In Figure 9, the average PRD obtained with the application of the proposed method on
all the considered datasets S1, S2, S3, S4, and S5, for different values of CR, is depicted. The
figure also shows the results provided in [7,29–31]. In particular, for [31], the corresponding
line reports the average along the considered 12 leads of the PRDs provided in Table 1 of
that paper. For [30], the corresponding line reports the median values shown in Figure 3
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(bottom) of the paper. The line referring to [29] reports the average of the PRD values
along the 10 leads provided in Table I of [29] for model WL12M. In the case of [7], the
corresponding line draws the average along the considered 12 leads of the PRDs reported
in Tables 2 and 3 for the PTB database. Among the considered methods, the one presented
in [31] achieves the highest values of average PRD, reaching values higher than 10% for a
CR = 3 and showing even higher values for increasing CRs. A slightly better performance
is achieved by [30], where the average PRD values range from about 4.8% for CR = 2
to about 28.4% for CR = 8. The method in [29] shows values increasing almost linearly
from about 3.7% for CR = 2.29 up to about 12.8% for CR = 8. The method in [7] further
improves reaching an average PRD of about 4.8% for a CR = 5.12 and 6.6% for a CR = 7.3.
The proposed method achieves the best results versus the considered methods and results
in a curve that lies below all the others, ranging almost linearly from 0.71% for CR = 2, to
2.82% for CR = 10.

Figure 9. Comparison of the average PRDs obtained by the proposed method with the results
reported in [7,29–31].

6. Conclusions

In this paper, a CS-based method for multi-lead ECG signal monitoring has been
presented. In detail, the proposed method employs a deterministic sensing matrix dynami-
cally built from a vector obtained by a proper combination of ECG signals of two different
leads. According to such vectors, for each ECG frame, a compressed version of the signal
is obtained and then transmitted to the cloud server by the sensor node, together with the
vector determining the sensing matrix. Thus, in the cloud server, the sensing matrix can be
rebuilt, and all the ECG leads can be recovered. Specifically, the sparsity matrix is based on
a Mexican hat wavelet kernel.

The method was evaluated through several investigations on a wide set of signals.
The PRD values obtained from the proposed method were analyzed against the number
of considered leads and CR. The experimental results show better performance in case of
ECG monitoring system with all the conventional 12 leads. In any case, the PRD values
are always lower than the bound of 9%, which has been indicated for the preservation
of ECG information up to CR = 10 and reveals the proposed method suitability for
ECG monitoring of subjects considered healthy as well as affected by pathologies such as
myocardial infarction, cardiomyopathy, and bundle branch block. Furthermore, the method
was compared with other four relevant literature papers proposing CS for multi-lead ECG
monitoring. The proposed method improves significantly the signal reconstruction quality,
as demonstrated by the lowest PRD obtained in the experimental results among all the
considered CS methods.
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As future work, the implementations and testing on the hardware of the proposed
method have been planned with the aim of demonstrating its suitability to be implemented
on wearable devices in IoMT applications.
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