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Abstract: The host transcription factor p53 is a critical tumor suppressor in HPV-induced carcino-
genesis, regulating target genes involved in cell cycle arrest and apoptosis. However, the p53 targets
have not been thoroughly analyzed in HPV-infected cells. In this study, p53 signaling in HPV16 and
HPV18 cells was activated by depleting the viral oncoprotein E6. Subsequently, p53-regulated genes
were identified by comparing them with genes altered in p53-silenced cells. True p53 targets were
defined as genes with at least one overlapping p53 binding site and ChIP peak near their locus. Our
analysis revealed that while some p53 targets were common to both the HPV16 and HPV18 cells,
the majority of the targets differed between these two types, potentially contributing to the varying
prevalence of HPV16 and HPV18 in cervical cancer. Additionally, we identified SCN2A as a novel p53
target involved in p53-induced cell cycle arrest in HPV-related carcinogenesis. This study provides
new insights into the mechanisms by which p53 inhibits HPV-induced carcinogenesis.
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1. Introduction

Persistent infections with high-risk human papillomaviruses (hrHPVs) are major
causes of squamous epithelial cell carcinogenesis, particularly in the cervix [1–4]. The early
proteins E6 and E7 of hrHPV are well-characterized oncoproteins essential for transform-
ing virus-infected epithelial cells [5]. E7, by mediating the proteasomal degradation of
retinoblastoma protein (pRb) and upregulating E2F transcription factors, plays a crucial
role in immortalizing primary epithelial cells [6]. However, E7 alone cannot induce cellular
immortalization [7], as it is accompanied by p53-induced apoptosis or senescence due
to its abnormal replication stress [8,9]. Therefore, co-expression with E6, which directly
binds and degrades p53 [10], is necessary for E7-expressing cells to escape p53-mediated
anti-tumor responses during epithelial cell transformation [7,11].

p53, a tumor suppressor, senses genotoxic stress and triggers multiple pathways,
including apoptosis, DNA repair, and senescence [12], to protect cells from tumorigenesis.
It binds to a consensus motif containing two copies of 5′RRRCWWGYYY3′, regulating
the genes involved in these pathways [13]. Normally, p53 is maintained at low levels,
but its stability increases rapidly through post-translational modifications upon genotoxic
stress, leading to p53 activation. In HPV-infected cells, p53 levels are very low, and the
cells are resistant to p53-dependent anti-tumor pathways due to their constitutive E6
expression [14,15]. Thus, E6 is a promising target for reconstituting p53 pathways in
HPV-induced carcinogenesis, and various E6-targeting approaches have been explored
for developing effective anti-HPV therapies [16]. Silencing E6 with intron-specific small
interfering RNAs (siRNAs) stabilizes and accumulates p53 in HPV16 and HPV18 positive
cell lines, leading to efficient apoptotic cell death [8,17].
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p53 exerts its tumor-suppressive functions through its target genes. For example,
CDKN1A (p21), a well-characterized p53 target, inhibits all cyclin-dependent kinases and
links DNA damage to cell cycle arrest following p53 activation [18,19]. However, p53 target
genes regulated in HPV-infected cells are not well understood. In this study, we identified
differentially expressed genes (DEGs) following p53 stabilization and knockdown in HPV16
and HPV18 positive cervical cancer cell lines. Given that p53 binding is consistent across
different cell types and conditions [20], we combined p53 ChIP peaks from human foreskin
keratinocytes (HFKs) [21] and predicted the p53 binding sites using JASPAR to profile the
p53 target genes under HPV conditions. The genes regulated by both the E6 and p53, and
containing overlapping p53 binding sites and ChIP peaks near their loci, were defined
as p53 target genes. Finally, we identified both common and specific p53 targets in the
HPV16 and HPV18 cells and demonstrated that SCN2A is a novel p53 target involved in
p53-induced cell arrest.

2. Materials and Methods
2.1. Cell Cultures and Transfections

The CaSki and HeLa cells (ATCC) were maintained in Dulbecco’s Modified Eagle’s
Medium (DMEM) (Thermo Fisher Scientific, Waltham, MA USA), supplemented with 10%
fetal bovine serum (FBS) and 1% penicillin-streptomycin, and cultured at 37 ◦C with 5%
CO2. SiRNAs targeting the HPV16 or HPV18 E6 were sourced from a previous report [17]
and synthesized by Sangon Biotech Co., Ltd. Other siRNAs were designed and synthesized
by Sangon Biotech Co., Ltd. (Table S4). The transfections were carried out using the
TransIT-X2 Dynamic Delivery System (Mirus Bio, Beijing, China).

2.2. RT-qPCR

The gene expression was quantified using a SYBR Green qPCR assay. Two µg of total
RNA was reverse transcribed to cDNA using HiScript II Q RT SuperMix for qPCR (#R222-
01, Vazyme Biotech Co., Ltd., Nanjing, China). The qPCR was performed with Hieff® qPCR
SYBR Green Master Mix (#11201ES03, Yeasen Biotechnology Co., Ltd., Shanghai, China)
using the primers listed in Table S4. The amplification efficiency ranged from 90% to 110%,
with no dimers or nonspecific bands detected. The gene expression levels were calculated
using the Comparative CT Method (∆∆CT Method).

2.3. RNA-Seq and Data Analysis

The total RNA was extracted from the siRNA-transfected cells using TRIzol reagent
(Thermo Fisher Scientific, #15596018). mRNA libraries were prepared and sequenced on
the DNBSEQ platform (BGI-NGS-JK-RNA-001) as follows: mRNA was isolated using oligo
(dT)-attached magnetic beads, then fragmented and quality-checked. cDNA synthesis
was performed, with a single ‘A’ nucleotide added to the 3’ ends of the double-stranded
cDNA for adaptor ligation. Following several cycles of PCR amplification, the products
were denatured and cyclized, with the uncyclized DNA removed. Single-stranded circular
DNA molecules were then amplified through rolling cycle amplification to generate DNA
nanoballs containing multiple copies of DNA. These DNA nanoballs were loaded into
patterned nanoarrays and sequenced using combinatorial Probe-Anchor Synthesis (cPAS).

The sequencing data were analyzed using the Tom Multi-omics Data Mining System
(https://biosys.bgi.com, accessed on 3 September 2024). The raw reads were filtered with
SOAPnuke to remove low-quality bases. The clean reads were mapped to the human
genome hg38 using HISAT2. The gene expression levels were quantified using RSEM
(v1.3.1). Differential expression analysis was conducted with DESeq2 (v1.4.5). KEGG
enrichment analysis was performed using Phyper, based on the Hypergeometric test, with
the significance levels of the terms and pathways corrected by the Q-value, applying a
rigorous threshold (Q-value ≤ 0.05).

https://biosys.bgi.com
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2.4. Genome-Wide Screening of p53 Targets

The genome-wide predicted binding sites of the p53 (MA0106.3) were down-
loaded from the JASPAR tracks in the UCSC Genome Browser (http://expdata.
cmmt.ubc.ca/JASPAR/downloads/UCSC_tracks/2022/hg38/, accessed on 3 Septem-
ber 2024) and annotated using the ChIPseeker R/Bioconductor package. The p53
CHIP peaks were downloaded from the server of ReMap Atlas of regulatory re-
gions (https://remap.univ-amu.fr/download_page, accessed on 3 September 2024),
and the bed files were generated from a previous keratinocyte project (GEO ac-
cession number: GSE56674) [21]. The p53 binding sites overlapped with the p53
CHIP peaks were considered confirmed binding sites and then annotated using
the ChIPseeker R/Bioconductor package. The bigwig files of H3k4me3 (https:
//hgdownload.soe.ucsc.edu/gbdb/hg38/bbi/wgEncodeReg/wgEncodeRegMarkH3k4
me3/wgEncodeBroadHistoneNhekH3k4me3StdSig.bigWig, accessed on 3 September
2024) and H3k27ac (https://hgdownload.soe.ucsc.edu/gbdb/hg38/bbi/wgEncodeReg/
wgEncodeRegMarkH3k27ac/wgEncodeBroadHistoneNhekH3k27acStdSig.bigWig, ac-
cessed on 3 September 2024) in normal human epidermal keratinocytes (NHEK) were from
ENCODE Integrated Regulation tracks. The p53 CHIP peaks, binding sites, and H3k4me3
and H3k27ac marks were visualized in Integrative Genomics Viewer (IGV).

2.5. Cell Proliferation and Apoptosis Assays

The cell proliferation was measured by CCK-8. The CaSki cells (5000 cells/well) were
seeded into a 96-well plate and transfected with siNS, siE6, siE6 and siSCN2A, or siE6 and
siTP53I3 siRNAs, respectively. A total of 10 µL of CCK-8 reagent was added in each well
and incubated for 1 h at 37 ◦C. The cell viability was then determined by the optical density
(OD) at 450 nm.

The flow cytometric analysis was performed using the FITC Annexin V staining.
The cell apoptosis was determined using a BD Pharmingen™ FITC Annexin V Apoptosis
Detection Kit I. The CaSki cells (300,000 cells/well) were seeded into a 6-well plate and
transfected with siNS, siE6, siE6 and siSCN2A, or siE6 and siTP53I3 siRNAs, respectively.
The cells were incubated with FITC Annexin V and propidium iodide (PI) and then analyzed
by flow cytometry at 72 h post-transfection.

3. Results
3.1. Knockdown of HPV Oncoprotein E6 Stabilizes p53 Protein and Alters p53 Signaling

To restore p53-mediated anti-tumor responses in the HPV-positive cells, the E6 expres-
sion was knocked down using E6 intron-specific siRNA (siE6), which does not affect E7
expression (Figures 1A and S1A) [17]. This approach stabilized the p53 protein in both
the HPV18 (HeLa) and HPV16 (CaSki) cells. The p53 and E6 knockdown were used to
confirm the activation of p53 signaling. As expected, the p53 protein levels increased in the
siE6-transfected cells and were subsequently depleted in the cells treated with both siE6
and sip53 (Figures 1B and S1B). The major p53 target, CDKN1A, was regulated accordingly
(Figures 1C and S1C).

The RNA sequencing of three samples per knockdown condition generated over
40 million reads per sample. The average mapping ratio of the hg38 genome was above
95%, covering more than 16,000 genes (Table S1). The KEGG pathway analysis of the
significant DEGs (Q-value < 0.05) in siE6 vs. siNC and in siE6 + sip53 vs. siE6 revealed that
p53 signaling was one of the most altered pathways (Figures 1D,E and S1D,E). Many of the
most significantly upregulated genes in the siE6-transfected cells and downregulated genes
in the siE6 + sip53-transfected cells were known p53 targets, such as CDKN1A, MDM2, and
TRIM22 (Figures 1F,G and S1F,G) [18,22–25]. These results suggest that the knockdown
of HPV oncoprotein E6 not only stabilizes p53 but also alters gene expression within the
p53 pathway.

http://expdata.cmmt.ubc.ca/JASPAR/downloads/UCSC_tracks/2022/hg38/
http://expdata.cmmt.ubc.ca/JASPAR/downloads/UCSC_tracks/2022/hg38/
https://remap.univ-amu.fr/download_page
https://hgdownload.soe.ucsc.edu/gbdb/hg38/bbi/wgEncodeReg/wgEncodeRegMarkH3k4me3/wgEncodeBroadHistoneNhekH3k4me3StdSig.bigWig
https://hgdownload.soe.ucsc.edu/gbdb/hg38/bbi/wgEncodeReg/wgEncodeRegMarkH3k4me3/wgEncodeBroadHistoneNhekH3k4me3StdSig.bigWig
https://hgdownload.soe.ucsc.edu/gbdb/hg38/bbi/wgEncodeReg/wgEncodeRegMarkH3k4me3/wgEncodeBroadHistoneNhekH3k4me3StdSig.bigWig
https://hgdownload.soe.ucsc.edu/gbdb/hg38/bbi/wgEncodeReg/wgEncodeRegMarkH3k27ac/wgEncodeBroadHistoneNhekH3k27acStdSig.bigWig
https://hgdownload.soe.ucsc.edu/gbdb/hg38/bbi/wgEncodeReg/wgEncodeRegMarkH3k27ac/wgEncodeBroadHistoneNhekH3k27acStdSig.bigWig
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Figure 1. The knockdown of HPV oncoprotein E6 leads to p53 accumulation and gene regulation in 
the p53 pathway in the HPV18-positive cell line (HeLa). (A) Intron-specific siRNA (siE6) targets the 
un-spliced bicistronic RNA transcript, which contains both E6 and E7 ORFs but only expresses E6. 
E7 is expressed from the spliced transcript named E6*I. (B,C) HeLa cells were transfected with non-
targeting siRNA (siNC), siE6, or siE6 + sip53. Western blotting (B) and qPCR analysis (C) show the 
protein expression of p53 and RNA expression of CDKN1A (p21), a p53-regulated gene, respec-
tively. * p < 0.05; ** p < 0.01. (D,E) The KEGG pathway analysis of RNA-seq data from the siNC-, 
siE6-, or siE6- and sip53-transfected HeLa cells. The bubble charts display the top 20 enriched path-
ways in siE6 vs. siNC (D) and siE6 + sip53 vs. siE6 (E). p53 signaling pathways are highlighted by 
black arrows. (F,G) Volcano plots of the differentially expressed genes (DEGs) used for the pathway 
analysis, with the significant genes indicated. 

3.2. p53 Functions More as an Activator than a Repressor in HPV-Positive Cell Lines 
To identify p53 target genes from the RNA-seq data, we selected genes based on the 

significant DEGs (Q-value < 0.05) with a log2 fold change cutoff of ≥1 for the upregulated 
and ≤−1 for downregulated genes (Figures 2A,B and S2A,B). Notably, there were more 
upregulated genes when the p53 was stabilized (siE6 vs. siNC), while more genes were 
downregulated when the p53 was knocked down (siE6 + sip53 vs. siNC or siE6 + sip53 vs. 

Figure 1. The knockdown of HPV oncoprotein E6 leads to p53 accumulation and gene regulation in
the p53 pathway in the HPV18-positive cell line (HeLa). (A) Intron-specific siRNA (siE6) targets the
un-spliced bicistronic RNA transcript, which contains both E6 and E7 ORFs but only expresses E6.
E7 is expressed from the spliced transcript named E6*I. (B,C) HeLa cells were transfected with non-
targeting siRNA (siNC), siE6, or siE6 + sip53. Western blotting (B) and qPCR analysis (C) show the
protein expression of p53 and RNA expression of CDKN1A (p21), a p53-regulated gene, respectively.
* p < 0.05; ** p < 0.01. (D,E) The KEGG pathway analysis of RNA-seq data from the siNC-, siE6-, or
siE6- and sip53-transfected HeLa cells. The bubble charts display the top 20 enriched pathways in siE6
vs. siNC (D) and siE6 + sip53 vs. siE6 (E). p53 signaling pathways are highlighted by black arrows.
(F,G) Volcano plots of the differentially expressed genes (DEGs) used for the pathway analysis, with
the significant genes indicated.

3.2. p53 Functions More as an Activator than a Repressor in HPV-Positive Cell Lines

To identify p53 target genes from the RNA-seq data, we selected genes based on the
significant DEGs (Q-value < 0.05) with a log2 fold change cutoff of ≥1 for the upregulated
and ≤−1 for downregulated genes (Figures 2A,B and S2A,B). Notably, there were more
upregulated genes when the p53 was stabilized (siE6 vs. siNC), while more genes were
downregulated when the p53 was knocked down (siE6 + sip53 vs. siNC or siE6 + sip53 vs.
siE6) in both the HPV18 and HPV16 cells (Figures 2A and S2A), indicating that p53 acts
more as an activator than a repressor. The DEGs common to both the p53 stabilization and
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knockdown conditions were considered potential p53 target genes. A total of 65 and 112
DEGs were identified in the HPV18 and HPV16 cells, respectively (Figures 2B and S2B). Re-
markably, all these genes were oppositely regulated in the p53 stabilization and knockdown
conditions, with 80% of them activated when the p53 was stabilized by the E6 knockdown
(Figures 2C and S2C). Some altered gene expressions were further verified by qPCR assays
(Figures 2D and S2D). Thus, the RNA-seq profiling reveals that p53 primarily functions as
an activator for most DEGs in HPV-positive cells.
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Figure 2. p53 functions as an activator in the HPV18-positive cell line (HeLa). (A) Bar graph showing
number of DEGs (log2FC < −1 or log2FC > 1 and Q-value < 0.05) in siE6 vs. siNC, siE6 + sip53 vs.
siE6, and siE6 + sip53 vs. siNC groups. (B,C) Venn diagram (B) and heatmap (C) of overlapping
DEGs between siE6 vs. siNC and siE6 + sip53 vs. siE6 groups. (D) Validation of the expression of
four DEGs in siNC-, siE6-, or siE6 + sip53-transfected HPV18 cells by qPCR. * p < 0.05; ** p < 0.01.
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3.3. Identification and Characterization of p53 Target Genes by Annotation of p53 Binding Sites
Around the Gene Locus

We anticipated identifying many common p53 targets in both the HPV18 and HPV16
cells. However, only 11 common genes were found among the 65 and 112 candidates
(Figures 2B, 3A and S2B). Most of these 11 genes are well-known p53 targets, such as BBC3,
CDKN1A, and MDM2 (Figure 3A).
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RNA isoform NM_021007.3 was transcribed in the HPV cells (Figure 4A). A specific p53 
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Figure 3. Identification and characterization of p53 target genes in HPV18 and HPV16 positive
cell lines. (A) Venn diagram showing overlapping DEGs regulated by p53 in HPV18 (65 DEGs)
and HPV16 (112 DEGs) positive cell lines, with gene symbols of 11 overlapped DEGs indicated.
(B) p53 binding sites around DEGs were predicted using consensus p53 motif (MA0106.3) (left panel)
and further confirmed by intersecting with p53 CHIP peaks from human foreskin keratinocytes
(right panel). Pie charts show the proportion of annotated binding motifs. (C) Distribution of
distances from predicted and confirmed p53 binding sites to nearest transcription start sites (TSSs).
(D–F) Visualization of expressions, H3K27Ac mark, H3K4Me3 mark, p53 binding sites, and p53 CHIP
peaks for CDKN1A (D), BTG2 (E), and ID2 (F) in Integrative Genomics Viewer (IGV). The top six
tracks show read coverage in siNC-, siE6-, or siE6 + sip53-transfected HPV18 or HPV16 cells, with
H3K27Ac and H3K4Me3 marks from normal human epidermal keratinocytes (NHEK), p53 binding
sites, and p53 CHIP peaks shown below. BS: binding site.
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To determine if the candidates are directly targeted by p53, we annotated their p53
binding sites around their gene loci by combining the predicted binding sites and p53
ChIP peaks. Using the p53 motif matrix profile MA0106.3 from JASPAR, we identified 1117
and 1433 predicted p53 binding sites around the gene loci of the 65 and 112 candidates in
the HPV18 and HPV16 cells, respectively (Figures 2B and S2B and Table S2). Most of the
binding sites were located in the intergenic or intron regions (Figure 3B, left panel, and
Table S2). Given that p53 binding is consistent across different cell types [20], we used
p53 ChIP peaks from HFK cells for further validation [21]. Only a few predicted binding
sites were located within the p53 ChIP peaks and were considered confirmed p53 binding
sites (Figure 2B, right panel, and Table S3). Compared to the predicted sites, many of the
confirmed sites were found in the promoter region (Figure 3B), with 50% located within
3 kb of the transcription start sites (Figure 3C). For the HPV18 cells, 41 genes from the
65 candidates, which contained at least one confirmed binding site (Figure 2B and Table S3),
were defined as true p53 target genes. Notably, p53 activated almost all these targets,
except SLC2A12 in the HPV18 cells (Figure 2C and Table S3). In the HPV16 cells, 64 out
of 112 candidate p53 targets were confirmed by the same method, with only four genes
repressed by p53 (Figure S2B,C and Table S3). The common p53 targets in the HPV18 and
HPV16 cells included AREG, BBC3, BTG2, CDKN1A, INPP5D, MDM2, PADI4, and SCN2A.

Gene expression correlations, active histone marks (H3K27Ac and H3K4Me3), p53
binding sites, and p53 ChIP peaks were visualized using IGV. The p53-repressed gene
ID2, which did not contain p53 ChIP peaks, was also shown (Figures 3D–F and S3A–G).
These data illustrate how p53 recognizes specific DNA regions for gene transactivation.
For instance, the p53 bound to both the promoter and gene body through multiple binding
sites to regulate the CDKN1A expression (Figure 2D). In addition, qPCR analysis for ID2
expression was conducted. While the changes were consistent with the RNA-seq data, they
were not statistically significant (Figure S3H). Upon re-examining the RNA-seq data, we
noted that the variability among the down-regulated genes was much higher (Figure 2C
bottom). This might be because these genes are not directly targeted by p53; for instance,
no p53 ChIP peaks were found in the ID2 gene body (Figure 3F). Overall, we demonstrated
that p53 activates the expression of various downstream targets by binding to their gene
loci in HPV18 and HPV16 cells.

3.4. SCN2A Is Involved in p53-Induced Cell Arrest

SCN2A has not previously been characterized as a p53 target. This gene, located
on chromosome 2 (q24.3), can be transcribed into at least five RNA isoforms, all en-
coding the voltage-gated sodium channel protein NaV1.2. According to the read cov-
erage, only the RNA isoform NM_021007.3 was transcribed in the HPV cells (Figure 4A).
A specific p53 binding site in the promoter region, overlapping with a p53 ChIP peak
and an active H3K4Me3 mark, was responsible for this RNA transcription (Figure 4A).
The p53-dependent expression was further validated by qPCR assays (Figure 4B). We
silenced the SCN2A expression in E6-depleted CaSki cells to investigate its role in p53-
induced apoptosis or cell arrest (Figure 4C), alongside another p53-regulated gene, TP53I3
(Figures 3A and S3F). The SCN2A and TP53I3 expressions were significantly reduced
in both the siE6- and siSCN2A-transfected cells compared to the siE6-transfected cells
(Figure 4C). The E6-depleted cells and E6 + TP53I3-depleted cells showed a significant
growth delay compared to the control cells, whereas the E6 + SCN2A-depleted cells did
not (Figure 4D). This indicates that p53-activated SCN2A expression is crucial for p53-
induced cell arrest in E6-depleted cells. We conducted a similar experiment in HeLa cells
(Figure S4A). While the cells transfected with siE6 + siSCN2A grew faster than those with
only siE6 transfection, the differences were not as significant as that in the CaSki cells. This
might be because the siE6 had a lesser effect on the cell viability in the HeLa than that in
the CaSki cells. However, the SCN2A was not involved in the p53-mediated apoptosis
(Figure S4B).
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3.5. p53 Activated Specific Targets Involved in Metabolism in HPV16 Cells

We demonstrated that the activated p53 targets differed between the HPV18 and
HPV16 cells (Figure 3 and Table S3). To explore whether these targets have distinct biologi-
cal functions, we categorized the most enriched KEGG pathways of the DEGs regulated in
both the siE6 and siE6 + sip53 groups into various types and sub-types based on KEGG
pathway maps (https://www.kegg.jp/kegg/pathway.html, accessed on 3 September 2024).
The most differentially regulated biological function was metabolism (Figures 5A and S5).
In the HPV18 cells, only a few genes were enriched in metabolism (Figure S5). Genes
enriched in metabolism in the HPV16 cells were either not expressed or not regulated by
p53 in the HPV18 cells (Figure 5B). Among these genes, ALDH3B2, CEL, CYP4F2, GALNT5,
INPP5D, PDE4A, PLCH2, PTGS2, and XDH were further defined as p53 targets because
their gene loci contained at least one confirmed p53 binding site, by overlapping with 64
p53 targets containing 127 confirmed p53 binding sites in the HPV16 cells (Figure 5C and
Table S3). For example, CEL expression was only regulated by p53 in the HPV16 cells
and had a confirmed p53 binding site in its promoter region (Figure 5D), while XDH had
three confirmed p53 binding sites in its gene body (Figure 5E). Thus, p53 regulates cell
metabolism through specific targets in HPV16 cells.
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database, with a bar graph showing the number of gene hits in each category. (B) A heatmap showing
the expression of gene hits in metabolism pathways from the HPV16 cells across all the samples.
(C) The intersection of metabolism gene hits with confident p53 target genes in the HPV16 cells that
contained confirmed p53 binding sites. (D,E) The visualization of the expressions, H3K27Ac mark,
H3K4Me3 mark, p53 binding sites, and p53 CHIP peaks of the HPV16-specific p53 target genes CEL
(D) and XDH (E) in IGV.

4. Discussion

p53 is a well-characterized tumor suppressor that regulates numerous targets in
response to cellular stress, controlling cell fate [12,26]. Elevated p53 levels during stress lead
to the widespread binding of p53 to DNA, influencing the transcription of genes involved
in cell cycle arrest and apoptosis. In HPV-infected cells, however, p53 is degraded by the
oncoprotein E6, which blocks the p53 signaling pathways crucial for cell transformation
and tumorigenesis. Reconstituting the p53 pathway, particularly targeting key downstream
genes, presents a promising strategy for managing HPV-infected cells and altering cell fate.
In this study, we mapped p53 binding sites and ChIP peaks around p53-regulated genes in
HPV cell lines, identifying distinct p53 targets in HPV16 and HPV18 infections. Notably,
SCN2A emerged as a novel p53 target important for inducing cell arrest.

Silencing E6 with siRNAs has been shown to stabilize p53 protein in HPV-infected cells,
resulting in reduced cell growth, colony formation, and increased apoptosis [8,17,27,28].
This treatment also enhances sensitivity to radiotherapy, demonstrating a synergistic anti-
tumor effect [29]. However, the specific p53 targets activated by E6 silencing had not been
elucidated. Since E7 and other viral factors interact with p53 targets [30,31], the p53 targets
activated by E6 silencing might differ from those affected by other cellular stresses. In this
study, p53 signaling was significantly altered by E6 knockdown in both the HPV16 and
HPV18 cells (Figures 1D and S1D), and p53-regulated genes were identified by comparing
DEGs with p53 knockdown (Figures 2B and S2B). The analysis of the p53 binding sites in
the ChIP peaks revealed that most of these genes were directly regulated by the p53, defined
as p53 targets (Table S3). Additionally, the expression of most of the p53 targets correlated
positively with the p53 levels, suggesting that p53 acts as an activator in HPV-infected
cells, consistent with other studies showing p53 binding is associated with transcriptional
activation [32,33].

However, the p53 targets differed significantly between the HPV18 and HPV16 cells.
Similar results were obtained with varying log2 fold changes and Q-value thresholds.
Only eight common p53 targets were identified in both the HPV16 and HPV18 cells,
including AREG [34], BBC3 [35], BTG2 [36], CDKN1A [18], INPP5D [37], MDM2 [24],
PADI4 [38], and SCN2A. Although genome-wide p53 binding is generally consistent across
conditions [20], p53 binding productivity can be influenced by other factors nearby or
interacting directly with p53 [39–41]. Consequently, p53 cofactors may vary between
HPV16 and HPV18 cells. HPV16 is more carcinogenic than HPV18, with HPV16 accounting
for 50% of cervical cancers and HPV18 for 15% [42]. Additionally, HPV16 infections
predominantly lead to squamous cell carcinomas, while HPV18 infections often result in
adenocarcinomas [43]. Future research should explore whether these distinct p53 targets
contribute to the prevalence of HPV16 and HPV18 in cervical cancer. Additionally, the
specific p53 targets involved in metabolism in HPV16 cells, such as CEL and XDH, warrant
further investigation (Figures 5A and S5).

The SCN2A gene encodes the voltage-gated sodium channel protein Nav1.2, which is
crucial for action potential initiation and propagation in the central nervous system [44]. In
this study, SCN2A was identified as a new p53 target in HPV-infected cells. A confirmed p53
binding site was located near the transcription start site of the RNA isoform NM_021007.3,
associated with both a p53 ChIP peak and an active H3K4Me3 mark. Thus, this SCN2A
isoform’s transcription was specifically activated by p53 in E6-silenced HPV cells. Further
cell viability and apoptosis tests indicated that the SCN2A played a role in the p53-induced
cell arrest but not in the apoptosis.



Viruses 2024, 16, 1725 11 of 13

In summary, our genome-wide analysis characterized common and specific p53 targets
under HPV conditions, with SCN2A identified as a novel p53 target involved in p53
pathways. Our study suggests that targeting SCN2A and other p53 targets could be a
promising strategy for preventing HPV-related carcinogenesis.
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