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Predictive computational modeling 
to define effective treatment 
strategies for bone metastatic 
prostate cancer
Leah M. Cook1,*, Arturo Araujo2,*, Julio M. Pow-Sang3, Mikalai M. Budzevich4, 
David Basanta2,† & Conor C. Lynch1,†

The ability to rapidly assess the efficacy of therapeutic strategies for incurable bone metastatic prostate 
cancer is an urgent need. Pre-clinical in vivo models are limited in their ability to define the temporal 
effects of therapies on simultaneous multicellular interactions in the cancer-bone microenvironment. 
Integrating biological and computational modeling approaches can overcome this limitation. Here, 
we generated a biologically driven discrete hybrid cellular automaton (HCA) model of bone metastatic 
prostate cancer to identify the optimal therapeutic window for putative targeted therapies. As proof of 
principle, we focused on TGFβ because of its known pleiotropic cellular effects. HCA simulations predict 
an optimal effect for TGFβ inhibition in a pre-metastatic setting with quantitative outputs indicating a 
significant impact on prostate cancer cell viability, osteoclast formation and osteoblast differentiation. 
In silico predictions were validated in vivo with models of bone metastatic prostate cancer (PAIII and 
C4-2B). Analysis of human bone metastatic prostate cancer specimens reveals heterogeneous cancer 
cell use of TGFβ. Patient specific information was seeded into the HCA model to predict the effect 
of TGFβ inhibitor treatment on disease evolution. Collectively, we demonstrate how an integrated 
computational/biological approach can rapidly optimize the efficacy of potential targeted therapies on 
bone metastatic prostate cancer.

Metastatic castrate resistant prostate cancer (mCRPC) typically manifests in the skeleton and is currently incura-
ble1,2. In the bone microenvironment, prostate cancer cells hijack the normal bone remodeling process to create a 
“vicious cycle” of extensive bone formation and destruction3. Key mechanisms facilitating the cross-talk between 
the cancer and host compartment include the induction of receptor activator of nuclear κ B ligand (RANKL) 
expression and the release of sequestered growth factors from the bone matrix. Bone is a rich source of trans-
forming growth factorβ  (TGFβ ) and the role for this pleiotropic factor in promoting the survival and growth 
of bone metastatic cancers has been well described4,5. The molecular complexity of the circuitry driving this 
cycle has expanded tremendously in the past two decades revealing many potential targets for therapeutic inter-
vention. The question remains however as to how to translate these potential therapies to the clinic. Biological 
experimentation and pre-clinical mouse models can be used to define the impact of putative therapies but are 
limited in their ability to dissect the potential dynamic and simultaneous effects on the multi-cellular tumor-bone 
microenvironment. One potential alternative approach is the integration of experimentally measured biological 
parameters with computational models to tackle the multi-scale nature of the disease6. Numerous computational 
models successfully demonstrate the feasibility of the approach7–14. Starting from existing experimental or clinical 
data it is possible to use statistical frameworks such as Approximate Bayesian Computation (ABC) to identify, in 
a “top-down” manner, the importance of unknown parameters in disease progression by applying a distribution 
of probability on those factors15. Conversely, agent based models, such as discrete-continuum Hybrid Cellular 
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Automata (HCA), are better suited to test hypotheses using a mechanistic “bottom-up” approach to provide 
unbiased predictions16. These models work by parameterizing the properties of cells (or agents) with regards to 
proliferation, apoptosis, secretion of factors, genetic mutations or even metabolism17. The ability to apply HCA 
models to two- or three-dimensional grids make them uniquely qualified for studying temporal tumor-host inter-
actions over time, especially in the context of applied therapies15,18–20.

Previously, our group generated a HCA based computational model of the bone modeling unit (BMU) 
that recapitulates the homeostatic sequence of bone resorption and anabolism18. The in silico BMU is  
1000 μ m ×  1500 μ m and is composed of bone, mesenchymal stromal cells (MSCs), precursor and adult osteo-
blasts, and precursor and mature multinucleated osteoclasts. The sequence and timing of resorption and bone 
formation that emerges from the model recapitulates the extensive literature and the interactions of the cells were 
carefully modeled around bone derived factors including RANKL and TGFβ 18. Using human parameters based 
on the growth of prostate cancer in bone we demonstrated that the introduction of an emboli of prostate cancer 
cells (≥ 9) into the BMU was sufficient to consistently initiate the vicious cycle. Subsequently, cancer-bone inter-
action could be monitored over a clinically relevant 250-day period21. We also reported how the model could be 
used to potentially optimize the effects of bisphosphonates and anti-RANKL therapies that are components of 
the current standard of care. In the current study, a major objective was to use the model to explore the impact/
efficacy of putative inhibitors. Our previously published HCA model, as expected, defined an important role for 
TGFβ  in regulating cancer-bone interaction18.

TGFβ  inhibitors such as neutralizing antibodies are currently undergoing clinical trial22. However, their appli-
cation for the treatment of osteogenic bone metastatic prostate cancer has not been explored thus far due to the 
pleiotropic and often opposing effects TGFβ  can have on cancer and bone cell behavior5,23–25. Therefore, we posit 
that TGFβ  inhibition would be an ideal challenge for testing the predictive power of our HCA based model. Here, 
using an evolved version of the HCA model, we simulated various therapeutic strategies (i.e. inhibitor concentra-
tion, time of therapeutic intervention) to predict the optimal efficacy of TGFβ  inhibition. Further, the enhanced 
HCA model provides new insights into how TGFβ  can regulate multi-cellular interactions over time. HCA out-
puts were validated in vivo using two models of osteogenic bone metastatic prostate cancer. Moreover, using 
patient specific information from bone metastatic specimens, we demonstrate the flexibility of the HCA model 
in predicting the efficacy of TGFβ  inhibitors on lesions that are heterogeneous for TGFβ  utilization. Collectively, 
we demonstrate how an integrated computational/biological modeling approach can be used to optimize therapy 
efficacy for the treatment of bone metastatic prostate cancer.

Results
Computational modeling of TGFβ inhibition in normal bone remodeling and in bone metastatic 
prostate cancer. TGFβ  is known to have concentration dependent pleiotropic effects on osteoblasts and 
osteoclasts26–28. In silico, the ability of stromal cells to respond to varying TGFβ  concentrations (0.1 to 10 ng/ml) 
was integrated into our HCA of normal bone remodeling, the bone multicellular unit (BMU) (see Equations 1, 
2, and Table S1)18. To obtain a realistic readout of the level of TGFβ  inhibition that could be achievable in vivo, 
we treated mice with a TGFβ  neutralizing antibody (1D11) at a dose previously used in the literature (10 mg/kg) 
and consistent with clinical trials performed for a humanized version of the 1D11 TGFβ  neutralizing antibody, 
fresolimumab/GC100822,29,30. We observed that the TGFβ  neutralizing antibody significantly reduced circulat-
ing TGFβ  serum levels by up to 80% compared to IgG control treated animals (Supplementary Fig. S1). Using 
phospho-SMAD2 as a surrogate for TGFβ  activity31, we also observed that the TGFβ  neutralizing antibody could 
inhibit TGFβ  activity 50–80% in tumor naïve and tumor bearing tissues (Supplementary Fig. S1 and Fig. 3f). 
Based on this in vivo information, we applied the TGFβ  inhibitor to the normal BMU at a level of 80% in silico. 
The stochastic nature of the BMU allows for variation and statistical analysis of simulation outputs. The results 
of multiple simulations (n =  29/group) show that TGFβ  inhibition significantly promoted bone formation (9% 
increase) over a 75-day period by enhancing osteoblast expansion and differentiation while limiting osteoclast 
viability (Fig. 1a, Supplementary Fig. S1, and Table S2 ). Importantly, these in silico results are consistent with 
previous in vivo studies and support the robustness of the parameters used to power the computational model29,32.

The vicious cycle paradigm suggests that metastatic prostate cancer cells utilize TGFβ  signaling to promote 
their survival and growth. We therefore seeded the computational model with TGFβ  responsive prostate cancer 
cells. Once the vicious cycle was established at day 80, we initiated TGFβ  inhibition (post-treatment scenario). 
Simulations (n =  24/group) revealed that TGFβ  inhibition reduced cancer growth by approximately 15%, but 
only when the inhibitor was applied at a constant 99% level of efficacy until day 250 (Supplementary Fig. S2 and 
Video 1). At a more biologically relevant level of 80% inhibition, we observed little difference in cancer cell growth 
between the control and treatment groups. Surprisingly, and in contrast to the observed effects of TGFβ  inhibition 
on the normal BMU, we also observed no difference in osteogenesis between the control and treatment groups 
even at later stages (Supplementary Fig. S2, Table S3, and Video 1). Taken together, these results suggest that the 
treatment of established and actively growing bone metastases with TGFβ  inhibitors would have no impact on the 
progression of the lesions unless the inhibitor was > 99% effective.

A major advantage of the computational model is that it can be used to explore therapeutic windows of efficacy 
for putative inhibitors. Simulations (n =  24) revealed that applying the TGFβ  inhibitor in silico at day 1 prior to 
the seeding of the cancer cells (pre-treatment scenario) even at a level of 20% efficacy significantly reduced tumor 
burden over time by ≥ 65% (Fig 1b, Supplementary Fig. S2, Table S3, and Video 2). Interestingly, TGFβ  inhibition 
resulted in a small but significant increase in cancer-induced osteogenesis compared to control during early tumor 
progression (Day 100). However, at the end of the simulations there was significantly less cancer-induced osteo-
genesis in the TGFβ  treated group compared to control (Fig. 1b, Supplementary Fig. S2, and Table S3, Day 250).  
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These in silico results predict that applying TGFβ  inhibitors in a preventative manner will reduce the growth of 
metastatic prostate cancer without exacerbating cancer induced osteogenesis.

In vivo validation of computational model predictions. Analysis of human specimens of bone met-
astatic prostate cancer derived from deidentified cancer patients at the Moffitt Cancer Center (n =  20) show 
that TGFβ  ligand and receptors are expressed and pSMAD2 staining indicates that the TGFβ  pathway is active 
(Fig. 2a). In vitro analysis of prostate cancer cell lines that can grow in the bone microenvironment identified 
the PAIII cell line as reflecting the TGFβ  receptor and growth factor producing (TRP) status observed in human 
specimens (Fig. 2b,c). We also noted that the PAIII cell line was sensitive to inhibition with TGFβ  inhibitors 
(Fig. 2d,e). We therefore initially chose this cell line to test computational model predictions.

Dissecting cancer cell behavior in silico illustrates TGFβ  inhibition directly limits growth over time by impacting  
cancer cell proliferation (Fig. 3a–d). To determine the validity of the computational outputs, 6-week-old male 
SCID Beige mice were pre-treated with either a TGFβ  inhibitor (TGFβi -1D11, 10 mg/Kg, 3×  weekly; n =  10) 
or an isotype control IgG (Control-13C4, 10 mg/Kg 3×  weekly; n =  8) and subsequently inoculated with 
luciferase-expressing PAIII cells. Bioluminescence analysis revealed a significant reduction in tumor growth in 
the TGFβ  inhibitor treated group compared to controls and, as expected, reduced pSMAD2 and AKT phospho-
rylation (Fig. 3e,f). We further found significant reductions in proliferation (40%) and increases in apoptosis 
(70%) between the TGFβ  inhibitor treated and control groups (Fig. 3g). The HCA model is based on humanized 

Figure 1. In silico effects of TGFβ  inhibition on normal and prostate cancer induced bone turnover (a,b)  
In silico control and TGFβ  inhibitor treated simulations in normal (BMU, n =  29/group, a) and bone metastatic 
prostate cancer (PCA-Bone Mets, n =  24/group, b) scenarios. Representative images of simulation runs at 
indicated time points are shown with magnified insets. TGFβ  inhibitor was applied at day 1 for all simulations 
(pre-treatment scenario). Cell populations analyzed include mesenchymal stem cell (MSC), osteoblast 
precursors (pOB), osteoblasts, osteoclast precursors (pOC) and osteoclasts. Temporal changes in bone area  
(μ m2) were also predicted under control and TGFβ  inhibitor conditions.
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parameters and therefore, to compare computational model outputs to those obtained with the PAIII model, we 
used a scaling approach. Briefly, using tumor growth rates from the computational model (25 day intervals) and 
the animal model (2 day intervals) we calculated the slope of the line/derivative for each time point. Using this 
approach, we found that derivatives for each model are similar for pre and post treatment between day 8–10 for 
the animal model and day 75–100 for the in silico model. At these comparable points, the computational model 
accurately predicts the impact of TGFβ  inhibition on cancer cell proliferation but differences in apoptosis were 
not evident in the computational model until later time points (Fig. 3d vs. 3g).

To further assess the predictive power of the computational model, we performed a TGFβ  inhibitor 
post-treatment study. In silico findings suggest treatment of an established TGFβ  ligand and receptor-expressing 
cancer (TRP) with a TGFβ  inhibitor would not be of benefit. Our in vivo data confirm these predictions 
(Supplementary Fig. S3).

TGFβ inhibition prevents prostate cancer induced osteolysis. Because of their role in the vicious 
cycle, we next focused on osteoclast behavior over time in the control and TGFβ  inhibitor treated groups. 
Dissection of the computational model outputs revealed the number of active bone resorbing osteoclasts were 
significantly lower in the TGFβ  inhibitor versus control group at day 100 (Fig. 4a). Further, the rate of osteoclast 
maturation and apoptosis was significantly mitigated during this period, which is in agreement with known 
effects of TGFβ  inhibition on osteoclast function (Fig. 4b,c)28,33. Analysis of the lytic component of our in vivo 
model identified that there was approximately 50% (p =  0.002) less tumor induced osteolysis in the TGFβ  inhibi-
tor group compared to the controls as determined by X-ray (Fig. 4d). Histochemical analysis using the osteoclast 
specific marker tartrate resistant acid phosphatase (TRAP) demonstrated that this reduction in osteolysis was due 
to significantly fewer osteoclasts in the TGFβ  inhibitor treated group compared to the controls (Fig. 4e). These 
data suggest TGFβ  inhibition reduces the extent of cancer-induced osteolysis over time in vivo by limiting osteo-
clast function and validates the pre-treatment HCA model outputs.

TGFβ inhibition has differential effects on normal and cancer induced bone formation. Based 
on published data demonstrating that TGFβ  blockade increases bone formation29, we hypothesized that inhibi-
tion of the growth factor would significantly exacerbate prostate cancer induced osteogenesis. At day 100, the 
computational model does predict a small but significant increase in bone formation in the TGFβ  inhibitor sim-
ulations despite a concomitant decrease in osteoblast proliferation (Fig. 5a–c and Supplementary Fig. S2). While 

Figure 2. TGFβ expression and utilization in prostate cancer specimens and cell lines. (a) Immunofluorescence 
of TGFβ , Tβ RII, and pSMAD2 (red) in human (cytokeratin-green) bone metastatic prostate cancer (n =  20). 
Dashed box represents area of magnification. Graphs represent intensity of pixels. Scale bars represent 100 μ m. 
(b,c) Real time PCR analysis of Tβ RI and Tβ RII expression (b) and ELISA measurement of TGFβ  concentration 
(c) in PAIII, C42B and PC3. (d) The effect of increasing concentrations of TGFβ  inhibitor (TGFβ i;  
1D11 antibody) on SMAD reporter activity (RLU). (e) The effect of TGFβ  inhibition (TGFβ i; 1D11 10 μ g/ml)  
on colony formation and size compared to control (Control-13C4, 10 μ g/ml). Asterisks denote statistical 
significance (* p <  0.05; * * p <  0.01).
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microCT (μ CT) scans of tumor bearing bones did not reveal any differences between the groups (Fig. 5d), histo-
morphometry analysis does support the in silico predictions with increased bone formation in TGFβ  inhibitor 
treated mice and a trend towards fewer bone rimming osteoblasts (Fig. 5e,f). In contrast, we observed a robust 
increase in bone formation in contralateral sham limbs derived from the TGFβ  inhibitor group for all measure-
ments (Fig. 5d–f). Taken together, these in vivo data suggest that TGFβ  inhibition does not greatly exacerbate 
prostate cancer induced osteogenesis compared to non pathological conditions and support, in part, HCA model 
outputs. It is also worth noting that over a longer period (Day 250), the computational model predicts TGFβ  inhi-
bition would ultimately result in decreased bone formation (Fig. 5a and Supplementary Fig. S2), a finding that 
warrants further exploration in vivo.

Predicting TGFβ inhibitor efficacy on heterogeneous bone metastatic prostate cancer. While 
the majority of cancer cells in human specimens of bone metastatic prostate cancer produce both TGFβ  ligand 
and receptors (TRP), we also noted the presence of cancer cells that either produced the ligand alone (TP), the 
receptor alone (TR) or neither (TN) (Fig. 2). This raises the question as to what the impact of TGFβ  inhibition 
would be on these clonal populations. We have shown that, in our hands, the C4-2B cell line produces TGFβ  but 
not the receptors (TP) (Fig. 2b–d). Therefore, we challenged the computational model to determine the impact 
of TGFβ  inhibition on a homogenous TP bone metastatic cancer and found no effect on the growth of the cancer 
in pre- or-post treatment simulations (Equation 5, Supplementary Fig. S4). To test these results in vivo, C4-2B 
luciferase-expressing cells were inoculated into mice that were pre- or post-treated with TGFβ  inhibitor or IgG 
control and we observed no difference in tumor growth between the groups (Supplementary Fig. S4).

Clinically, human samples of bone metastatic prostate cancer are heterogeneous for their usage of TGFβ  
(Fig. 2a). A major advantage of the HCA modeling approach is the ability to integrate multiple clonal phenotypes 

Figure 3. TGFβi pre-treatment prevents bone metastatic prostate cancer growth in silico and in vivo.  
(a) Representative in silico outputs from control (left panel) and TGFβ i (right panel) treated simulations at day 100. 
(b–d) In silico predictions of TGFβ  inhibition on cancer cell growth (b), and cancer cell proliferative/apoptotic 
rates (average number of proliferating/apoptotic cancer cells at 25 day intervals over a 250 day period, (c,d). (e) 
Bioluminescence measurement of PAIII growth under TGFβ i (1D11, 10 μ g/ml; n =  10) or control (13C4, 10 μ g/ml; 
n =  8) conditions. (f) pSMAD2 and pAKT positivity (red) as a ratio of unphosphorylated protein. Scale bars, 25 μ m. 
(g) The proliferative and apoptotic index in TGFβ i and control tissue sections were measured using pHistone H3 
and cleaved caspase-3 (c-Caspase-3) (red) respectively as a ratio to total cell number (DAPI; blue). Scale bars, 50 μ 
m. Asterisks denote statistical significance (* p <  0.05; * * p <  0.005).
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based on patient specific information. In this regard, analysis of a single patient specimen, identified hetero-
geneous expression and activity in the TGFβ  signaling axis with the following clonal ratio noted: TP 1: TRP 
231: TR 6: TN 4 (Fig. 6a,b). We seeded the HCA model with this ratio of clones and performed simulations for 
control, pre- and post-treatment conditions (n ≥  24/group) to determine the impact of TGFβ  inhibition on met-
astatic prostate cancer evolution (Equations 3–6). In silico data show the effects of pre- and post- TGFβ  inhibitor 
treatment on clonal evolution for this patient over time and the responses of the surrounding tumor microen-
vironment (Supplementary Fig. S5, Table S4, and Video 3). The model also predicts the dominance of the TRP 
clone over time under control conditions (Fig. 6c). However, application of the TGFβ  inhibitor, especially in the 
pre-treatment groups at varying levels of efficacy, show how the cancer cell dynamics shift over time in favor of 
other clones, in particular for the TN population (Fig. 6d–f and Table S4). These data underscore the power of the 
HCA computational modeling approach in examining the temporal effects of targeted therapy on heterogeneous 
cancer cells and the surrounding microenvironment.

Discussion
Current treatment options for patients diagnosed with bone metastatic castrate resistant prostate cancer include 
second generation androgen deprivation therapies, radiation treatment, bisphosphonates/anti-RANKL thera-
pies, alpharadin and/or chemotherapy1. While these treatments mitigate pain, pathological fracture and increase 
overall survival, the disease remains incurable with the median survival time being approximately 3-years subse-
quent to diagnosis. Increasing our knowledge of the mechanisms driving the disease can reveal novel therapeutic 
targets. To this end, dozens of molecular mechanisms that play important roles in tumor-bone interaction have 
been discovered34. However, dissecting how potential targeted therapies will work in the context of current treat-
ment paradigms and their translation to the clinical setting presents a major challenge. Using TGFβ  inhibition 
as an example, we demonstrated how a novel biologically driven computational HCA model can rapidly define 
temporal cancer-bone microenvironment responses to a given therapy. Further, the integrated approach provides 
insight into optimal therapeutic windows to apply a given inhibitor. For TGFβ  inhibition, the HCA model indi-
cates that application of the inhibitor in an adjuvant setting subsequent to the detection/treatment of aggressive 
prostate cancer would be most effective.

As with biological models, there are numerous mathematical approaches to study cancer progression such as 
branching and Moran processes based models, systems of ordinary and partial differential equations, and agent 
based models, each with varying strengths and weaknesses6,15,35,36. Data driven “top down” models “fit” existing 
clinical or experimental information to identify parameters that explain the behavior of the disease37,38. In the 
context of prostate cancer, many elegant models have used biological parameters such as prostate specific antigen 
(PSA) to predict time to progression, and to model the effects of intermittent androgen therapy8. The tightly 
regulated process of normal bone remodeling lends itself well to modeling how key factors such as RANKL and 
TGFβ  control the behavior and activity of bone stromal cells over time39–43. By extension, perturbing this bal-
anced ecosystem with an invasive species such as cancer can also be modeled. Our own group, as well as others, 
has been exploring how bone metastatic cells and skeletal malignancies such as myeloma interact with the bone 
microenvironment in order to progress18,44,45. In the current study, we used an agent-based approach that allows 

Figure 4. TGFβi effects on cancer induced osteolysis. (a) Osteoclast activity in the TGFβ i and control groups 
was determined in silico at 25 day intervals over a 250 day period. (b,c) The effect of TGFβ i versus control on 
osteoclast fusion/maturation and apoptosis over time as a ratio to total cell number. (d) Ratio of tumor volume 
(measured by total area of osteolysis; TuV) to total volume (TV) in X-rays of tumor and sham tibia from TGFβ i  
(n =  10) and control (n =  8) groups. (e) Quantitation of TRAcP (red) positive osteoclasts per tumor/bone 
interface. Asterisks denote statistical significance (* p <  0.05; * * p <  0.005; * * * p <  0.0001).
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for the exploration of key cellular interactions over space and time in an unbiased hypothesis driven “bottom-up” 
manner. We have shown how experimentally-derived cellular parameters can be integrated into the rule sets and 
partial differential equations (PDEs) used to drive HCA models. This allows us to produce biologically46 and 
clinically47 testable hypotheses without making assumptions regarding population level dynamics. The result is 
a model capable of generating predictions that naturally emerge from the interactions between cells and their 
environment. Key to the robustness of the HCA model outputs, is the reliability of the biological parameters used 
to power the PDEs. In the current study, we used human parameters to generate the HCA model21. While we 
assume that individual bone stromal cell components have similar dimensions and lifespans between the species, 
human cancer cells typically grow much more slowly than human derived xenografts or animal models of the 
disease21. Therefore appropriate scaling between the models is an important consideration for the comparison of 
results. Further, not all of the HCA models predictions were correct. For example, we observed the in silico effects 
of TGFβ  inhibition on osteoblast number was discordant with in vivo results (Fig. 5b vs. 5f), suggesting that the 
parameters/assumptions governing the effects of TGFβ  inhibition on apoptosis require re-calibration based on 
the obtained biological data. This reiterative process allows for fine-tuning of the HCA.

The roles of TGFβ  in skeletal development and malignancy have been well described5,24. However, enthusiasm 
for applying TGFβ  inhibitors as a therapeutic strategy to treat metastatic bone disease including mCRPC is lim-
ited because of the pleiotropic and often opposing roles TGFβ  plays in normal and cancer cell biology5,24,25,48,49. 
This complexity made TGFβ  and the effects of TGFβ  inhibition an ideal challenge with which to test the power 
of our HCA based computational model. Our results indicate the treatment of established active metastases with 
a TGFβ  inhibitor, unless applied at > 99% efficacy, would have little or no impact on the progression of cancer 
cells regardless of their dependency on TGFβ . In contrast, the application of the inhibitor in a preventative or 
adjuvant manner would significantly control bone metastatic prostate cancer growth and osteogenesis. This result 
was predicated on the basis that the metastatic cancer cells have an active TGFβ  signaling axis which we found 
to be the case in the majority of human bone metastatic prostate cancer specimens. The mathematical model 
was built on the assumption that TGFβ , RANKL and bone derived nutrients drive cell responses. Arguably then, 
interfering with TGFβ  signaling in the model could potentially be self-fulfilling in predicting cancer-host behav-
ior. However, despite the limited number of cytokines and growth factors included in the model, we validated 
many of the model predictions with independent in vivo experiments thus reinforcing the key roles for TGFβ  and 
RANKL in the vicious cycle of tumor bone interaction. The majority of our in vivo results support the accuracy 
of the parameters and assumptions used to power the computational model. The in vivo results are consistent 
with other studies examining the role of TGFβ  in bone metastatic cancers including prostate, breast and mel-
anoma but, importantly, underscores the potential for computational modeling in predicting the efficacy of an 

Figure 5. TGFβi impact on osteogenesis. (a) In silico changes in bone area (μ m2) were predicted at 25-day 
intervals over a 250 day period. (b,c) The effect of TGFβ  inhibition on the average number of proliferative and 
apoptotic osteoblasts per day in silico. (d) μ CT analysis of bone volume (arrow) to total volume (BV:TV) in control 
and TGFβ  inhibitor treated bones. (e,f) Histomorphometry analysis of osteogenesis (e) and number of bone 
rimming osteoblasts (arrows; f). Asterisks denote statistical significance (* p <  0.05; * * p <  0.005; * * * p <  0.0001).
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applied targeted therapy50–52. Although our model is centered on the roles of TGFβ  and RANKL, it is important 
to note that the circuitry of the HCA model can easily be expanded to include other cell types (immune cells or 
cancer-associated fibroblasts) and molecules (e.g. PTHrP, BMPs) and their roles/effects subsequently explored.

While the computational model was primarily used to examine TGFβ  inhibition in bone metastatic prostate 
cancer, the outputs generated also revealed new insights into TGFβ  biology. Firstly, the model highlights the crit-
ical role for TGFβ  in the cyclical dynamics of populations such as osteoclasts and confirms the importance of the 
osteoclast in initializing the vicious cycle. For example, we noted osteoclast infiltration often precedes a period of 
cancer growth and osteogenesis (Video S2), a finding that could be informative for the timing of anti-resorptive 
therapies as we have previously shown18. TGFβ  inhibition alters these dynamics and at specific time-points can 
reverse the trends between the treated and control groups so that osteoclast numbers in the control simulations 
may in fact be lower than those in the TGFβ  inhibitor treated group (Fig. 3A). This suggests that arbitrarily 
selected time-points in pre-clinical in vivo animal studies may not accurately reflect how applied therapeutics are 
impacting cancer-bone interaction over time. Secondly, although TGFβ  inhibition promotes robust bone forma-
tion in normal non-pathological situations, the model and our in vivo results confirm counter-intuitively that, 
TGFβ  inhibition does not greatly exacerbate prostate cancer induced osteogenesis.

Currently, mCRPC inter-patient heterogeneity is a major clinical challenge. Integrating biological and compu-
tational modeling offers a unique opportunity to study how cancer evolves and reacts to changing microenviron-
ments and applied targeted therapies. Patient derived xenograft (PDX) samples are being used to design precision 
treatment strategies and integrating the biological parameters derived from these specimens into computational 
models could prove to be a synergistic way to tackle the complexity of heterogeneity in individual patients19. 
Again, using patient derived TGFβ  signaling axis information as an example, we demonstrated how clonal vari-
ation and evolution in response to applied TGFβ  inhibitors could be incorporated into the HCA model (Fig. 6). 
In these studies, we assumed the TGFβ  dependent growth rates of clonal cancer cells. For personalization of the 
HCA and its clinical application, individual patient specimens would have to be isolated and growth rates of var-
ious clones examined in ex vivo assays. Current advances in single cell ex vivo analyses support the feasibility of 
such an approach53,54. The HCA model also allows for the optimization of inhibitor dosing and timing that in turn 
could be used to generate an adaptive therapy strategy to prevent the outgrowth of resistant sub-populations20,55.

In conclusion, we have developed a novel and unbiased computational HCA model that allows for the 
dynamic multi-scale understanding of how metastatic prostate cancer cells evolve and interact with the sur-
rounding bone microenvironment. We used this model to predict the efficacy and response of bone metastatic 
prostate cancer to targeted therapies such as, TGFβ  inhibitors. Further, our integrated computational and biolog-
ical approach allowed for the dissection of how TGFβ  inhibition simultaneously affects osteoblast, osteoclast and 
cancer cell behavior over time. The HCA model constitutes a platform for discovery that can readily be expanded 
to incorporate additional cellular and molecular circuitry. This will ultimately yield a clinical tool that will aid 
the medical oncologist in designing curative strategies for heterogeneous bone metastatic prostate cancer. Most 

Figure 6. In silico effects of TGFβ inhibition on heterogeneous bone metastatic prostate cancer. (a) Individual 
human specimen of bone metastatic prostate cancer (Patient 41458) co-stained for TGFβ  (green) and Tβ RII  
(red). (b) Graph of staining pixel intensity for each clonal population. (c–f) In silico simulations (n ≥  24/group)  
were performed under control or TGFβ  inhibition (80% efficacy) post- and pre-treatment conditions. Clonal 
population was measured at Day 100 (left y-axis) and Day 250 (right y-axis). Asterisks denote statistical 
significance (* * p <  0.005; * * * * p <  0.0001).
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importantly, this modeling approach can be applied to the development of new therapeutic strategies across a 
broad spectrum of human malignancies.

Methods
An HCA Model of bone metastatic prostate cancer for therapy optimization. In the compu-
tational model, each cell type responds to TGFβ  levels in an either directly proportional (1 +  Log(TGFβ)) or 
inversely proportional (− 1Log(TGFβ)) manner. TGFβ  inhibition in the HCA is achieved by controlling TGFβ  
bioavailability (0–99% inhibition at a constant level). Computational models were seeded with homogeneous or 
heterogeneous prostate cancer cells that expressed the TGFβ  receptor and ligand (TRP), the ligand alone (TP), the 
receptor alone (TR) or were negative for both (TN). For the HCA model, we consider cellular intrinsic behaviors 
and the impact of TGFβ  on these behaviors. We include 8 different cell types: resident and active cells of the bone 
stroma (mesenchymal stromal cells (MSCs), precursor osteoblasts (pOB), adult osteoblasts (aOB), precursor 
osteoclasts (pOC), adult osteoclasts (aOC)) and prostate cancer cells of varying TGFβ  responsiveness (TRP, TGFβ  
ligand and receptor-producing; TR, receptor-producing; TP, ligand-producing and; TN, negative for receptor and 
ligand expression). We considered interactions between all cell types and the impact of these interactions on the 
tumor-bone microenvironment. Empirical, experimental and theoretical parameters were used to fuel equations 
(Table S1).

Precursor Osteoblasts and Osteoclasts. Based on empirical data and literature, we assume a maximum rate of 
pOB division as 36 hours based on ATCC specifications for MC3T3-E1 cells. The rate of pOB division is inversely 
affected by TGFβ 28 and we assume that the effect is logarithmic. If TGFβ  is at saturation levels (> 10 ng/ml), then 
the pOB division rate tends to zero. This assumption is based on our findings of the effect of TGFβ  on osteoblast 
precursors (Supplemental Fig. S1). If there is no TGFβ  present, then the maximum rate is considered. The rate 
of division has subsequent effects on the number of mature bone generating osteoblasts. By the same token, the 
fusion rate of pOC is also affected inversely proportional to the availability of TGFβ . These behaviors can be 
described by:

β= + . ∗p precursor action Div Log TGF( ) (1 1/(0 1 ( ))) (1)precursor

where 0 <  TGFβ  <  1 and Divprecursor is substituted in the case of precursor osteoblasts, DivpOB is the maximum rate 
of pOB division, and in the case of precursor osteoclasts, DivpOC, the maximum rate of pOC fusion in the absence 
of TGFβ . This ensures that, when bone is being resorbed and TGFβ  is being made bioavailable, osteoclastogenesis 
is limited.

Once fused, the probability of aOC survival also depends proportionally on TGFβ . This is calculated by:

β= − . ∗p aOC survival Surv Log TGF( ) ( 1/(0 1 ( ))) (2)aOC

where 0 <  TGFβ  <  1 and SurvaOC is the maximum percentage of survival for aOCs (100% when TGFβ  is as its satu-
ration level). If the levels of TGFβ  are below the saturation level, the probability of death for the aOC increases56,57.

Bone metastatic prostate cancer cells. Prostate cancer cells were explicitly defined as being dependent on TGFβ  
and bone derived nutrients (BDN) for their division. The probability of division was estimated as being propor-
tional to the inverse logarithm of the available BDN. If there are no nutrients, there is zero division. If there is 
maximum nutrient saturation, the division rate is at its maximum.

Based on empirical data obtained with TRP cells such as PAIII, we assume that TRP cells have a maximum 
division rate of once every 1.5 days and a lifespan without contact with BDN of 14 days based on low serum (2%) 
soft agar assays (Supplementary Fig. S4). TRP division in response to bone derived nutrients was modeled as 
follows:

= + . ∗p TRP division Div Log BDN( ) (1 1/(0 1 ( ))) (3)TRP

where 0 <  TGFβ  <  1 and DivTRP is the maximum rate of TRP division, in the saturation level of bone derived 
nutrients. Under TGFβ  inhibition, the maximum division rate is assumed to be reduced for TRP to once every  
2 days based on empirical observations in our laboratory (data not shown).

We assume that TR has a maximum division rate of 1.75 days, but a lifespan without nutrients of 10 days, 
calculated as not having a cost for producing TGFβ  ligand but benefiting from the presence TGFβ  in the bone 
microenvironment. TR cell division depends directly on bone-derived nutrients in the same manner:

= + . ∗p TR division Div Log BDN( ) (1 1/(0 1 ( ))) (4)TR

where 0 <  BDN <  1 and DivTR is the maximum rate of TR division, in the saturation level of bone derived nutri-
ents. Under TGFβ  inhibition, the maximum division rate is reduced for TR to once every two days.

We assume that TP has a maximum division rate of once 1.75 days, and a lifespan without nutrients of 10 days, 
calculated as having a cost for producing TGFβ  ligand but not benefiting from TGFβ  contained within the bone 
derived nutrients. TP cell division depends directly on bone-derived nutrients in the same manner:

= + . ∗p TP division Div Log BDN( ) ( 1 1/(0 1 ( ))) (5)TP

where 0 <  BDN <  1 and DivTP is the maximum rate of TP division. Under TGFβ  inhibition, the maximum divi-
sion rate of TP remains the same.
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Finally, we assume TN has a maximum division rate of once every 2 days and a lifespan without nutrients of 
12 days, calculated from having no cost of producing TGFβ  and no benefit from TGFβ  signaling. TN cell division 
depends directly on bone-derived nutrients through:

= + . ∗p TN division Div Log BDN( ) ( 1 1/(0 1 ( ))) (6)TN

where 0 <  BDN <  1 and DivTN is the maximum rate of TN division. Under TGFβ  inhibition, the maximum divi-
sion rate of TN remains the same.

Cell Culture and Patient Specimens. Luciferase-expressing PAIII, C42B, and PC3 prostate cancer cell 
lines were cultured in complete Dulbecco’s Modified medium supplemented with 10% fetal bovine serum58–60. 
All cell lines were periodically tested for mycoplasma (#CUL001B, R&D Systems) and short tandem repeat (STR) 
verified at the Moffitt Clinical Translational Research Core. De-identified tissue sections of bone metastatic pros-
tate cancer were obtained from the Moffitt tissue archives (MCC 50086).

In vivo experiments. All animal experiments were performed with IACUC approval (R1283) and were con-
ducted in accordance with the guidelines set forth in the Guidelines for the Care and Use of Laboratory Animals 
published by the National Institutes of Health. Pre-Treatment Studies: 6-week old male SCID Beige mice were 
injected intraperitoneally with either TGFβ  inhibitor (1D11; 10 μ g/ml; n =  10/group) or isotype control, 13C4 
(10 μ g/ml; n =  8/group), a kind gift from Scott Lonning and Patrick Finn at Genzyme. Subsequently, luciferase 
expressing PAIII or C4-2B cell lines (5 ×  104 or 1 ×  105 respectively in 20 μ l of saline) were intratibially injected 
either one-day or one week after TGFβ  pre-treatment61,62. Contra-lateral limbs were injected with saline and 
served as a positive control. Mice received TGFβ  inhibitor or IgG control injections every three days (PAIII 
model) or weekly (C4-2B). Bioluminescence was measured longitudinally as a correlate of tumor growth (IVIS™  
Perkin Elmer). For Post-treatment studies: mice were inoculated as described (n =  7/group), randomized and 
treated upon the detection of bioluminescent signal. Mice that showed tumor growth outside of the bone com-
partment were excluded from all analyses.

A detailed description of cell assays, histological and bone morphology analyses can be found in supplemen-
tary methods. Statistical analyses were performed with GraphPad Prism and all graphs display error bars that are 
SEM.
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