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Abstract

The timing and dynamics of many diverse behaviors of mammals, e.g., patterns of animal foraging or human
communication in social networks exhibit complex self-similar properties reproducible over multiple time scales. In this
paper, we analyze spontaneous locomotor activity of healthy individuals recorded in two different conditions: during a
week of regular sleep and a week of chronic partial sleep deprivation. After separating activity from rest with a pre-defined
activity threshold, we have detected distinct statistical features of duration times of these two states. The cumulative
distributions of activity periods follow a stretched exponential shape, and remain similar for both control and sleep deprived
individuals. In contrast, rest periods, which follow power-law statistics over two orders of magnitude, have significantly
distinct distributions for these two groups and the difference emerges already after the first night of shortened sleep. We
have found steeper distributions for sleep deprived individuals, which indicates fewer long rest periods and more turbulent
behavior. This separation of power-law exponents is the main result of our investigations, and might constitute an objective
measure demonstrating the severity of sleep deprivation and the effects of sleep disorders.
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Introduction

Sleep deprivation
Although good sleep (like nutrition and physical exercise) is

considered a basic contributor to human health and well-being, its

chronic deprivation seems symptomatic of modern societies. In the

last century, the average sleep duration has shortened from

approximately nine hours to no more than seven hours in many

countries, e.g., USA [1], UK [2], or Japan [3]. Some recent

research shows that both total sleep deprivation and chronic sleep

reduction may lead to similar effects in terms of physiological,

affective and cognitive consequences (e.g., [4,5]). The most

obvious effect of sleep loss is the daytime drowsiness, an

underestimated problem concerning operators of transportation

and in other ‘‘critical-safety’’ work settings. Apart from drowsiness,

sleep deprivation involves impaired immune, endocrine and

metabolic functions, and profound neurocognitive deficits. A list

of cognitive sleep loss consequences set in a review by Durmer and

Dinges [6] includes a variety of symptoms: from slowed reactions,

omission and commission errors, and a decline in working

memory performance, to deterioration in divergent thinking and

increased likelihood of unproductive problem-solving. Cognitive

domains are, however, affected diversely by sleep loss, so that

sustained attention deteriorates much more than the performance

of challenging working memory tasks [4]. Impairments in

performance are accompanied by changes in performance self-

ratings [5].

Daytime drowsiness is characterized by an urge to sleep, a lack

of energy, and decreased ability to complete tasks, often

resembling the state of alcohol intoxication. Slowed movements,

reduced facial expressions and muscle tone are typical physical

symptoms of being sleepy. Thus, the spontaneous locomotor

activity may be considered as an index of alertness and sleepiness.
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Scale-free distributions
Power laws are ubiquitous in nature and have been repeatedly

detected not only in physics, biology, earth and planetary sciences,

but also in economics and finance, demography, epidemiology,

and social sciences [7–11]. They are typically observed in the

vicinity of continuous phase transitions, where the underlying

physical processes and fluctuations of measured physical observ-

ables exhibit self-similarity at all scales. Scale invariance is

therefore commonly considered a signature of ‘‘criticality’’

indicating the complexity of the system and slow decay of

spontaneous fluctuations. Of special interest are the scale-free

distributions in time, e.g., the waiting-time distributions of light

and dark states in quantum dots [12], or dwell-time distributions in

closed biological ion channels [13], where the inverse power-laws

of state-duration times have been observed and identified with

Poisson shot noise in blinking (opening) events. Accumulating

evidence also demonstrates [8,14–16] that the dynamics of

spontaneous behavior exhibits scale invariance. Time recordings

of locomotor activity in rodents and humans have shown that the

spatial and temporal distribution pattern of fluctuations appear

unchanged regardless of the time scale of observation, thus

pointing to the aforementioned universal scaling laws. In

particular, recent studies by Sun et al. [17] indicated that the

scaling exponent of the power law detected in temporal

autocorrelation of activity significantly correlates with the severity

of Parkinson’s disease symptoms. Similarly, universal scaling laws

have been found in locomotor activity periods of humans suffering

from major depressive disorders [8]. The disruption of the

characteristic universality classes of such laws has been further

addressed by Proekt et al. [14] in studies on dynamics of rest and

activity fluctuations in light and dark phases of the circadian cycle.

This paper continues along this line of research, seeking to

determine standards for measurable criteria by discriminating

human behavioral organization as impaired by sleep deficiency. In

particular, the aim of the present study is to find whether the same

individuals show measurable differences when undertaking two

different styles of everyday life. The chosen experimental setup

and subsequent statistical analysis allow us to observe such

disparities in locomotor activity between subjects sleeping regu-

larly and those undergoing chronic sleep deprivation. As discussed

further, those distinct variations in patterns of activity can be

already detected in the first day of sleep deficit, leading to

significantly different scaling exponents for fluctuations of

actigraphy recordings in both groups. When interpreting the

findings we also point to their potential application in identifying

patients with sleep disorders.

Materials and Methods

Actigraphy measurements were performed on healthy individ-

uals over one week of their normal life [rested wakefulness (RW)]

and one week of partial sleep deprivation (SD) (access to the data:

[18]). The circadian cycle of both groups differs substantially:

while RW individuals have relatively long ‘‘nights’’ and short

‘‘days’’, members of the SD group are characterized by a reversed

pattern of longer ‘‘days’’ and shorter ‘‘nights’’, which clearly

influences their activity/rest patterns. To overcome this problem

we normalized the ‘‘days’’ and ‘‘nights’’ of both groups to the same

length, as explained in the Data analysis subsection. The

resulting time series were statistically analyzed and compared to

former studies [8] performed in the ‘‘normal’’ (RW) phase. Since

bouts of activity/rest obey different distributions of duration, the

best choice of a threshold(s) differentiating between the two states

seems to be crucial, and is thoroughly discussed in the Results
section.

Participants
Twenty four paid volunteers (12 females and 12 males; mean

age 22.7 years, S.D. = 1.6) participated in the study. They were all

healthy, non-smokers, and drug-free. They were asked to limit

alcohol and caffeine intake during the experimental weeks. They

reported regular sleep patterns and no sleep-related problems,

controlled with Pittsburgh Sleep Quality Index [19] and Epworth

Sleepiness Scale [20]. Participants were informed about the

procedure and goals of the study, and provided their written

consent. The study was approved by the Bioethics Commission at

Jagiellonian University.

Among the 24 sets of data collected 17 were selected for further

analysis (8 females and 9 males; mean age 22.8 years, S.D. = 1.8),

the other 7 were corrupted by either removing a recording device

during the experiment, or not following the sleep schedule.

Data acquisition
The data acquisition comprised of one week of unrestricted

sleep according to individual needs, i.e., rested wakefulness (RW),

and one week of daily partial sleep deprivation (SD), with a two-

week gap in between the two measurements. Half of the subjects

began with the RW phase followed by the SD phase, while the

other half had the order reversed. During the sleep deficit week,

the participants were asked to shorten their sleep by 33% of their

‘ideal sleep’ by delaying bed-time and using an alarm clock in the

morning. The precise length of the restricted sleep was calculated

individually for each participant, where the individual sleep need

was determined on the basis of the questionnaire administered

before entering the experiment (‘‘If you were totally free to plan

your day and had no duties at all, at what time would you go to

sleep and get up?’’). In half of cases the self-reported length of sleep

was verified with actigraphy before entering SD phase.

For the 17 selected subjects the average unrestricted sleep, as

measured by actigraphy, was 8 h 16 m + 44 m (mean + S.D.); in

the sleep deprivation conditions it was curtailed by 2 h 20 m +
56 m (27:7%+9:6%) and amounted 5 h 57 m + 37 m.

Movement tracking was recorded with Micro Motionlogger

SleepWatch (Ambulatory Monitoring, Inc., Ardsley, NY), worn on

the participant’s non-dominant wrist. The data were collected in

1-minute epochs in the Zero-Crossing Method (ZCM) mode,

which counts the number of times per epoch that the activity

signal level crosses zero (or a threshold very close to zero). The

working limitation of the ZCM mode is the difficulty in registering

the acceleration of movements, which may potentially cause high

frequency artifacts to be counted as a considerable movement.

Data analysis
Day and night or wakefulness and sleep. The raw

actigraph data collected in the ZCM mode represent the number

of counts per epoch as a function of time. The first step in the

analysis is the localization of the ‘day’ ?/ ‘night’ transition (or

wakefulness ?/ sleep). This is done by the procedure consisting of

smoothing the raw data over longer periods of time (usually tens of

minutes) and counting actigraph activity above a predefined

threshold Tsleep. The periods where rest is predominant (above

given percentage hsleep) are counted as sleep. If they are

interrupted by instantaneous activity, e.g., due to a change of

body position, they are glued together. The resulting period is

defined as sleep or ‘night’. The remaining time is called

wakefulness or ‘day’.

Scale-Free Fluctuations in Behavior of Sleep Deficient Humans
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Next, one has to avoid artifacts connected with forced, different

lengths of sleep/wakefulness in the two week period under study.

Whereas the RW individuals sleep on average 8 hours and are

alert 16 hours per day, the SD ones sleep approx. 3 hours less and

stay alert 3 hours longer. To make the two samples comparable,

out of the total 24 hour period we take 5 hours of sleep, which are

common to all participants, and 16 hours of consecutive

wakefulness, again common to both groups. We call it the (5+
16) mode. For comparison, we also analyze the reversed

combination: 16 hours of wakefulness followed by 5 hours of

sleep, denoted as (16+5).

Threshold(s) separating states of activity and rest. To

precisely distinguish the rest periods from periods of activity, a

threshold separating the two states must be chosen. We resolve this

problem in two different ways: with a single or double threshold.

In the single threshold method we select one specific value of ZCM

activity, TZCM , which best separates the two types of behavior

investigated. We also test the sensitivity of analyzed distributions to

changes of TZCM around the optimal value.

The double threshold procedure, in turn, is a hysteresis-like

method, in which two step values Tdown and Tup are introduced.

We then define the beginning of the activity period as the moment

when ZCM activity exceeds Tup, and the end of this period when

the activity falls below Tdown. At that moment the state of rest

begins, and it terminates when surpassing Tup. We compare the

results following from these two approaches.

Statistical analysis. The raw actigraph data X (t), split into

activity and rest, are subject to further statistical analysis. We

count the number of activity/rest periods of a given duration and

calculate the resulting probability density function (PDF) p(t) of

duration time t. To better assess the statistics of rare events in tails

of PDF’s we construct, as the main measure of the discussed

phenomena, the (complementary) cumulative distribution C(a) of

duration lengths a:

C(a)~Pr(t§a):
ð ?

a

p(t)dt: ð1Þ

The function represents the survival probability for the system

to stay in a given state up to the time a. For a stationary time series

the survival probability C(a) is expected to have a characteristic

scale (relaxation time trel ) related to the probability per unit time l
to undergo a change of the state (see Appendix). Put differently,

C(a) is then a simple exponential function of dwell times,

C(a)~e{la, with l~1=trel .

In order to check the degree of temporal correlations in the

activity recordings, the power spectrum S(f ) of the signal X (t) was

derived from the Fourier transform of the signal correlation

function

S(f ): lim
Z??

1

Z
S
ð Z

{Z

exp (ift’)X (t’) exp (ift00)X (t00)dt’dt00T, ð2Þ

and evaluated for several time periods. The parameter f denotes

the inverse of time f ~t{1.

The numerical estimates of cumulative distributions were fitted

with two mathematical formulae: a power-law of the form

C(a)*a{c ð3Þ

for rest periods and a stretched exponential form

C(a)* exp {aab
� �

ð4Þ

for activity periods. The fitting was performed using log-log or log-

linear data, respectively, in order to account for the tails in the

distributions. The fitted parameters a, b, and c were then

compared for several combinations of time periods and subjects.

Each cumulative distribution was constructed from rest/activity

periods collected over a single day [i.e., a single (5+16)- or (16+5)-

hour period] from all the 17 participants in RW or SD condition.

The statistics for individual subjects is insufficient to construct

reliable cumulative distributions. Consequently, for each day we

obtained a single data point characterizing the distribution of the

whole group in RW condition and a single point for SD condition.

Throughout the paper the parameters characterizing a single

cumulative distribution of rest/activity periods are given together

with the standard error of the fit (e.g., exponent g of power

spectra); whenever we take an average of the fitted parameters

over the whole week, the weighted mean - marked with a

horizontal bar - together with the standard deviation is given (e.g.,

�cc). In order to compare RW and SD groups, such means of

parameters fitted for several consecutive days were compared with

two-tailed Student’s t-tests performed at 95% confidence level,

preceded by a set of tests for equal variances. These tests were

performed with Mathematica 9.0 software [21] (functions TTest
and VarianceEquivalenceTest).

Since the cumulative distributions, and consequently the

parameters, may change depending on TZCM or Tup and Tdown,

the thresholds were chosen so as to optimize goodness of fit of the

two models (3)–(4) and thus best separate rest and activity periods.

Whereas fitting the stretched exponential did not show any

discernible optimum in the range TZCM~50{150, fitting the

power law had a clear optimum in several goodness of fit measures

(namely, minima in sum of squares error Err, x2 statistic, Akaike

and Bayesian Information Criteria). As a result we chose the

numerical values of thresholds TZCM~85 and

Tup~85, Tdown~60 based on this criterion. The details of the

fitting procedures and measuring the goodness of fit are described

in File S1.

Results

Raw data and their spectra
The raw actigraph data X (t) collected in the ZCM mode for an

exemplary participant are shown in Fig. 1. The pattern of the

activity events in RW mode (top-left panel) exhibits a highly-visible

circadian rhythmicity, whereas episodes of activity measured in the

SD mode (top-right panel) present a substantial portion of a short-

interval chattering. The separation of ‘‘days’’ and ‘‘nights’’ has

been performed with Tsleep~40 and hsleep~0:8. The red solid and

dashed lines above the data mark our normalized selection of

periods under investigation, (5+16) hours and (16+5) hours,

respectively. Additionally, in the bottom panels of Fig. 1 we plot

the time series of increments Dt:X (tz1){X (t) normalized by

its standard deviation (S.D.). To assess the nature of fluctuations in

Dt, we analyzed distributions of Dt/S.D. and the representative

frequency histogram (which, by construction, stands for estimation

of the probability density function of scaled fluctuations Dt/S.D.) is

drawn in the bottom panel of Fig. 2 along with a Gaussian

probability density function of the same mean and variance. The

‘‘experimental PDF’’ is clearly leptokurtic: pronounced heavy tails

show that by comparison to the Gaussian distribution, fewer low-

amplitude fluctuations and many more large ones are observed in

Scale-Free Fluctuations in Behavior of Sleep Deficient Humans
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experimental sets, thus demonstrating their strong deviation from

the standard central limit theorem.

The degree of correlation between subsequent intensities of

activity X (t) is well represented by its spectral density S(f ). The

illustrative plots for a single individual and different time span (one

week and 24 hours) are drawn in Fig. 2. For the RW data sets,

corresponding to a couple of hundred events, the power spectra

exhibit a clear universal, algebraic scaling law S(f )!f {g, with the

scaling exponent g close to 1 [g~1:03+0:02 (left panel) and

g~1:09+0:02 (right panel)]. The respective values for subject 24

in the SD mode are g~0:99+0:02 (week) and g~1:06+0:02
(day). The middle row of the same figure displays the power

spectra obtained for increments Dt with slopes g’&g{2 confirm-

ing long-range correlations in the fluctuations of intensities X (t).
Consequently, these data demonstrate that the analyzed

stochastic process X (t) representing variability in intensity of

activities is not of the white-noise type, in which case the

consecutive events would have been memory-free and the

correlation function would have been a Dirac delta function with

the corresponding spectral power S(f )!f 0.

Cumulative distributions and their fits; single threshold
analysis

With the choice of the threshold TZCM~85, the cumulative

distributions C(a) of rest period durations, averaged over all

participants, are plotted in Fig. 3a for RW and SD modes in the

(5+16) combination. Analogous graphs in the (16+5) combination

are depicted in Fig. 3c. Individual curves represent data for

consecutive days. To minimize possible influence of individual

variations among participants, we have replotted the same

cumulative distributions C(a=�aa) as functions of a=�aa, where �aa is

the individual average, cf. Fig. 3b and d. All curves stay close to

straight lines on the log-log scale over 2 order of magnitude in

time, which is a signature of power-law behavior of the form given

by Eq.(3). We performed fits of the cumulative distributions for

each curve and present the extracted exponent c in Fig. 4. There

are several conclusions which can be inferred from this analysis.

Firstly, we do not see significant differences between the (5+16)

and (16+5) recordings. Secondly, the c values of the control group

are close to those reported earlier [16] for healthy humans

(c~0:9+0:13 versus average �cc~0:78+0:05 in this study).

Finally – and we consider this observation our main result – the

analysis performed indicates a significant difference in behavioral

motifs between the control group and sleep deprived individuals.

The higher coefficient �cc~0:85+0:03 derived for sleep-deficient

individuals emphasizes the fact that the pattern of their resting

times consists of more short periods and, respectively, fewer longer

inactivity time intervals than in the control group. This

observation contrasts with the results for the rest-time distributions

of depressed humans [8,16], where lower scaling exponent c, and

thus heavier tails in the cumulative distribution, were observed for

disordered individuals. The difference in the exponent c that we

observe is significant: a two-tailed Student’s t-test between sets of

resulting c coefficients for the RW and SD groups was performed

at 95% confidence level (p~0:0015 and 0:030v0:05 for (5+16)

and (16+5) settings, respectively) providing evidence for a

statistically notable difference between means of these two groups.

It is interesting that after the change of the scaling parameter c,

already on the first day of sleep deprivation (Fig. 4), we do not

observe any additional trends during the subsequent days. One

should also notice that even if the exponents are close to each

other on some days (e.g., days 5 and 7 in Fig. 4 right panel), the

distributions are clearly distinguishable from each other, as can be

seen in Fig. 5, where C(a) in the rest state for SD and RW

individuals are plotted for exemplary days 6 and 7.

In an analogous manner, the cumulative distributions of the

activity periods for RW and SD cases are plotted as functions of a
on log-log and log-lin scales in Fig. 6a,c; furthermore, Fig. 6b,d

Figure 1. Examples of typical activity recordings. (Left panel) Activity of a control subject (RW mode), and (right panel) of a sleep deprived
subject (SD mode). The overall nonzero activity counts X (t) are depicted on the vertical axis. The lower row displays the time series of standardized
increments Dt:X (tz1){X (t).
doi:10.1371/journal.pone.0107542.g001

Scale-Free Fluctuations in Behavior of Sleep Deficient Humans
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presents those distributions as functions of a=�aa. Both original and

rescaled cumulative distributions of activity periods collapse well

onto the stretched exponential form Eq.(4). The values of the fitted

parameters a and b for RW and SD groups are not significantly

different (pw0:05, two-tailed t-test). This result remains in

agreement with previous studies on humans and rodents [8,15,16].

Figure 2. Temporal universality of signal X (t) depicted for a typical subject (No. 24). Top panels show the spectral densities S(f )
evaluated (left panel) for the one-week experimental time series (i.e., top panels of Fig. 1) and (right panel) for 24 hr periods averaged over the week.
In both cases slopes of fitted power laws (dashed lines) exhibit 1=f g behavior with the characteristic exponent g~1:03+0:02 (left panel) and
g~1:09+0:02 (right panel), respectively. In the middle two panels the similar spectral analysis is shown for the time series of increments (i.e., bottom
panels of Fig. 1) exhibiting 1=f g’ scaling with exponents g’~{0:73+0:02 (left panel) and g’~{0:71+0:02 (right panel). These results clearly indicate
that the activity events are long-range correlated and the corresponding stochastic process of switching between active/non-active periods is not
memoryless (Markovian). The peaks located at 1=23:99 hours, marked by red triangles in the left panels correspond to the circadian rhythm. The
bottom panel shows the frequency histogram of standardized increments Dt/S.D. (black - unrestricted sleep; red - sleep deprivation) compared to a
Gaussian probability density function of the same mean and variance (dashed line) on log-linear scale.
doi:10.1371/journal.pone.0107542.g002

Scale-Free Fluctuations in Behavior of Sleep Deficient Humans
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Figure 3. Cumulative distribution of resting times in human motor activity. Double logarithmic plots represent (panels a, c) cumulative
distribution C(a) of rest periods as a function of duration time a and (panels b, d) cumulative distribution C(a=�aa) of rescaled rest periods as a function
of rescaled duration time a=�aa for all RW subjects (black symbols) and all SD (red symbols). Here, �aa stands for the individual mean of rest period
duration. Each curve corresponds to one of six consecutive days. Continuous lines show slopes of the fitted power-laws. Top panels (5+16) mode;
bottom panels (16+5)mode. The threshold separating state of activity versus rest TZCM~85.
doi:10.1371/journal.pone.0107542.g003

Figure 4. Exponent of the rest-periods distributions for RW (black) and SD subjects (red) as a function of consecutive days. The
cumulative distribution assumes (over almost two decades) a power-law form C(a)&a{c . Notation as in Fig. 3. In both cases the characteristic index c
is significantly lower for SD.
doi:10.1371/journal.pone.0107542.g004

Scale-Free Fluctuations in Behavior of Sleep Deficient Humans
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Figure 5. Sample distributions of rest periods with fitted slopes. The continuous lines are best fits; their extent indicates the range of data
points fitted (the first and last fifteen data points are not fitted). Panel (a) is an example where both the distributions and the fitted slopes can easily
be distinguished. Panel (b) shows an example in which the fitted slopes are nearly equal, although the difference of distributions is clearly visible.
doi:10.1371/journal.pone.0107542.g005

Figure 6. Cumulative distributions of activity periods. The curves on log-log and log-linear scales follow the typical pattern for a stretched
exponential C(a)~ exp ({aab) as a function of (panels a, c) the length of activity periods a or (panels b, d) the length a rescaled by the individual
average �aa. All curves collapse on a similar stretched exponential function; there is no significant difference between RW and SD subjects. The
threshold determining rest and activity period has been preset to TZCM~85.
doi:10.1371/journal.pone.0107542.g006

Scale-Free Fluctuations in Behavior of Sleep Deficient Humans
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The choice of thresholds separating the activity and rest periods

is an important issue. By selecting one particular value of ZCM

activity we separate two different temporal distribution profiles:

the power law for states of rest and (stretched) exponential for

states of activity. It is thus clear that there must be an optimal

value that best distinguishes the two. The criterion we used to find

it was the best fit of the resting-state cumulative distribution C(a)
to the power-law form. The resulting sum of squares error Err,

along with the goodness of fit expressed by x2, are plotted in Fig. 7

as functions of the threshold value TZCM .

Robustness of the results: Cumulative distributions and
their fits in double threshold analysis

All the results discussed above were obtained with the single

threshold definition (Fig. 1–7). In order to further test the

sensitivity of the results to the definition of a threshold, we refined

our analysis by considering a hysteresis-like distinction of the

locomotor activity (see section Data analysis). With the choice

Tdown~60 and Tup~85 we plot the cumulative distributions C(a)

of rest (Fig. 8a,c) and activity (Fig. 8b,d) time intervals for both

RW and SD groups, together with the fitted exponents of the

power-law cumulative distribution of resting states (Fig. 9). In the

case of activity periods no clear difference between the RW and

SD individuals was observed. The overall fit (averaged over days

and individuals) yields for the RW sample �aa~0:31+0:04 and
�bb~0:49+0:03. Similar values for the SD mode are not

significantly different (pw0:05; two-tailed t-test). In contrast, the

difference between the control and sleep deprived individuals can

be well observed in the profiles of the rest-periods cumulative

distributions. Numerically, the power-law fit yields �cc~0:75+0:05
for RW and �cc~0:86+0:03 for SD samples. Altogether, we

observe that cumulative distributions obtained with this definition

agree with those obtained in the single thresholding method,

therefore confirming the robustness of the results obtained.

Discussion

The evidence of motion recorded by actigraphs is broadly used

in medical practice aimed at understanding typical circadian-

rhythm patterns of healthy subjects, and at detecting possible

rhythm disorders in humans. Although the method is not indicated

for the routine diagnosis, the actigraphy recordings may be useful

in quantitative evaluation of the variety of neuropsychiatric

diseases. Specific analytical methods applied to actigraphy records

can reflect various features of physiological activities and serve as

an outcome measure in characterizing disturbances of the

circadian-rhythm patterns and alterations in locomotor activity

in specific populations like children (apnea testing) or individuals

suffering from depression [16], Parkinson’s disease [17], schizo-

phrenia [22], or dementia [23].

In the former studies by Nakamura et al. [8,16], actigraphy was

employed to determine the difference in human behavioral

organization between healthy subjects and patients with major

depressive disorders. The authors analyzed activity and resting

time durations and found that the cumulative distributions follow a

stretched exponential form for activity periods and scale-free,

power-law behavior for resting time intervals. Moreover, by

analyzing the behavioral organization of humans suffering from

major depressive disorders, they found significantly lower power-

law scaling exponents for the rest-period durations than for

healthy control groups.

In analogy to those investigations, we have performed the

experiment and applied statistical evaluation of the results, keeping

in mind that our RW and their healthy control groups should

reach similar conclusions. Therefore, e.g., the choice of activity

threshold which separates state of activity from rest has been

validated by the use of a criterion similar to [8,16], i.e., the overall

average of nonzero activity counts.

Evaluation of residence-time distributions and calculation of a

mean waiting time to an activity event are broadly studied

problems in biological physics and have been addressed in a

number of studies [9,13,14,24–29]. Stochastic systems with

internal states in which discrete events (like neuron firing or

exceeding a threshold of activation) occur at a state dependent rate

frequently exhibit long-time persistent correlations, which are well

reflected in power spectra of the representative signal recordings

[13,15,30]. At the same time, many natural phenomena, including

spontaneous human behavior, demonstrate non-homogeneous

Poisson or even mixed, non-Poisson distributions of events, with

intensity rates identified with scale-invariant Lévy statistics [31].

Lévy-stable distributions are a class of self-similar infinitely-

divisible probability laws [32,33] and by virtue of the Lévy-

Khinchin theorem are represented by distributions which can be

Figure 7. Dependence of goodness of power-law fit on the threshold TZCM . The data were collected for unrescaled rest periods of RW
subjects. The residual sum of squares (left), the reduced x2 statistic (right) and other measures of goodness of fit (see File S1) show a broad minimum
in the same range TZCM~75{85, which serves as a criterion for choosing TZCM~85 for further analysis.
doi:10.1371/journal.pone.0107542.g007
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uniquely decomposed into two independent – Gaussian and

Poisson – superposition parts. This structure is further responsible

for the heavy-tailed amplitudal surges in the composition of Lévy

fluctuations and for long-ranged temporal dependencies charac-

terized by the slow decay of their autocorrelation function. With

this observation in mind, we have discussed the possible

Figure 8. Cumulative distributions of rest and activity periods with hysteresis-like thresholding. Two-threshold analysis of rest and
activity periods with Tdown~60 and Tup~85. Notation as in Figs. 3 and 6.
doi:10.1371/journal.pone.0107542.g008

Figure 9. Exponents of the rest-periods distributions with hysteresis-like thresholding. Thresholds chosen as in Fig. 8. Notation as in Fig. 4.
doi:10.1371/journal.pone.0107542.g009

Scale-Free Fluctuations in Behavior of Sleep Deficient Humans

PLOS ONE | www.plosone.org 9 September 2014 | Volume 9 | Issue 9 | e107542



emergence of a scale-invariant survival probability C(a) in a

stochastic process of switching between two different activity states

of the system (cf. Appendix) pointing out that the two derived

probability laws are related to each other through asymptotic

properties of individual relaxation modes.

Higher values of the exponent c for sleep-deprived subjects

signals less heavy tails of waiting-time distributions in an immobile

(resting) state than in an analogous distribution for the control

group, and can be associated with restlessness/inquietude and

increased variability (burstiness) of activity in recorded time series.

Consequently, such alteration of locomotor behavior can be a

representative sign of disorders related to sleep-deficiency and

possibly, in line with results presented in former studies

[8,16,17,34], a valuable diagnostic fingerprint discriminating

between healthy and depressed/disordered individuals.

It seems likely that some aspects of both the waking period

(length of prior wake, local use of neuronal networks) and the sleep

period (sleep length and continuity) may explain performance

deficits and the restoration of function. Accordingly, deeper

theoretical understanding of different forms of sleep loss would be

possible by comparing them together, in a single experiment [35].

Finally, it is important to recognize that the analysis of activity

patterns of chronically sleep deprived subjects will not necessarily

reveal their decreased capabilities. Compensatory efforts and

recruitment of additional brain resources could intervene to make

the activity level appear unaffected. It could be that unraveling

these disturbances requires more sophisticated analysis, or that the

subtle neurocognitive effects of sleep loss can be observed only

with the use of refined neuroimaging techniques, possibilities that

deserve to be explored in future work.

Appendix: Dynamics of Activation and
Omnipresence of Power Laws – Theoretical
Considerations

We have studied the statistics of resting (inactivity) times and

confirmed that the derived distributions are of power-law type

C(a)!a{c with the index c taking a fixed value over two orders of

magnitude in time. In turn, activity period durations for control

and sleep-deprived subjects obey a stretched exponential form for

a wide range of recordings. We claim that both behaviors can be

understood as different, asymptotic facets of an anomalous

relaxation law governed by the generalized Mittag-Leffler

probability distribution function describing rates of individual

processes underlying switching from states of rest to activity.

The pattern of time-duration (the overall pattern of distribution

of fragments of time spent in a state of a given activity) is related to

the rate function of a point process featuring events following

spontaneous discharge (escape) from the inactivity (or alert) state.

The spectrum of times between subsequent events can be

described mathematically by a probability density function (PDF)

p(t) (which is equivalent to the experimentally derived frequency

distribution of periods). For very small dt, the probability that the

event of escape from the state will happen in time range t to tzdt,

given no such event occurred by times prior to t, can be expressed

in terms of the conditional probability L(t)dt, where L(t) denotes

the instantaneous ‘‘rate’’ at which the sequence of subsequent

‘‘ticks’’ of representative events occurs in time. By introducing the

probability that ‘‘the system remains in the state intact up to the

time t’’, otherwise called the survival function C(t)

C(t):Pr T§tð Þ~
ð ?

t

p(s)ds, ð5Þ

the conditional probability Pr tƒTƒtzdtDT§tð Þ:L(t)dt can be

rewritten as

L(t)dt~

Ð tzdt

t
p(s)dsÐ ?

t
p(s)ds

~{
Pr T§tzdtð Þ{Pr T§tð Þ

Pr T§tð Þ ~

~{
dPr T§tð Þ
Pr T§tð Þ ~{

dC(t)

C(t)
: ð6Þ

This leads to a simple relation between the rate function L(t),
the survival probability C(t), and the PDF p(t), which takes the

form of

L(t)~
p(t)

C(t)
, ð7Þ

with the differential equation for the probability that no change of

state occurs at least until time t:

dC(t)

dt
~{L(t)C(t), ð8Þ

whose solution depends on the relevant choice of L(t):

C(t)~Ce
{
Ð t

0
L(s)ds

: ð9Þ

Note that cumulative probability that a state change happens by

time t can be expressed as

F (t)~Pr Tvtð Þ: ð10Þ

Accordingly, for t[½0,?) we will have C(0)~1 [i.e., C~1 in

Eq.(9)], limt?? C(t)~0 and C(t)~1{F (t). From the above

analysis it also follows that

p(t)~
dF (t)

dt
~

d

dt
(1{C(t))~{

dC(t)

dt
~L(t)C(t): ð11Þ

In particular, for a uniform rate L(t)~l~constw0, one gets

C(t)~e{lt, p(t)~{
d

dt
½1{F (t)�~le{lt, ð12Þ

which is typical for a homogeneous Poisson point process, where

the probability L(t)~l is assumed constant throughout the whole

time interval of interest. The mean duration time spent in a given

state (say, before a discharge from the state takes place) is then

given by
Ð ?

0
tp(t)dt~1=l. If, on the other hand, the time

dependence of the rate function L(t) is assumed to scale differently

with small and large t as, e.g.:

L(t)~
al(lt)a{1

1zb(lt)a , ð13Þ

which for 0vav1, bw0 leads to
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L(t)!
(lt)a{1 t?0

(lt){1 t??

(
, ð14Þ

the survival probability is given by

C(t)~
1

½1zb(lt)a�1=b
, ð15Þ

corresponding to the frequency distribution of time durations

p(t)~
al(lt)a{1

½1zb(lt)a�1=bz1
: ð16Þ

The above formula Eq.(16) represents the probability density of

the Burr distribution exhibiting two power-law behaviors

p(t)!
(lt)a{1 : t?0 (tvv1=l)

(lt){a=b{1 : t?? (tww1=l)

(
: ð17Þ

The survival function Eq.(15) possesses interesting limiting

properties: As b?0, C(t)?e{(lt)a

, that is, it tends to the stretched

exponential form (0vav1) with the characteristic power-law

behavior of the corresponding probability density for tvv1=l:

p(t)!(lt)a{1: ð18Þ

Note that as b?0 and a~1, the common, exponential form of

the survival function C(t) is recovered. In turn, for b=0 and a~1,

the C(t) function tends to

C(t)?
1

½1zb(lt)�1=b
, ð19Þ

which yields a tail of the Pareto distribution in the expression for

the probability density distribution p(t):

p(t)!(lt){1=b, tww1=l: ð20Þ

The non-exponential form Eq.(15) and, consequently, the time

dependent character of the rate L(t) may follow from a statistical

probability mixing, e.g., from randomization of the rate l (cf.

Eq.(12)).

To clarify this point, let us rewrite the survival function as a

conditional probability

Pr(T§tDL~l)~C(tDL:l)~e{lt, ð21Þ

where L~l denotes random rate L taking value l. By taking an

average with respect to PDF pL(l), the final C(t) takes the form

C(t)~Pr(T§t)~Se{ltT~ ~

ð ?

0

e{ltdFL(l),

i.e., it is given by the Laplace transform of the rate distribution

function. In this case the ‘‘effective’’ rate is derived from

L(t)~{
d

dt
log

ð ?

0

e{ltdFL(l): ð22Þ

In fact, it is easy to check that, if the rate PDF takes the Dirac-

delta form

dFL(l)

d l
~d(l{l0), ð23Þ

the relation Eq.(22) yields a constant function L(t)~l0 and the

corresponding PDF of duration times spent in a given state has an

exponential form Eq.(12) with l~l0. On the other hand, it can be

shown that the rate Eq.(22) takes the form Eq.(14) if the intensity

distribution function FL(l) is of the generalized Mittag-Leffler

form:

FL(l)~
X
i~0

({1)iC(iz
1

b
)

i!C(
1

b
)C 1za(iz

1

b
)

� � l

b1=a

 !a(iz1=b)

, ð24Þ

which itself represents a mixture of the completely asymmetric

Lévy-stable Sa(l(by){1=a) and the gamma gb(y)dy distributions

FL(l)~

ð ?

0

Sa
l

(by)1=a

 !
gb(y)dy, ð25Þ

where

gb(y)~
1

C(1=b)
y

1
b
{1

e{y: ð26Þ

Altogether, the above analysis classifies stretched exponential

and Pareto distributions as probability laws stemming from the

same origin, i.e.: either from the randomization of an individual

rate l, or correspondingly, from the randomization of relaxation

time t~1=l, the parameters which describe dynamics of

stochastic activation events. The interpolation property of the

Mittag-Leffler function (stretched-exponential character for short

times with a transition to long-time inverse power-law behavior) is

an appealing feature, and has been observed experimentally in

various realms like protein conformation dynamics [36], dielectric

relaxation in complex media [26,30,37] or financial market time

series [38]. It well may be that the same function can serve in

modeling temporal turnover effects in neurological recordings.

Supporting Information

File S1 Details on data processing and fitting. The file

includes analysis of goodness of fit of cumulative distributions for

one and two activity thresholds; it contains 5 figures.

(PDF)
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