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Abstract

The larval salivary gland of Drosophila melanogaster synthesizes and secretes glue glycoproteins that cement developing
animals to a solid surface during metamorphosis. The steroid hormone 20-hydroxyecdysone (20E) is an essential signaling
molecule that modulates most of the physiological functions of the larval gland. At the end of larval development, it is
known that 20E—signaling through a nuclear receptor heterodimer consisting of EcR and USP—induces the early and late
puffing cascade of the polytene chromosomes and causes the exocytosis of stored glue granules into the lumen of the
gland. It has also been reported that an earlier pulse of hormone induces the temporally and spatially specific transcriptional
activation of the glue genes; however, the receptor responsible for triggering this response has not been characterized.
Here we show that the coordinated expression of the glue genes midway through the third instar is mediated by 20E acting
to induce genes of the Broad Complex (BRC) through a receptor that is not an EcR/USP heterodimer. This result is novel
because it demonstrates for the first time that at least some 20E-mediated, mid-larval, developmental responses are
controlled by an uncharacterized receptor that does not contain an RXR-like component.
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Introduction

During metamorphosis in Drosophila melanogaster, pulses of the

20E steroid hormone, stimulate diverse tissue-specific responses

such as the histolysis of many larval tissues and the simultaneous

differentiation of adult structures from imaginal discs [reviewed in

1]. In addition, multiple pulses of 20E that occur during the last

larval instar (L3) trigger different responses within the same target

tissue, raising the interesting question of how a generalized

developmental signal is manifested into distinct physiological

responses that are separated by time. The larval/prepupal salivary

gland is an ideal assay system in which to investigate the molecular

mechanisms responsible for such temporally specific developmen-

tal specifications. In a 36-hour period, the gland responds to three

distinct pulses of 20E in three fundamentally different ways.

During most of larval life, the salivary gland is engaged in the

synthesis of non-digestive enzymes that most likely aid in the

lubrication of the food through the gut [2–4]. However, about

midway through the L3 stage, the pattern of gene expression is

altered dramatically by the synchronous activation of a small

number of genes (,8) that are abundantly expressed in the salivary

gland [5]. These are known to encode components of the glue mix

that cements animals to a solid surface during metamorphosis, and

they were first identified because their induction is responsible for

the ‘‘intermolt’’ puffs formed on the giant polytene chromosomes

of the gland [6,7].

Approximately 18 hours later, in response to the pulse of 20E

that occurs at the end of L3, glue synthesis abruptly ceases [5,8]

because the hormone represses transcription from these genes

[9,10]. At this time, the salivary gland begins to express another set

of genes, many of which were originally described because they

formed ‘‘early’’ and ‘‘late’’ puffs on the polytene chromosomes

[reviewed in 11]. The end result of this 20E-mediated response is

that glue granules are secreted into the lumen of the gland [12,13].

Finally at the end of prepupal development 10–12 hours later,

the salivary gland responds to yet another pulse of 20E to initiate the

programmed cell death of the tissue via a pathway that involves

components of both autophagy and caspase activation [14,15].

The details of how 20E initiates glue secretion and gland

histolysis are well understood. The hormone is known to bind to a

receptor consisting of a heterodimer of EcR (FBgn0000546) and

USP (FBgn0003964) proteins [16–18]. Both receptor components
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are members of the nuclear-hormone receptor superfamily, both

contain well conserved DNA- and ligand-binding domains, and

both are needed for the physiological responses of target tissues to

20E at these times [reviewed in 19]. However, little is known

concerning the mechanism of receptor mediation during the

middle of L3 when glue genes are coordinately activated.

Although it is generally assumed that these events are also

mediated by a receptor consisting of EcR and USP, other

explanations can be invoked including the use of a different 20E

receptor.

Here we examine the requirements of EcR and USP for the

induction of the glue genes at mid L3. By employing the GAL4/

UAS binary expression system [20] with transgenic inducible

dominant-negative and RNAi constructs, we are able to limit

perturbations of 20E signaling specifically to the salivary gland at

defined developmental stages. We show that 20E is responsible for

inducing a tagged glue transgene as a secondary response to the

hormone, and that the 20E-inducible primary-response genes of

the Broad Complex (BRC) (FBgn0000210) are sufficient to initiate

this programmed developmental response. However, we clearly

demonstrate that the mid-instar hormone response requires a

receptor that has not yet been characterized. The receptor consists

of EcR but not USP. These results challenge the traditional model

that most developmental events triggered by 20E must signal

through a heterodimer of EcR and USP, and they support an

alternative explanation in which either EcR homodimers or other

members of the nuclear-hormone receptor superfamily play an

active role in the diversity of responses to 20E during Drosophila

development.

Results

An Sgs3 Transgene Is Induced by 20E
It is generally assumed that the glue genes [Sgs1 (FBgn0003372),

Sgs3 (FBgn0003373), Sgs4 (FBgn0003374), Sgs5 (FBgn0003375),

Sgs6 (FBgn0003376), Sgs7 (FBgn0003377), Sgs8 (FBgn0003378),

and I71-7 (FBgn0004592)] are induced by a pulse of 20E that

occurs midway through the third instar. This inference is based on

the dramatically coordinated developmental induction at mid L3

of most of these genes [5], and on studies in which Sgs expression is

examined in backgrounds mutant for genes thought to be involved

in 20E production or transport [21,22]. The model further

proposes that induction of the glue genes occurs as a secondary

response to 20E because Sgs expression is significantly perturbed in

mutants defective for BRC and E74 (FBgn0000567), which are

known to be direct targets for the hormone/receptor complex

[23–25]. However, an Sgs3-derived reporter transgene is induced

when temperature-sensitive ecd1ts (FBgn0000543) mutants—

known to produce low circulating levels of 20E [26]—are shifted

to the non-permissive temperature before the L3 stage, and the

same GFP reporter is also induced in animals that are mutant for

USP, EcR-B1, and EcR-B2 receptor components [13].

Thus, the literature contains contradictory reports concerning the

role of 20E in inducing the glue genes. Therefore, we began this

analysis with an in-vitro culture of salivary glands dissected from mid

L3 because we are not aware of any published reports that directly

test if glue-gene transcription can be induced by 20E in glands

cultured from wildtype animals. To simplify the analysis, we dissected

salivary glands from a line of flies in which the coding information for

Sgs3 had been tagged with GFP (glueGRN) (FBst0005884). This stock

(previously called SgsGFP) contains adequate regulatory information

for the proper temporal, spatial, and high-level expression of the Sgs3

gene. It has also been extensively characterized and shown to be an

accurate reporter for the secretion and expectoration of endogenous

SGS3 glue protein [13].

Larvae were synchronized at hatching and raised to the early-

L3 stage approximately 4–5 hours prior to the normal transcrip-

tional induction of the glue genes. Salivary glands were then

dissected and exposed to media containing different concentra-

tions of 20E (ranging 1029 to 1026 M) or in medium without

hormone. Under these circumstances glueGRN accumulation was

detected 4–6 hours later in cultures incubated with low 20E

concentrations (Figure 1), but not in untreated cultures or those

incubated with higher concentrations of the hormone. It should be

noted that this response is not robust because only ,30% of the

dissected glands produce glueGRN when treated. Presumably the

results are variable because the culture conditions have not been

optimized and/or the animals are not staged in a precise enough

manner. However, it is significant to note that the only cultures in

which glueGRN was detected were those incubated in either

1028 M (8 out of 20) or 1029 M (4 out of 20). Thus, the

concentration needed for production of glueGRN is 2–3 orders of

magnitude lower than the titer (,1026 M) reported to trigger

‘‘early’’ polytene puff formation, imaginal disc eversion, and glue

secretion [13,27,28]—all developmental events that occur near

puparium formation in response to a much better characterized

pulse of 20E. The result is consistent with the concentration of a

small pulse of hormone that has been reported to occur in the

hemolymph of developing larvae a few hours prior to the

transcriptional activation of the glue genes [29].

Sgs3-Derived Transgenes Require Functional EcR for
Expression

The EcR gene encodes three different protein isoforms, EcR-A,

EcR-B1, and EcR-B2. All three contain the same DNA- and

ligand-binding domains, but they contain different amino terminal

A/B sequences due to the use of alternative promoters and

differential splicing [16]. Null mutations for EcR die early in

development and cannot be assayed for glue synthesis [30].

However, mutations that remove EcR-B1 and EcR-B2 [31] do

produce glue [13]. These observations raise the possibility that

either EcR is not required for the induction of Sgs3, or that any

Author Summary

During animal development the physiological response of
individual tissues is often ‘‘reprogrammed’’ in response to
signaling molecules. One important example is the activity
of nuclear-hormone receptors that are controlled by small
lipid compounds such as steroids and retinoids. Thus,
understanding how tissue-specific developmental and
physiological responses are regulated by these systemic
ligands is a fundamental question of cell biology.
Drosophila is an important model system in which to
investigate this question because of its 100-year history of
analyzing mutants that affect complex biological process-
es, and because researchers possess a powerful ‘‘toolkit’’
that allows for precise tissue- and temporal-specific
expression and silencing of almost any gene in the
genome. Furthermore, during the metamorphosis of
Drosophila, the body plan is completely reorganized from
that of a larva (specialized for growth and feeding) to that
of an imago (specialized for reproduction and dispersal) by
a single steroid hormone. Here we examine the molecular
events that control different physiological responses
within a single target tissue to different pulses of 20E.
We show for the first time that these temporally specific
events within the same tissue are controlled in part by
different 20E receptors.

A Novel Ecdysone Receptor in Drosophila
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EcR isoform is sufficient for the process. To distinguish between

these possibilities and to take advantage of more powerful genetic

tools that allow for tissue-specific manipulations of gene products,

we utilized the GAL4/UAS binary expression system [20] to

analyze glue-gene induction in developing salivary glands.

To perform this analysis in the most precise way, it was first

necessary to identify a temporally and spatially restricted driver—a

transgenic stock of flies in which the Gal4 transcription factor is

under the control of specific Drosophila enhancers that limit its

expression to larval salivary glands at least 10 hours preceding the

normal induction of Sgs3. In our search for the best reagent, we

noticed that a number of the drivers classified as salivary-gland

specific were produced from the P{GawB} enhancer-trap element

(FBtp0000352). Our lab and others have observed that GawB-

derived elements display constitutive expression of GAL4 in larval

salivary glands [32], perhaps because part of the GawB vector

contains a cryptic larval salivary-gland-specific enhancer element.

To test this hypothesis we used a hs-Gal4 stock that contains the

Hsp70Bb (FBgn0013278) controlling elements driving Gal4 in a

GawB vector. In the absence of heat stress these animals produced

GAL4 in the L1 (first instar), L2 (second instar), and L3 salivary

glands as indicated when they were crossed to the GFP.nls

responder. In this stock GFP is expressed under GAL4 control (it

contains UAS elements that are binding sites for the GAL4

transcription factor) and it is targeted to nuclei (Figure 2). Thus, in

subsequent experiments we used hsGal4 (now referred to as sgGal4)

to drive spatially restricted expression of UAS-transgenes only in

larval salivary glands.

With a spatially restricted driver on hand, we now crossed

sgGal4 to both UAS-dominant-negative- (EcR-DN) and UAS-RNA-

interference- (EcRi) constructs of EcR. The EcR-DN protein is

defective in ligand-activated transactivation so that it competes

with endogenous EcR isoforms to block normal hormone

responses [33]. The EcRi construct contains an inverted repeat

of a DNA region common to EcR-A, B1, and B2 so that its

expression silences all isoforms [34]. When either was crossed to a

tester stock containing sgGal4 and glueGRN, no green fluorescence

was detected in L3 larval glands. These results are consistent with

a requirement that at least one EcR isoform must be present in the

salivary gland for glueGRN synthesis (data not shown).

Figure 1. Glue Genes are Induced by 20E in Cultured Glands. Mid-L3 animals were torn in half and incubated with ethanol as a control (A), or
with 20E at a final concentration of 1028 M (B). The induction of glue proteins in the salivary glands was detected by the expression of a GFP-tagged
Sgs3 gene (glueGRN). Note that the positions of the salivary glands in (A) are outlined with dashed lines. The fluorescence detected in the pharynx
(arrowheads) is non-specific and was used to standardize photographic exposures. Both photographs were taken at the same magnification indicated
by the bar in A.
doi:10.1371/journal.pgen.1000102.g001

Figure 2. sgGal4, a GawB-Derived Driver, Has an Expression
Pattern Restricted to the Larval Salivary Glands. Flies containing
sgGal4 were crossed to a GFP responder (UAS-GFP.nls) and all
developmental stages were examined for the localization of GFP in
the nuclei of live animals. The only tissues that contained green protein
were the salivary glands. Depicted are a first-instar larva (A), a second-
instar larva (B), an early-third-instar larva (C), and the anterior half of a
late-third instar larva (D). Anterior is to the left in all photographs, and
all were taken at the same magnification indicated by the bar in (D).
doi:10.1371/journal.pgen.1000102.g002

A Novel Ecdysone Receptor in Drosophila
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One potential caveat with the above experiments is that by

perturbing EcR in the salivary gland, we were killing it or causing

it to develop too slowly to induce the Sgs3 transgene. To address

this possibility, we utilized another tester stock containing three

transgenic elements: glueRED; GFP.nls; sgGal4. The glueRED

element is an endogenously tagged Sgs3 gene (under its own

promoter/enhancer elements). It contains the same DNA

sequence as glueGRN except the coding information for GFP is

replaced with that of DsRED [35]. As with glueGRN, the glueRED

element produces a protein that is synthesized (Figure 3A),

secreted (Figure 3B), and expectorated in exactly the same manner

as endogenous SGS3. Thus, when this tester stock was crossed to

EcR-DN (Figure 3C) or EcRi (Figure 3D) no glueRED was

produced, but GFP is still localized to nuclei that are similar in size

to those of the control glands producing glueRED (Figure 3A,B).

These results indicate that neither EcR-DN nor EcRi expression is

killing the cells or preventing their normal nuclear polytenization.

Thus, EcR function in the salivary gland is required for glueGRN

and glueRED production.

Sgs3 Transgenes Can Be Induced by Any Isoform of EcR
To test the hypothesis that any isoform of EcR can be used to

induce glue synthesis, we crossed each UAS-EcR isoform-specific

transgene into a background in which EcR-DN was expressed in

the salivary gland (under sgGal4 control) using the glueRED and

GFP.nls transgenes to assay gland physiology. To confirm that

extra copies of UAS-transgenes were not diluting the effects of EcR-

DN in a non-specific manner, we included a UAS-control construct

that contains a cassette of UAS/GAL4 binding sites. By itself, the

expression of the UAS-control does not lead to a block in glueRED

synthesis when driven by sgGal4 (data not shown). Furthermore

when crossed into an animal producing EcR-DN and GFP.nls, it

does not overcome the block in glueRED synthesis (Figure 4). This

control eliminates the concern that the expression of EcR-DN may

be reduced by the introduction of an additional transgene

containing UAS elements.

In contrast to the UAS-control, introducing each of the known

EcR-specific isoforms into the same genetic background com-

pletely rescues the block in the production of glueRED caused by

EcR-DN. The rescue is fully penetrant and normal in the semi-

quantitative scoring scheme that is presented in Figure 4. It is even

more interesting because an artificially constructed EcR isoform—

EcR-C, which contains only the common-regions of EcR because

it is missing the isoform-specific A/B domain—also rescues the

block in glueRED synthesis in approximately 90% of the animals

examined. These results confirm an earlier conclusion that any

isoform of EcR expressed in the salivary gland is capable of

transmitting the 20E signal to induce the transcription of Sgs3-

derived genes.

Proteins Encoded by the Broad Complex (BRC) Control
the Expression of Sgs3 Transgenes

The BRC is a large transcription unit that produces several

different isoforms of a transcription factor containing C2H2 zinc-

fingers. Although multiple transcripts are derived from the locus

[36], only four general types of proteins are produced. Each

isoform contains an identical NH2 terminus, but it has a different

combination of DNA binding domains [37]. The four proteins,

referred to as BRC-Z1, BRC-Z2, BRC-Z3, and BRC-Z4, have

been shown to play an important role in the production of SGS3

and other glue proteins. This conclusion is based on the

phenotypic analyses of null- or isoform-specific hypomorphic

mutants that either do not produce SGS3 or display a prolonged

developmental delay in the accumulation of transcripts from the

locus [13,23,24,38]. Because it has been shown that BRC is

regulated as a primary response to 20E (the hormone/receptor

complex directly binds to DNA elements within the gene and

induction does not require de novo protein synthesis) [39], the above

effects on Sgs3 activation have led to a model in which glue

production occurs as a secondary response to the hormone. Thus,

the BRC zinc-finger transcription factors are probably responsible

for activating promoter/enhancer elements within the glue genes

as suggested by DNA binding studies on Sgs4 [40].

To test this hypothesis in more detail, we utilized transgenic

stocks in which each BRC-Z isoform was expressed under UAS

control in larvae also containing glueRED; sgGal4; GFP.nls; and

EcR-DN. As indicated in Figure 4, each BRC-Z isoform is capable

of partially rescuing the block in glue synthesis imposed by the

production of EcR-DN. Rescue was scored using five categories

that indicated the approximate percentage of cells within a gland

that produced glueRED (none, few, ,25%, ,50%, 100%).

However, not all BRC isoforms are equal in their ability to

suppress the synthesis defect imposed by EcR-DN. BRC-Z2 (no

glands were observed that were completely empty of glue, and

58% had full wildtype levels) and BRC-Z4 rescue the best;

whereas, BRC-Z1 and BRC-Z3 (60% of the animals have glands

with no glueRED) rescue poorly. The variability in rescuing the

synthesis-blocked phenotype may reflect the partially redundant

activities or regulatory dependencies that have been reported

among the four types of BRC isoforms [37], or it may reflect the

differences in expression levels among the different transgenes.

Figure 3. 20E-Mediated glueRED Induction Requires Functional
EcR. Confocal images of salivary glands from stocks containing sgGal4;
GFP.nls; glueRED transgenes are presented. Normally glueRED is
synthesized during the mid-L3 stage and loaded into large granules
that remain within the cell until 6–8 hours prior to pupariation (A). At
the end of the instar (in response to another pulse of 20E), glue
becomes secreted into the lumen (B). No glueRED is produced in
animals expressing the EcR-DN (C) or EcRi (D) transgenes. Note that
GFP.nls is expressed in both types of EcR-compromised glands. It marks
nuclei that are able to survive and polytenize to the same degree in all
cells presented. All photos were taken at the same magnification
indicated by the bar in (C). Arrowheads and ‘‘L’’ mark the position of the
lumen into which glue should be secreted.
doi:10.1371/journal.pgen.1000102.g003
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Two additional points are worth noting. First, expression of all

forms of UAS-BRC altered the expression/localization of GFP.nls

in some cells, but this failure to localize GFP did not correlate with

a defect in glueRED production. In all cases, a few cells producing

glueRED were observed with large prominent nuclei that did not

contain GFP. Because we never observe this effect in the

experiments performed with EcR isoforms or the UAS-control, it

is unlikely that extra transgenes containing UAS elements are

titrating a limiting amount of GAL4 transcription factor.

Second, we sometimes observe the appearance of glueRED in

L1 and L2 animals when BRC isoforms are ectopically expressed

(data not shown). This early expression of glueRED or glueGRN is

never observed in control animals or in crosses where EcR-specific

isoforms are ectopically expressed. This result may indicate that

BRC proteins are sufficient for SGS3 production at any stage of

larval salivary gland development, but that critical levels of BRC

isoforms are normally restricted to mid-to-late L3 stages in

wildtype animals [5].

EcR Is Required for the Induction of Other Glue Genes
Glue is a mixture of at least eight different glycoproteins [41,42],

which are coordinately induced midway through the third instar in

a tissue-restricted fashion. To test whether perturbing EcR

signaling disrupts the synthesis of most glue proteins, we assayed

glue production in EcR-compromised glands in two different ways.

First, we examined the glands directly. The cytoplasm of EcR-

compromised cells is very small with no detectable secretory

granules (Figure 3C,D). If other abundant non-tagged glue

proteins were being loaded into granules, this result would not

be expected. Second, when we examined the expression pattern of

Sgs3, Sgs4, Sgs5, Sgs7, and Sgs8 transcripts by Northern analysis, we

found very little signal for any of the five glue genes tested in

animals in which EcR was compromised in the salivary gland

(Figure 5). Note the normal developmental expression pattern in

the control lanes (C-1; C-2). Transcript levels for all glue genes

should be high in wandering larvae (L), and they should be low or

undetectable at the time of puparium formation (W).

Induction of the Glue Genes Does Not Require USP
Because all known 20E signaling pathways that control in-vivo

developmental events are thought to be mediated through an

ecdysone receptor consisting of EcR and USP, we wanted to test the

requirement for USP in the synthesis of glue. Thus, we utilized a

transgenic RNAi construct that contains an inverted repeat of USP

under UAS control (USPi). We expressed this construct using the

sgGal4 driver and the reporter genes (glueRED; GFP.nls) described

above in order to selectively silence USP in larval salivary glands.

Under these circumstances glands were indistinguishable from

parental stocks (compare Figure 3A with Figure 6A), and 100% of

the glands produced wildtype levels of glueRED (Table 1). This

result suggests that USP is not part of the receptor needed for

glueRED expression. An alternative explanation is that the USPi

construct is not effectively knocking down USP levels in the salivary

gland, but three lines of evidence make this possibility very unlikely.

First, we examined wildtype- and USPi-compromised salivary

glands for USP protein using a well-characterized USP antibody.

As shown in Figure 6, no USP protein can be detected in the

nuclei of salivary glands in which USPi is expressed. This is in

contrast to the wildtype glands of similar L3 stages (compare the

tissues marked as SG in C-E with those outlined by a dashed line

in C9-E9), and in contrast to USPi animals where the fat body (FB),

central nervous system (CNS), imaginal discs (ID) and midgut

(MG) clearly display the expected nuclear staining. This result is

consistent with sgGal4 driving USPi only in salivary glands and not

in other tissues. In addition, no USP protein is detected in salivary-

gland extracts when a Western-blot analysis is performed on

glands expressing the USPi construct (Figure 7).

Second, because glue secretion (dumping of granules into the

lumen of the gland) at the end of L3 has been shown to be 20E

dependent [12] and to require functional EcR and USP [13], we

expected that USPi glands would not be able to secrete the

glueRED that was produced at an earlier stage. This prediction is

always supported by data. Note that the photograph of the gland

in Figure 6A was taken at the time of puparium formation and that

no glueRED can be detected in the lumen (L) of the tissue. In

wildtype parental glands, secretion of the tagged glue into the

lumen (Figure 3B) always occurs by the white prepupal stage.

Third, because it has been reported that USP is necessary to

repress the glue genes at the time of puparium formation, we

expect that transcript accumulation for each Sgs gene should not

decrease at the white prepupal stage. The data presented in

Figure 5 (compare L with W in the USPi lanes) support this

hypothesis.

Another possible caveat for the observation that RNAi against

USP does not prevent glueRED expression is that a small amount

of USP protein may be very stable in the salivary gland and thus

not subject to efficient silencing by the RNAi mechanism.

Following this logic, the protein turn over might take 4 days to

reach a critical threshold level. Thus, there would be enough USP

protein for glueRED synthesis in 3-day old larvae (the age when

glue genes are induced by 20E), but not enough in 4-day old larvae

(the age when 20E causes glue secretion). To test the ability of the

USPi construct to silence USP effectively in a short time frame, we

used the glueGal4 driver (FBst0006870) to express transgenes in the

salivary gland from mid-L3 until puparium formation. Under

these circumstances glue secretion was blocked even though the

USPi responder was only being expressed for 24 hours prior to the

assay (data not shown).

Because it is known that USP can heterodimerize with EcR at

the end of the larval period, we predicted that an overproduction

of USP at mid-L3 might prevent a critical amount of EcR from

forming the functional receptor needed for glue-gene induction.

However, if even a small amount of a receptor consisting of EcR

and USP is required to induce the glue genes, overproducing the

USP component at an earlier time should not affect the response.

Thus, we generated transgenic flies in which the coding

information for wildtype USP was placed under UAS controlling

elements. When this transgene (USP+) was driven by sgGal4, a

large amount of USP protein was detected on Western blots of

salivary glands (Figure 7), and the production of glueRED was

reduced (Figure 6B; Table 1). We verified that this construct

produces functional protein by crossing it to flies carrying both the

Figure 4. Any Isoform of EcR or BRC is Sufficient to Induce glueRED Synthesis. The percentage of glands displaying each synthesis
phenotype is indicated below a low-resolution representative (all photographed at the same magnification as indicated in E). Categories include
glands that are not producing any glueRED (A), glands in which only a few cells produce glueRED (B), glands in which approximately 25% of the cells
are producing glueRED (C), glands in which approximately half the cells are producing glueRED (D), and glands in which all the cells are producing
glueRED (E). Higher resolution images of cells representing each genotype (transgene addbacks) were all taken at the same magnification (indicated
bottom right).
doi:10.1371/journal.pgen.1000102.g004
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glueGal4 driver and USPi responder. Under these conditions the

USP+ construct was able to rescue the block in glue secretion

caused by USPi.

Although the overproduction of USP in the salivary gland

perturbs glueRED expression (34% of the glands produce no

product), the block was not complete because animals were able to

express varying levels of glueRED in some salivary-gland cells

(Table 1). To more precisely quantify the amount of glueRED

produced under these conditions, we performed the Western blot

presented in Figure 8. As expected, no DsRED-tagged protein can

be detected in the lanes in which EcR-DN or EcRi are expressed in

the salivary glands (Figure 8B). In addition, the levels of glueRED

are not reduced when USPi is expressed in the salivary glands

because both control lanes (w1118 x sgGal4; glueRED) and

experimental lanes (USPi x sgGal4; glueRED) contain the same

band intensities when quantified and adjusted for protein loading

using a-Tubulin (Figure 8A,B). However, the levels of glueRED

are reduced 3 fold when USP is overexpressed (USP+ x sgGal4;

glueRED) in the salivary gland compared to the control and USPi

lanes (Figure 8B).

One explanation for the reduction, but not elimination of

glueRED, is that the amount of USP produced under these

conditions is at a threshold level needed to antagonize the 20E-

signaling pathway mediated by EcR. To test this hypothesis, we

Figure 5. EcR, but Not USP, is Needed for Glue Synthesis. Northern blots were produced from whole-animal extracts at the wandering-L3 (L)
and white prepupal (W) stages. Because the glue genes are known to be repressed by the 20E pulse that triggers secretion, RNA levels for each of the
5 different glue genes examined [Sgs3 (and its derivative glueGRN), Sgs4, Sgs5, Sgs7, and Sgs8] are expected be high in (L) and low or undetectable in
(W) as they are in the controls (C-1 and C-2). C-1 is an extract from the parental glueGRN stock and C-2 is an extract from the ‘‘driver only’’ control
(glueGRN crossed to sgGal4). However, when EcR-DN or EcRi is expressed in the salivary glands, no glue expression can be detected. Blots were
hybridized for rp49 as a loading and transfer control. Interestingly, when glands from the USPi cross are assayed, all glue genes examined are
expressed, but they are not repressed at the (W) stage. This is the expected result if USP is not required to turn the genes on, but is needed to turn
them off at the end of the instar.
doi:10.1371/journal.pgen.1000102.g005
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crossed the USP+ line to sgGal4; GFP.nls; glueRED and raised the

larvae derived from the cross at two different temperatures (25uC
and 29uC). Because temperatures closer to 30uC are reported to

produce higher GAL4 activities [43] (probably because GAL4 is a

yeast transcription factor), we predicted that larvae raised at 29uC
would produce less glueRED (due to the overproduction of more

USP that should antagonize 20E receptor formation). As indicated

in Table 1, these differences were observed when animals were

raised at the two different temperatures (53% of the glands failed

to produce any glue when raised at 29uC compared to 34% that

failed to produce any glue when raised at 25uC). In addition, we

confirmed that raising control animals at 29uC did not perturb

glueRED production, and raising experimental animals at the

elevated temperature did not cause a non-specific induction of the

heat shock promoter in other tissues because GFP.nls was only

detected in the nuclei of salivary glands (data not shown).

Finally, to ascertain the role of USP in the production of other

glue proteins, we compared the overall pattern of protein synthesis

using Coomassie staining of SDS-PAGE. As shown in Figure 8C,

the appearance of most of the glue proteins can be identified when

whole salivary-gland-protein extracts are stained because the Sgs

genes are abundantly expressed in this tissue. We were able to

confirm the presence of the major glue bands by comparing

extracts of secreted glue plugs [6] that were prepared as ethanol

precipitates from the lumens of white prepupae (data not shown).

As expected, the accumulation of most glue proteins is reduced

drastically in glands in which EcRi and EcR-DN are expressed. Also

as expected, they are not reduced when USPi is expressed, but they

are affected when USP is overproduced.

Taken together these results are very compelling, and they

indicate that USPi is very efficient at gene silencing in the salivary

gland when driven by sgGal4. Therefore, USP is not needed for the

20E-mediated induction of the glue genes through the BRC.

Discussion

The Glue Genes Are Induced by 20E
Previous reports using mutants that are defective in 20E

production or signaling yielded contradictory results concerning

the role of 20E in the induction of the glue genes in the salivary

gland. Here we demonstrate that a glue-gene reporter derived

from the Sgs3 gene can be induced by 20E in cultured glands

Figure 6. Silencing USP in the Salivary Gland Does Not Block glueRED Synthesis. Confocal images of salivary glands in which RNAi against
USP is triggered demonstrate that glueRED synthesis is normal but not secreted at the time of puparium formation (A). Overexpressing a wildtype
USP transgene (USP+) produces a synthesis-defective phenotype (B) that is similar to that observed when EcR is compromised. Both images were
taken at the same magnification, which is identical to that presented in Figure 3. Confocal images are presented of L3 tissues from wildtype animals
(C-E) and larvae in which RNAi was induced against USP (USPi) in the salivary glands (C9-E9). Tissues are stained with a USP antibody and visualized
with a FITC-conjugated secondary. Fluorescence is detected in the nuclei of early-third (C, C9), mid-third (D, D9), and late-third (E, E9) instars. The
positions of the salivary glands (SG and dashed outlines), central nervous system (CNS), imaginal discs (ID), fat body (FB), and midgut (MG) are marked
for comparison to indicate that USP silencing is restricted to the salivary gland as expected with a tissue-specific driver. Note that the gain in E9 is
increased to emphasize the lack of USP staining in the nuclei of the salivary glands. Photos C-E9 were taken at the same magnification indicated by
the bar in E.
doi:10.1371/journal.pgen.1000102.g006

Table 1. Overexpressing USP blocks the synthesis of glueRED.

Genotype (Transgene Addback) Empty Few Quarter Half Full Number Assayed

SgGal4 UAS-GFP.nls glueRED UAS-USPi 0% 0% 0% 0% 100% 50

SgGal4 UAS-GFP.nls glueRED UAS-USP(+) (at 25uC) 34% 2% 17% 25% 22% 56

SgGal4 UAS-GFP.nls glueRED UAS-USP(+) (at 29uC) 53% 11% 16% 13% 7% 61

Glue synthesis was assayed as described in Figure 4.
doi:10.1371/journal.pgen.1000102.t001
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dissected from wildtype animals at mid L3. Furthermore, unlike

the 20E mediated events that occur at the end of the larval period,

the induction of Sgs3 and other glue genes is mediated by a lower

titer of hormone (1029 to 1028 M). This result is consistent with a

report of a small titer of 20E that has been detected in a population

of synchronized animals two hours prior to the induction of the

glue genes [29]. In addition, because the ecd1ts mutation probably

reduces the concentration of 20E in the hemolymph, mutant

animals shifted to the non-permissive temperature might still be

exposed to enough 20E to induce the Sgs genes. We have also

shown that the induction of the glue genes occurs as a secondary

response to the hormone because the requirement for EcR can be

bypassed if BRC isoforms are ectopically expressed. This finding is

supported by published evidence that some 20E-regulated

transcription factors (BRC, E74B) can be induced in cultured

organs by a pulse of hormone that is much lower than that

produced at the end of the third instar, ,1028 M versus

,1026 M [44].

The Induction of the Glue Genes Requires a Different 20E
Receptor

The dogma for the action of 20E during Drosophila development

is that EcR and USP are associated as a heterodimer and often

bound to the EcREs of target genes. When not bound by ligand,

the heterodimer associates with a repressor complex to prevent

transcription from those genes. Hormone binding (to the ligand-

binding domain of EcR) leads to a conformational change in the

complex, the dissociation of the repressor complex, and the

recruitment of co-activators for high-level transcriptional activa-

tion [reviewed in 19]. Although this model is well supported by

evidence that both EcR and USP are required to initiate events

during the late-larval and prepupal periods, our study presents

compelling evidence for the existence of another bona fide receptor

for 20E that consists of EcR but does not use USP as its

heterodimeric partner.

We have provided evidence that SGS3 production (and

probably glue synthesis in general) is a 20E-mediated event. We

have also demonstrated that EcR is required for the induction of

the glue genes, and that any isoform of EcR can be involved in the

activation of Sgs3. This result is interesting because EcR-B1 is

reported to be the predominant form that is normally expressed in

the larval salivary gland [45]. Also, because expression of BRC is

necessary and sufficient for the induction of Sgs3, these

experiments suggest that the A/B domain of EcR does not

participate in the expression of BRC by the smaller pulse of 20E

that occurs midway through the L3 stage.

In contrast to the results for EcR, we have provided convincing

evidence that USP is not the other half of the heterodimer needed

for the 20E-mediated initiation of glue synthesis. In a previous

report [13] we confirmed that USP mutants can be rescued from

embryonic lethality by providing exogenous USP from a heat-

Figure 7. Western-Blot Analysis Comparing USP Levels Derived
from Different Transgenic Stocks. Protein extracts were prepared
from salivary glands of three different crosses at the wandering-L3
stage. Flies of the tester stock (sgGal4; GFP.nls; glueRED) were crossed to
a control to ascertain the normal amount of USP protein present in
third-instar glands (w1118). The same tester stock was crossed to a line in
which RNAi against USP could be induced in the salivary glands (USPi),
and to a line in which wildtype USP could be overexpressed (USP+). The
blot was cut, and one part was incubated with antibody against USP
and the other was incubated with a-Tubulin as a loading/blotting
control.
doi:10.1371/journal.pgen.1000102.g007

Figure 8. Overexpressing USP Blocks the Synthesis of Glue
Proteins. Protein extracts were prepared from salivary glands of seven
different crosses at the wandering-L3 stage. Two SDS-PAGE gels were
produced, one was fixed and stained (C) and the other was blotted. The
blot was cut, and one section was incubated with the Tubulin loading
control (A), while the other was incubated with an antibody against
DsRED (B). The first three crosses serve as controls for protein levels in
the parental stock (w1118), the ‘‘responder only’’ cross (w1118 x USP+),
and the ‘‘tester only’’ cross (w1118 x sgGal4; glueRED). The remaining 4
crosses were the tester stock (sgGal4; glueRED) crossed to EcR-DN, EcRi,
USPi, and USP+. Note that all glue-protein bands from the stained gel
are reduced by the EcR-DN, EcRi, and USP+ reagents (but not USPi) as
predicted by the model that glue-genes are induced by 20E through a
receptor that requires EcR but not USP. The position of the major glue
proteins (arrows) correspond to band sizes observed when secreted
glue plugs were precipitated with ethanol and subjected to SDS/PAGE.
doi:10.1371/journal.pgen.1000102.g008
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shock driven transgene [46]. Furthermore, if these animals are not

provided with a source of USP during the L2 and L3 stages (by

being deprived of subsequent heat pulses that would induce the

transgenic cDNA), they will not pupariate, but they will grow,

molt, and express an Sgs3 derived reporter [13].

In the current study we have used strong tissue-specific drivers

that are exclusively expressed in the salivary gland at two different

time points. We have demonstrated that the USPi stock is an

effective reagent for silencing endogenous USP in the salivary

gland (Figures 6; 7), even if it is only produced for 24 hours before

the assay (i. e. inducing it with glueGal4 blocks glue secretion).

Thus, when it is driven during all larval stages (3 days before glue

synthesis) no USP protein can be detected by immunostaining,

and this absence of USP protein has no effect on the production of

glue. To further confirm that USP is not needed for glue synthesis,

we demonstrated that when wildtype USP is overexpressed in the

salivary gland during the larval stages, glue protein production is

drastically reduced. Because USP is known to heterodimerize with

EcR at a later developmental stage, the simplest explanation for

this observation is that extra USP protein is preventing EcR from

forming the functional 20E receptor needed for glue synthesis in

mid L3. Such a result is not expected if only a small amount of

functional EcR/USP is needed to induce the glue genes.

Interestingly, other researchers have observed similar effects.

One report generated clones of usp-/usp- mutant tissue in the

salivary gland, and although they do not discuss the effects of glue

production in mutant tissue, the presence of glue granules is

apparent in the clones from late-L3 glands [47]. This and other

studies also describe the developmental differences of clones of usp-

tissue in imaginal discs.

For example, movement of the morphogenetic furrow—a 20E

mediated event responsible for eye development [48]—is actually

accelerated across a usp- patch of tissue [49,50]. In addition, others

have noted that the 20E dependent differentiation of chemosen-

sory neurons in the wing margin occurs precociously in the

absence of USP function [51]. Furthermore, when target-gene

expression is examined, transcripts from the BRC (BRC-Z1)

accumulate earlier in development in mutant clones within the

eye and wing discs [47,51]. These observations led to the

hypothesis that in the absence of ligand, the EcR/USP

heterodimer can act as a repressor in some tissues by binding to

the response elements of a select group of target genes. The

function of the hormone is to de-repress the target genes by

removing the EcR/USP complex from the promoter region

allowing other bound transcription factors to activate transcription

[34]. Thus in a usp- clone, genes controlled by this mechanism

should be precociously activated. We do not think that the

induction of the glue genes is controlled by a de-repression of BRC

through EcR/USP for two reasons. First, the glue genes are not

induced (de-repressed) if EcR is silenced with an EcRi construct.

Second, we do not see precocious activation of glue genes when a

USPi construct is expressed.

Our model proposes that USP is acting as a repressor by

heterodimerizing with EcR to prevent the association of EcR with

another nuclear-hormone receptor (NR-X). Our hypothesis may

also explain some of the data generated with the use of usp- clones

in imaginal discs. For example, if we assume that movement of the

morphogenetic furrow is induced by an earlier and lower pulse of

20E (as has been reported for Manduca) [52], we would speculate

that furrow movement is controlled by EcR/NR-X regulating

downstream genes including BRC-Z1. The normal presence of

USP in this tissue at that time might serve to control the amount of

functional EcR/NR-X available for high-affinity hormone bind-

ing. Thus in a usp- clone, we would expect the morphogenetic

furrow to move faster over the patch and the induction of BRC-Z1

to be premature. Such observations were reported [47,49,50].

The normal expression of USP in the salivary gland at mid L3

(Figures 6; 7) may also be needed to ensure that the response of

glue-gene induction is precisely regulated. In any case, the

induction of a 20E regulated pathway that does not require USP

as part of the receptor has no precedence in the Drosophila

literature. Thus, a better characterization of this response at the

molecular level is critical for our understanding of normal insect

development.

Transcriptional Regulation of the Glue Genes
In this report we demonstrate that EcR is necessary for the

expression of most of the glue genes at mid L3, and that USP is not

needed for this expression. In addition, we show that any isoform of

BRC can be sufficient for Sgs3 transgene expression even if the EcR

component of the receptor is compromised with EcR-DN, and that

overexpression of some BRC isoforms in first- and second-instar

larvae is enough to induce expression of the Sgs3 transgenes days

before they would normally be transcriptionally active.

However, it is interesting to note that although Sgs3 and Sgs4

appear to be coordinately expressed in mid-L3 salivary glands,

different binding sites for regulatory proteins have been identified

in their promoter/enhancer regions. These include response

elements for EcR/USP, and binding sites for BRC [40], GEBF-

I (FBgn0013970) [53], Forkhead (FBgn0000659) [54–56], and

SEBP3 (FBgn0015293) [57]. The binding of different transcription

factors to these sites may modulate the levels of expression of the

two genes or they may contribute to their restricted expression

patterns in the salivary gland or other tissues. For example,

although we have shown that Sgs3 derived transgenes are

exquisitely restricted to the salivary glands of third-instar larvae,

others have reported the expression of different glue genes in

tissues outside this cell type. These include Sgs4 expression in the

proventriculus [58] and I71-7 expression in the midgut and

hemocytes [59]. Such expression patterns raise the interesting

possibility that these highly glycosylated mucin secretions may

perform other functions stemming from their propensity to form a

sticky substance in aqueous solution. These functions could

include the formation of the peritropic membrane around the

food or the formation of extracellular aggregates that might be

involved in antimicrobial responses [59].

What Is the Composition of the 20E Receptor
Responsible for Inducing the Glue Genes?

If we assume that members of the nuclear-hormone receptor

superfamily form dimers to produce the active receptor needed for

glue-gene expression, we can formulate two hypotheses concern-

ing the composition of that functional receptor. First, the active

receptor may be a homodimer of EcR proteins. Homodimers are

known to function as receptors for steroid hormones in vertebrates

using a different mechanism of ligand activation than that

observed with RXR heterodimeric receptors (USP is the insect

homolog of RXR), but to our knowledge no biological activity has

been ascribed to EcR homodimers during Drosophila development.

Our analysis does not rule out the possibility that EcR

homodimers are responsible for the induction of the glue genes.

The second possibility is that another member of the

superfamily may be able to complex with EcR to transmit the

hormone signal. Many of these receptors have pre-existing

mutations and many more have UAS-RNAi lines that are now

available from the RNAi Stock Centers in Vienna (http://www.

vdrc.at) and Japan (http://www.shigen.nig.ac.jp/fly/nigfly/index.

jsp). At this point we have assayed production of glueRED in
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mutants or RNAi lines that knock down DHR38 (FBgn0014859)

and DHR78 (FBgn0015239), but no effects on glueRED synthesis

were observed (A. Andres, unpublished observations). However,

the existence of transgenic RNAi lines should simplify the analysis

because it is expected that when a specific nuclear receptor is

silenced in the salivary gland, it should display a phenotype that is

defective in glue synthesis. It would then be very interesting to

screen the controlling region of the BRC to establish the nature of

the EcRE(s) that control the response at the molecular level, and to

test if this type of receptor could control other developmental

events (perhaps molting of the instars or some aspect of early

imaginal disc development) that are regulated by 20E during

earlier larval stages.

Materials and Methods

Drosophila Stocks and Culture
All flies were raised on standard cornmeal-molasses medium

supplemented with live baker’s yeast as recommended by the Bloo-

mington Stock Center (Bloomington, Indiana, United States) (http:

//flystocks.bio.indiana.edu/Fly_Work/media-recipes/bloomfood.

htm). w1118 (FBst0307124), GFP.nls [{UAS-GFP.nls}14

(FBst0004775)], EcRi [{UAS-EcR-RNAi}104 (FBst0009327)], EcR-

DN [{UAS-EcR.B1-DC655.F645A}TP1 (FBst0006869)], and the

EcR isoform stocks [EcR-A {UAS-EcR.A}3a (FBst0006470), EcR-B1

{UAS-EcR.B1}3b (FBst0006469), EcR-B2 {UAS-EcR.B2}3a

(FBst0006468), and EcR-C {UAS-EcR.C}Tp1-4 (FBst0006868)]

were obtained from the Bloomington Stock Center.

The following stocks were provided as generous gifts: UAS-hid

[60] from Eric Baehrecke, the hsGal4 driver on the third

chromosome [20] from Robert Holmgren, and the stocks

containing specific isoforms of the BRC (UAS-BRC-Z1, UAS-BRC-

Z2, UAS-BRC-Z3, and UAS-BRC-Z4) [61] from Xiaofeng Zhou.

Generation of Transgenic Flies
Transgenic flies containing glueRED were prepared by digesting

pDsRed2-C1 (Clonetech, Palo Alto, California, United States) with

AgeI and KpnI restriction enzymes to isolate a DNA fragment

containing the open reading frame for DsRED. This fragment was

cloned into pBS-SgsD3GFP [13] that was digested with the same

enzymes to remove the eGFP tag and generate a vector with

compatible ends. The resulting intermediate construct was digested

with AgeI and the 39 recessed ends were filled in and religated to

restore the open reading frame between Sgs3 and DsRED. The Sgs3-

DsRED sequence was removed from the Bluescript vector

(Stratagene, La Jolla, California, United States) as a NotI/KpnI

fragment and inserted into the NotI and KpnI sites of the pCaSpeR-4

fly transformation vector (FBmc0000178). DNA was sent to the

vonKalm laboratory at the University of Central Florida for the

generation of transgenic flies using standard techniques [62].

To produce the UAS-USPi stock, a PCR fragment was amplified

from a USP cDNA plasmid [63] using the primers AA-

GAATTCGGTACCAGTATCCGCCTAACCATCC and TTA-

GATCTCGCTTCATCTTTACACTCAG. The resulting ampli-

fication product (corresponding to a 924 bp fragment between

positions 467 and 1390 relative to the USP mRNA sequence) was

cloned in the pUAST vector (FBmc0000383) using two steps. First

a reverse fragment was placed between the vector BglII and KpnI

sites. A second forward-orientated fragment was cloned between

EcoRI and BglII sites. Recombinant UAS-USPi constructs were

transformed at 30uC in Sure-competent bacteria (Stratagene) to

minimize DNA recombination and screened using appropriate

restriction enzyme digestions. Transgenic lines were generated as

previously described using a w1118 strain as a recipient stock.

UAS-USP+ stocks were prepared as follows: The vector pUAST-

USP+ was constructed by PCR amplification of the USP open

reading frame with the forward primer TTTTGCGGCCGCACC

ATG GAC AAC TGC GAC CAG GAC and the reverse primer

TTTTTCTAGA CTA CTC CAG TTT CAT CGC CAG using

pZ7-1 cDNA as a template [63]. The NotI and XbaI restriction sites

flanking the PCR product were used for subsequent ligation into

the corresponding sites in the pUAST vector. The pUAST-USP+
vector was transformed into flies at the Duke University Medical

Center.

The UAS-Control line (LA1216) contains an insert of the

construct P{Mae-UAS.6.11} (FBtp0001327). This vector was

designed for gene-mis-expression screens because it contains a

copy of the UAS/GAL4 binding sequences oriented to express

flanking genes when inserted into the genome [64].

Selecting a Salivary-Gland Specific Driver
We tested four Gal4-drivers obtained from the Bloomington

Stock Center [AB1-Gal4 (FBst0001824), C147-Gal4 (FBti0024396),

T155-Gal4 (FBti0002598), and 34B-Gal4 (FBst0001967)] with

expression patterns reported to be restricted to the larval salivary

gland. To ascertain which of these was best for tissue-specific

expression studies, we crossed them to a stock in which the hid/

Wrinkled cell-death gene (FBgn0003997) was expressed under UAS

control. Because the major function of the salivary gland in the

larval stages is the reported synthesis of mucin-like proteins that

help lubricate the food as it moves through the gut [2,3], we

reasoned that animals could survive without a salivary gland only

if they were provided a diet of freshly produced moist yeast paste.

Thus, by using UAS-hid we could ablate the salivary gland and test

if such animals were viable when raised on soft food.

The initial analysis using the above listed drivers indicated that

no larvae were able to survive, probably due to expression of the

hid gene in other vital tissues. But because these are derived from

the GawB vector, we used a heat shock 70-Gal4 driver that is also

GawB derived. These animals were able to survive to puparium

formation when crossed to UAS-hid and raised on a diet of freshly

prepared yeast paste. Crossing hsGal4 to a stock containing both

UAS-hid and UAS-GFP.nls confirmed that larval salivary glands

could not be detected and were ablated. Great care was exercised

to raise the animals crossed to sgGal4 at temperatures below 30uC
to prevent exposing them to a stress that might induce Gal4 in all

cells. Because the GFP.nls transgene was used in most of the

experiments, a non-specific response could easily be detected by

the presence of green nuclei in other tissues.

Salivary Gland Organ Culture
20E (Sigma, St. Louis, Missouri, United States) was prepared as

a stock solution of 1022 M in 100% ethanol and stored at 220uC.

The stock solution was diluted to the proper working concentra-

tion in Schneider’s medium (Sigma).

Flies of the appropriate genotype were crossed and reared in a

small population cage containing approximately 500 females and

500 males. The cage was presented with hard-agar plates (10%

molasses, 3.5% agar) containing a dab of fresh yeast paste

(prepared as a 1:1 mixture of dry baker’s yeast with water) 2–3

times per day to collect fertilized eggs. Collection plates were aged

at 25uC and first-instar larvae were collected in 1-hour intervals as

they hatched. The first-instar larvae were added in groups of 100

to vials containing standard cornmeal-molasses-yeast medium and

aged at 25uC for approximately 68 hours (a developmental stage

that precedes glue induction by approximately 4 hours) before

being washed from the food with Schneider’s medium. Animals

were torn in half lengthwise using small dissecting forceps (Fine
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Scientific Tools, Foster City, California, United States). Larvae

prepared in this manner were transferred to clean microscope

slides containing 25 ml of Schneider’s medium with or without

20E. A range of 20E dilutions (1026, 1027, 1028, 1029 M) was

prepared for each experiment. Small strips of Number 1 Whatman

filter paper (Millipore, Billerica, Massachusetts, United States)

were placed around the culture as spacers before adding a 22 mm2

coverslip. The culture was placed on a platform shaker in a box

into which O2 was continuously infused during the culture period.

Cultures were incubated at 25uC for 4–6 hours before being

assayed for glue production as detected by the presence of green

fluorescent protein from the glueGRN transgene.

Microscopy and Imaging
Whole larvae were selected from the food, washed 36 in water,

blotted on filter paper, placed in a depression slide, and killed with

a few drops of ether. After the ether evaporated, animals were

mounted in glycerol between two slides using glass coverslips as

spacers. Larvae were photographed within 30 minutes of prepa-

ration. For isolated tissues, animals were dissected in Drosophila

PBS (DPBS) [65] or Schneider’s medium. Low-resolution images

of whole animals or dissected tissues were obtained on a Leika

fluorescent stereo microscope containing filter cubes for GFP and/

or DsRED. Images were captured with the Spot Insight QE

Model #4.2 digital camera (McBain Instruments, Chatsworth,

California, United States) and prepared with Canvas (ACD

Systems, Miami, Florida, United States) graphics software.

High-resolution images of dissected salivary glands were imaged

on a LSM 510 Axioplan confocal microscope (Carl Zeiss SMT,

Peabody, Massachusetts, United States) equipped with LSM 510

image-analysis software.

Northern Blots
Northern blots were prepared as previously described [5].

Briefly, RNA was isolated from larvae by grinding animals in SDS

lysis buffer, digesting the homogenate with 250 mM Proteinase K

(NEB, Ipswich, Massachusetts, United States), extracting the

sample with phenol/chloroform, and precipitating the aqueous

phase with ethanol. Ten micrograms of total RNA were

fractionated on 1% formaldehyde/MOPS/agarose gels and

blotted onto Duralon-UV membranes (Stratagene). Probes for

each glue gene and the rp49 control were prepared as gel-isolated

fragments from digested clones and hybridized with labeled

random oligonucleotides using a Prime-it kit (Strategene) and 32P

dCTP (GE Healthcare, Piscataway, New Jersey, United States) as

previously described [5]. After washing, signals were detected

using the Typhoon 8600 Variable Mode Phosphorimager

equipped with Image Quant scanning software (GE Healthcare).

Protein Detection
Dissected tissues were prepared for antibody staining as

previously described [66]. Tissues were stained using the AB11

USP mouse monoclonal antibody [67] (gift from Carl Thummel)

at a dilution of 1:50. Protein levels were visualized using a goat-

anti-mouse secondary antibody conjugated to FITC (Jackson

Immuno Research, West Grove, Pennsylvania, United States).

To prepare protein extracts for Coomassie staining or Western-

blot analysis, salivary glands were dissected in DPBS as described

above. Typically 10–20 pairs of glands were collected in DPBS,

pelleted in a microfuge, and resuspended in lysis buffer containing

a cocktail of protease inhibitors [68]. Glands were homogenized

and boiled for 5 minutes before being stored at 220uC for less

than one week. Samples were divided in two and resolved on

separate 12% SDS polyacrylamide gels that were run in the same

electrophoresis rig. One was stained with Coomassie brilliant blue

(J. T. Baker, Phillipsburg, New Jersey, United States) and the other

was transferred to Immobilon P membranes (Millipore) as

previously described [66]. Blots were incubated with the following

antibodies: mouse anti-a-Tubulin primary (Sigma) diluted

1:15,000; rabbit anti-DsRED primary (Clontech) diluted

1:15,000; mouse anti-USP primary diluted 1:100; goat anti-

mouse-HRP secondary (Jackson Immuno Research) diluted

1:40,000; and goat anti-rabbit-HRP secondary (Jackson Immuno

Research) diluted 1:25,000.

Protein levels were visualized and quantified using Chemi-

luminescence ECL(+) Western-blotting detection system (GE

Healthcare) and a Typhoon 8600 Variable Mode Phosphorimager

(GE Healthcare).

Accession Numbers
The FlyBase (http://flybase.bio.indiana.edu/search/) identifi-

cation numbers are used in this work to describe genes, gene

products, vectors, and Drosophila stocks.
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