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Abstract
The tetrapeptide repeat domain 3 (TTC3) gene falls within Down’s syndrome (DS) critical region. Cognitive impairment is 
a common phenotype of DS and Alzheimer’s disease (AD), and overexpression of TTC3 can accelerate cognitive decline, 
but the specific mechanism is unknown. The TTC3-mediated protein quality control (PQC) mechanism, similar to the PQC 
system, is divided into three parts: it acts as a cochaperone to assist proteins in folding correctly; it acts as an E3 ubiquitin 
ligase (E3s) involved in protein degradation processes through the ubiquitin–proteasome system (UPS); and it may also 
eventually cause autophagy by affecting mitochondrial function. Thus, this article reviews the research progress on the 
structure, function, and metabolism of TTC3, including the recent research progress on TTC3 in DS and AD; the role of 
TTC3 in cognitive impairment through PQC in combination with the abovementioned attributes of TTC3; and the potential 
targets of TTC3 in the treatment of such diseases.
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Introduction

Down’s syndrome (DS) is also known as trisomy 21 syn-
drome because complete or partial trisomy of human chro-
mosome 21 (Hsa21) is the main pathogenic event involved 
in DS. Current methods used to study trisomy 21, include 
detection of the Down’s syndrome critical region (DSCR), 
which contains many genes such as the tetrapeptide repeat 
domain 3 (TTC3) gene, that can lead to phenotypic features 
of DS (Kong et al. 2015; Sun et al. 2014). The DSCR con-
cept was proposed in 1992 (Delabar et al. 1993) and refers to 
a region within 21q22.1-21q22.3 on Hsa21 (Park and Chung 
2013). Researchers have identified 25 areas in this region 
associated with the DS phenotype, most of which are con-
centrated in the ~ 85 Kb range, and it has been proposed that 
more than one DSCR may exist (Dahmane et al. 1998; Sinet 
et al. 1994). These areas are also known as "sensitive areas" 
(Lyle et al. 2009). In addition, researchers believe that DSCR 

can be defined as a region on chromosome 21q22.12-q22.2 
that contains DSCR1 (RCAN1), DYRK1A, DSCAM, and 
APP (Arron et al. 2006; Ronan et al. 2007). Some research-
ers used the GeneEntrez database to obtain 19 candidate 
genes for the Down syndrome critical region (DSCR) and 
studied the transcript levels and expression of these genes in 
the brain (Montoya et al. 2014). However, it is still unclear 
how many candidate genes for DSCR are exact.

TTC3, also known as TPRDIII, RNF105, and DCRR1, 
was first discovered in 1996 (Ohira et al. 1996; Tsukahara 
et al. 1996). Subsequently, the sequencing of chromosome 
21 was completed in 2000, and the TPRD gene was renamed 
TTC3 (Hattori et al. 2000). TTC3 is located at 21q22.2 (Eki 
et al. 1997; Tsukahara et al. 1996). Some studies have inves-
tigated the effect of TTC3 on neuron-related phenotypes, 
mostly in DS and Alzheimer’s disease (AD). As early as 
1996, Tsukahara et al. (Tsukahara et al. 1996) proposed that 
TPRD (renamed TTC3) overexpression may contribute to 
morphological abnormalities in patients with DS. AD is 
closely related to DS (Startin et al. 2019; Wiseman et al. 
2015; Zis and Strydom 2018). Most individuals with DS 
develop AD-related neuropathological changes after middle 
age, including the deposition of senile plaques, neurofibril-
lary tangles and abnormal accumulation of proteins (Mann 
1988). Mutation of the TTC3 gene may have a fundamental 
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effect on an individual’s cognitive function and learning 
ability (Kohli et al. 2016; Smith et al. 1997; Suizu et al. 
2009), and the nerve damage caused by TTC3 could be 
reversible (Berto et al. 2007, 2014).

In addition, the TTC3 protein encoded by TTC3 is an E3 
ubiquitin ligase (E3s) that contains a RING finger domain 
(RING E3s) and may affect protein degradation through 
ubiquitination (Gong et al. 2017). The TTC3 protein can 
promote the formation of protein aggregates when overex-
pressed and can affect the ubiquitination level and degrada-
tion rate of proteins via E3s activity, which may contribute 
to the aggregation of pathological proteins (Kim et al. 2019; 
Kong et al. 2020). We know that polypeptide chains are 
prone to misfolding from the beginning of synthesis, while 
E3s can maintain protein quality control (PQC) by selective 
ubiquitination and targeting misfolded proteins for degrada-
tion, thereby preventing protein aggregation and associated 
pathological phenotypes (Mishra et al. 2019; Samant et al. 
2018). PQC can help organisms cope with the excessive 
aggregation of proteins (Costa-Mattioli and Walter 2020). 
The PQC system is an efficient system composed mainly 
of three parts: chaperones, the ubiquitin–proteasome sys-
tem (UPS), and autophagy (Ciechanover and Kwon 2017; 
Joshi et al. 2016). Among them, chaperones are responsible 
for rescuing misfolded proteins (Freilich et al. 2018; Hipp 
et al. 2019); however, when various homeostasis in the cell 
is dysregulated and the efficiency of chaperones is affected, 
the UPS and autophagy remove a large number of aggregates 
that are not degraded by chaperones (Dikic 2017; Harris 
et al. 2020; Kabir et al. 2020), and in this process, E3s are 
key controllers of these shunts (Enam et al. 2018). Interest-
ingly, TTC3 has E3s activity, and it has been reported to 
act as a cochaperone that can link chaperones and the UPS 
(Imai et al. 2003) and affect mitochondrial function; there-
fore, TTC3 has the potential to trigger autophagy (Gong 
et al. 2017; Kong et al. 2020). Taken together, the evidence 
is compelling that TTC3 has some overlap with PQC.

Since the accumulation of misfolded proteins promotes 
protein aggregation and neuronal death (Krstic and Knuesel 
2013; Martinez-Cue and Rueda 2020; Uddin et al. 2020), 
the PQC system, which can counteract misfolded protein 
accumulation, is thought to be closely related to neuronal 
survival (Cristofani et al. 2017). An increasing number of 
studies show that E3s (Lu et al. 2017; Wei et al. 2016) and 
PQC (Tiernan et al. 2016; Verheijen et al. 2018) both play 
important roles in the pathogenesis of cognitive impair-
ment; however, how E3 participates through PQC has not 
been reported. Although TTC3 has been reported to impair 
cognitive function (Montoya et al. 2014) and can affect pro-
tein degradation processes, it is unclear how TTC3 affects 
cognition through PQC. In this review, we collate and sum-
marize the above evidence on TTC3 and its regulation of 
the protein degradation processes in cognitive impairment; 

then, we try to elucidate the important role of TTC3 in PQC 
and its potential as a therapeutic target approach to reduce 
cognitive decline (Fig. 1).

Structural and Functional Features of TTC3

The TTC3 protein is 2025 amino acids (aa) in length and 
approximately 23 kDa in size, and it harbors two pairs of 
TPR motifs at the N-terminus and a RING finger domain 
at the C-terminus (Lamb et al. 1995; Ohira et al. 1996). In 
addition, it harbors a possible Akt phosphorylation site and 
an NLS site (Suizu et al. 2009) (Fig. 2). Phosphorylation 
sites and the NLS are auxiliaries that aid TTC3 in carrying 
out its physiological function. TPR motifs and RING finger 
domains are the primary functional domains, and they com-
plement each other to complete the main physiological func-
tions of TTC3. On the one hand, these domains mediate the 
protein degradation process by activating the E3s activity of 
TTC3, while on the other hand, they may affect protein inter-
actions, eventually leading to a protein homeostasis disorder 
and the formation of protein aggregates, thereby potentially 
enhancing the pathogenesis of DS or AD and affecting their 
common feature, namely cognitive impairment.

TPR Motif

Proteins contain the TPR motif function in many impor-
tant activities, such as cell cycle regulation, transcriptional 
repression, RNA splicing, protein transport, and protein 
folding. Moreover, the TPR motif is an essential domain that 

Fig. 1  TTC3 and cognitive impairment The involvement of TTC3 in 
cognitive impairment may rely on PQC mechanisms. TTC3 functions 
as both a molecular cochaperone, ubiquitin E3 ligase, and major regu-
lator of mitochondrial function
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mediates the interaction between proteins (Allan and Ratajc-
zak 2011; Krachler et al. 2010; Zeytuni et al. 2011). TTC3 is 
a member of the TPR gene family, encoding a matrix protein 
containing a transmembrane structure; the N-terminal region 
of the TTC3 protein contains three units of 34 amino acid 
repeats, similar to the TPR motif (Tsukahara et al. 1998). 
The N-terminal fragment of TTC3 tends to form aggregates 
in the nucleus, whereas its C-terminus does not possess this 
tendency (Gong et al. 2019). The accumulation propensity 
of the TTC3 N-terminus is likely tied to the TPR motif, 
although the mechanism of aggregation needs further study.

RING Finger Domain

The RING finger domain is located in the C-terminus of 
TTC3 and consists of short motifs rich in cysteine and his-
tidine residues. RING E3s depend on their integrity for 
biological function (Chaturvedi et al. 2002; Walters et al. 
2010) and are the most abundant type of ubiquitin ligases 
that can mediate the direct transfer of ubiquitin to the sub-
strate; RING E3s can be regulated in different ways, includ-
ing methylation, phosphorylation, and interaction with small 
molecules (Morreale and Walden 2016). However, the spe-
cific mechanism of how the RING finger domain contributes 
to the function of TTC3 is still unclear.

Phosphorylation Site

Phosphorylation and ubiquitination are the two most com-
mon posttranslational modifications in eukaryotic pro-
teomes. In most cases, the two modifications occur simulta-
neously rather than independently, and protein degradation is 
accomplished by ubiquitination and phosphorylation. Phos-
phorylation can affect ubiquitination by E3s, and this regula-
tory process is mainly achieved by phosphorylation of the 
substrate or the E3s itself (Hunter 2007). TTC3 Ser378 is a 
possible putative Akt phosphorylation site that is conserved 
in humans, mice, and rats (Obenauer et al. 2003; Yaffe et al. 
2001). Phosphorylation of TTC3 Ser378 is required for 
TTC3 to perform its function correctly (Suizu et al. 2009; 
Toker 2009).

Nuclear Localization Signal (NLS)

The NLS is a protein domain and another form of a signal-
ing peptide and can be regarded as the key for the entry 
of macromolecular proteins into the nucleus (Bange et al. 
2013; Tao et al. 2018). Numerous studies have shown that 
NLS signaling abnormalities can affect normal physiologi-
cal functions in many aspects and are associated with a 
variety of diseases, including neurodegenerative diseases 
(Nomura et al. 2014). Each type of NLS has similar char-
acteristics but does not have a completely conserved amino 
acid composition. Different forms of NLSs tend to corre-
spond to different nuclear input mechanisms, and it is pos-
sible for the same protein to have several functional types 
of NLSs simultaneously. Only one functional NLS has 
been identified for TTC3 (Gong et al. 2019) and is located 
within amino acid residues 1 to 650 at the N-terminus of 
TTC3; this NLS guides TTC3 into the nucleus and makes it 
function as a hub in signal transduction pathways involved 
in the gene regulation of various pathological processes in 
DS and AD.

TTC3 Affects Cognition in DS and AD

Previous studies of patients with AD have revealed simi-
larities in neuropathology between patients from the general 
population (GP-AD) and those with DS (DS-AD) (Dick et al. 
2016). In addition, researchers have found that Ts65Dn mice 
develop a neuronal endosomal pathology similar to AD that 
leads to cognitive impairment (Salehi et al. 2006). DS is the 
most common chromosomal disorder associated with devel-
opmental cognitive impairment, whereas TTC3, located in 
the DSCR, can affect neuronal proliferation and differentia-
tion as well as mitochondrial function and may be closely 
related to cognitive function. We know that DS is mainly 
caused by the triplication of chromosome 21. In addition 
to TTC3, another star factor, amyloid-β precursor protein 
(APP), is located on this chromosome. APP was one of the 
first genes identified as a cause of AD (Goate et al. 1991) 
because it can lead to amyloid accumulation in the brain as 
early as childhood (Saint-Aubert et al. 2017); therefore, it 
was considered the main reason for the high incidence of AD 
in patients with DS in the early years. Some investigators 
believe that the lack of triplication of APP in DS patients 
does not trigger dementia, emphasizing the critical role of 
increased APP copy number in the development of AD in DS 
(Head et al. 2018). However, it has been found that patients 
with phenotypic DS and partial trisomy of chromosome 21 
(PT21) lack triploidy of APP, suggesting that APP copies 
are not the only mechanism of concurrent dementia in PT21 
patients, and in this case, many other genes on chromosome 
21 are also included in the trisomy fragment. Moreover, 

Fig. 2  Structure and composition of TTC3 Four TPR motifs of TTC3 
are located at 231–264 aa, 266–298 aa, 536–572 aa, and 576–609 aa. 
The RING finger domain is located at 1957–1997 aa. Ser378 is a pos-
sible Akt phosphorylation site. NLS is only known to be located in 
the 1–650 aa range
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unlike the increased risk of AD found in the majority of DS 
patients, the risk of AD in these individuals is comparable 
to that of the general population (Doran et al. 2017; Prasher 
et al. 1998). In addition, some researchers have proposed 
that families with three episodes of APP alone can develop 
autosomal dominant early onset AD. Mutations that affect 
APP expression, either regulatory or copy number polymor-
phisms, affect the pathogenesis of AD patients and families 
(Rovelet-Lecrux et al. 2006; Sleegers et al. 2006). However, 
it was later proposed that additional copies of other genes 
on chromosome 21 increase AD synencephaly pathology 
and cognitive impairment in mice with DS (Wiseman et al. 
2018). Moreover, genome sequencing results of early onset 
dementia revealed variants of uncertain significance in TTC3 
(Cochran et al. 2019). Therefore, it is likely that TTC3 is 
involved in the pathogenesis of DS-AD, but the specific 
mechanism is unknown. In general, the pathogenesis of DS 
is an irreversible process; however, the ubiquitination reac-
tion could be reversible, with E3s being among the most 
critical factors. Both Hs52Sk cells and CMK85 cells are 
derived from DS individuals (Sato et al. 1989), and TTC3 
expression is upregulated in both abovementioned cell lines, 
but abnormal expression of TTC3 leads to a phenotype that 
can be reversed by Myr-Akt in DS cells. TTC3 siRNA can 
also reverse the DS phenotype because it cannot induce Akt 
ubiquitination (Suizu et al. 2009). On the other hand, an 
excess of TTC3 protein induces cytotoxicity, and aggregates 
formed by TTC3 can cause proteostasis dysregulation, which 
is consistent with the main pathological changes and charac-
teristics observed in AD (Gong et al. 2019). However, Kohli 
et al. found that TTC3 may act like APOE in all members 
of a family with late-onset AD (LOAD), and TTC3 vari-
ants may contribute to LOAD risk, but may not initiate AD 
pathogenesis like APP (Kohli et al. 2016). Thus, it is unclear 
what role TTC3 plays in it, but it is certain that targeted 
interventions in the early stages of cognitive impairment can 
achieve desirable results.

Affects Neuronal Differentiation via the Rho 
Pathway

TTC3 has a mouse ortholog, mtprd (Tsukahara et al. 1998), 
the expression of which is developmentally regulated, 
and although its expression is ubiquitous at the gross tis-
sue level, the strength of its expression becomes tissue 
specific during development. The strongest expression 
is in the nervous system, and appears to be restricted to 
nonproliferative zones containing differentiated neurons 
(Lopes et al. 1999). Subsequent, studies in human embryos 
revealed that, consistent with previous findings, TTC3 was 
prevalent in very early embryos but that the strength of the 
signal gradually increased; at 45 and 50 post-ovulatory 
(p.o.) days, the strongest signal was found in the nervous 

system. Furthermore, in the developing nervous system 
of the fetus, there were regional differences in the inten-
sity of TTC3 expression, suggesting that TTC3 expression 
patterns evolve during development (Rachidi et al. 2000).

The normal morphological development of neurons is 
essential for the formation of neural networks, and the 
differentiation of neurons can be divided into processes 
such as neurogenesis, nerve migration, axon formation, 
and synaptogenesis, and axonal extension is also associ-
ated with a variety of neurological diseases. In the adult 
mammalian brain, neurogenesis is always present. In the 
hippocampus, neurogenesis begins with the production of 
neural progenitor cells (NPCs) in the dentate gyrus, which 
progressively develop into mature neurons after several 
rounds of proliferation (Goncalves et al. 2016). The transi-
tion of NPCs from a proliferative state to a fully differenti-
ated phenotype is among the most significant events dur-
ing central nervous system (CNS) development. Evidence 
suggests that abnormal proliferation of NPCs is one of 
the causes of cognitive decline in AD (Crews et al. 2010). 
TTC3 expression is significantly upregulated in DS both in 
cells, animal models and in humans, resulting in a range of 
phenotypes, including cognitive impairment (Guedj et al. 
2016; Kong et al. 2014, 2015). However, the increased 
expression of TTC3 in DS may be related to the gene’s 
triploid status, and it has been proposed previously that 
other triplicated genes in DS may also be involved in the 
process of neurodegeneration. During development, TTC3 
mRNA is progressively enriched in postmitotic regions 
of the CNS, thus suggesting its possible involvement in 
neuronal differentiation (Rachidi et al. 2000).

RhoA is a member of the Rho GTPase family, which is 
a key regulator of cell dynamics, and the number of axons 
and dendrites and dendritic arborization during the neuronal 
growth phase depend on the expression of Rho GTPase (Kim 
et al. 2017; Maldonado et al. 2017). RhoA signaling has 
been shown to be involved in a variety of neurodegenerative 
diseases, including AD (Socodato et al. 2020), and can affect 
cognitive function (Pearn et al. 2018; Song et al. 2019). 
Berto et al. suggested that TTC3 inhibits neuronal differ-
entiation through RhoA and Citron kinase (CIT-K) (Berto 
et al. 2007). RhoA is known to inhibit neurite extension by 
linking RhoA to neural-specific profilin IIa (PIIa) via RhoA 
kinase ROCK (da Silva and Dotti 2002; Stiess and Bradke 
2011). At the same time, TPR motif-containing proteins can 
physically interact with themselves, with each other, and 
with the cytoskeleton through their TPR motifs (Berto et al. 
2014; Eki et al. 1997). Therefore, TTC3 overexpression 
may lead to an imbalance of protein–protein interactions 
during cell growth and differentiation. In fact, inhibition of 
RhoA and ROCK and knockout of Citron N (CIT-N) can 
rescue the neuronal growth phenotype induced by TTC3 
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overexpression. In this case, however, ROCK regulates neur-
ite extension downstream of CIT-N rather than parallel to it.

It is noteworthy that activated RhoA is specifically asso-
ciated with the Golgi apparatus of differentiated neurons 
(Camera et al. 2003), and it may regulate Golgi compact-
ness through CIT-N, a central nervous system-specific vari-
ant of the cytokinesis regulator CIT-K (Furuyashiki et al. 
1999; Madaule et al. 1998). TTC3 overexpression may affect 
Golgi organization through two main pathways: a "canoni-
cal" pathway from RhoA to actin polymerization through 
ROCK and PIIa, and a noncanonical pathway involving 
CIT-N and RhoA. Citron was recently found to associate 
with microtubules (Bassi et al. 2013), and there is a decisive 
role for microtubules in the Golgi. Increased actin polymeri-
zation is also involved in the Golgi fragmentation phenotype 
produced by TTC3 overexpression. However, the inhibitory 
effect of TTC3 overexpression on neurite extension can be 
reversed by CIT-K RNAi (Berto et al. 2007). Knockdown 
of PIIa can also rescue the neurite elongation and Golgi 
phenotypes induced by TTC3 overexpression (Berto et al. 
2014). The above reports suggest that normal growth and 
development of neurons may be regulated by targeting TTC3 
to avoid impaired cognitive function.

Affects Neuronal Proliferation via Akt Signaling

AKT, also known as protein kinase B (PKB), and acti-
vated Akt regulate the function of cells by phosphorylating 
downstream factors such as a variety of enzymes, kinases, 
and transcription factors. In the absence of AKT signal-
ing inhibition, the cell cycle interval of neural progenitor 
cells is accelerated and rapidly enters the division phase, 
which accelerates the proliferation and differentiation of 
neuronal cells and plays an important role in the regula-
tion of neurogenesis and neural cell proliferation and 
differentiation(Polchi et al. 2018; Zhai et al. 2019). Solzak 
et al. (Solzak et al. 2013) showed that trisomic TTC3 is 
overexpressed in DS embryos and may affect nuclear phos-
pho-Akt localization and cell survival. As described earlier, 
TTC3 is an E3s, while Akt is its specific substrate. TTC3 
can utilize its E3s activity to ubiquitinate Akt, thereby affect-
ing the PI3-kinase (PI3K)/Akt pathway and stimulating 
Akt degradation (Suizu et al. 2009). When TTC3 expres-
sion is increased in DS cells, phosphorylated Akt levels are 
decreased, resulting in relative accumulation of cells in the 
G2 M phase of the cell cycle. In other words, overexpression 
of TTC3 can promote apoptosis, while inhibition of TTC3 
can enhance cell proliferation. While Akt is at the intersec-
tion of several signaling pathways (Hers et al. 2011; Zhang 
et al. 2011), TTC3 regulates transcription factors such as 
cAMP response element-binding protein (CREB) through 
phospho-Akt, which affects cell survival, proliferation, and 
differentiation (Carloni et al. 2010; Solzak et al. 2013). 

Impaired proliferation and neuronal differentiation ability 
may affect the maturation of the hippocampus, which leads 
to cognitive decline, suggesting that regulating TTC3 may 
be a potential strategy for neuroprotection. In addition, tau, 
one of the culprits of AD, is also one of the phosphoryl-
ated substrates of AKT, and AKT hyperactivation of AD, 
can promote tau hyperphosphorylation (Cao et al. 2020). 
Thus, whether there is a correlation between TTC3 and tau 
remains to be determined.

Affects Mitochondrial Function in Neurons via POLG 
Ubiquitination

DNA polymerase γ (POLG), the only enzyme known to be 
located in mitochondria involved in mitochondrial DNA rep-
lication and repair, is critical to maintain cellular function 
and integrity. POLG has three enzymatic activities, namely, 
DNA polymerase activity, exonuclease activity and lyase 
activity; therefore, when POLG is mutated, mitochondrial 
function is damaged, and energy-consuming organs such 
as the brain are affected (Kujoth et al. 2005; Rahman and 
Copeland 2019). Some evidence has shown that the over-
expression of TTC3 can prevent the extension of neurites 
through the regulation of POLG (Gong et al. 2017). When 
TTC3 is slightly overexpressed, soluble functional TTC3 
promotes POLG degradation, leading to a decrease in func-
tional POLG. When TTC3 is overexpressed at high levels, 
it will form aggregates, interrupt the degradation of POLG, 
and isolate POLG into aggregates, resulting in the loss of its 
function. POLG is also included in TTC3 aggregates caused 
by high TTC3 protein expression.

In addition, TTC3 could alleviate aggregation and pro-
mote the degradation of POLG with coexpression with 
Hsp70. Heat shock proteins (HSPs) are chaperones involved 
in proteasomal degradation. It has been reported that Hsp70 
can affect the degradation of tau by interacting with tau, 
which leads to cognitive decline (Choi et al. 2020). From 
this point of view, TTC3 may affect mitochondrial function 
by affecting POLG ubiquitination, ultimately affecting cog-
nitive function (Fig. 3).

PQC Mechanisms of TTC3‑Linked Cognitive 
Impairment

TTC3 is closely related to proteostasis, and it has been sug-
gested that TTC3 may be one of the risk factors for cogni-
tion (Lott and Head 2019). Ubiquitination and proteasome-
mediated degradation play important roles in the regulation 
of protein homeostasis. It has been found in animal mod-
els that early impairment of the UPS and loss of cellular 
proteostasis may be major mediators of neurodegenera-
tion and cognitive impairment, whereas impaired substrate 
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ubiquitination and proteasomal degradation may play roles 
in proteostasis dysregulation. Corpas et al. proposed that 
enhanced proteostasis could increase the brain’s resistance to 
neurodegeneration (Corpas et al. 2019). Protein homeostasis 
is disrupted in both DS and AD (Chen et al. 2020; Tramutola 
et al. 2018), allowing for the accumulation of intracellular 
deposits of misfolded proteins and protein-toxic peptides. 
However, PQC can use various E3 ubiquitin ligases to selec-
tively degrade abnormal proteins and counteract the hazards 
caused by protein misfolding (Kanack et al. 2018). As an 
adaptor molecule between ubiquitin and protein substrates, 
E3s can specifically recognize substrates and dominate the 
ubiquitination modification of proteins, thereby affecting 
protein homeostasis. It has been deduced from the pheno-
types that develop that TTC3 can affect the protein degrada-
tion process and form aggregates, facilitate the treatment of 
misfolded proteins as molecular chaperone cofactors, and 
impact mitochondrial function (Fig. 4).

Misfolded Protein and Cochaperone

Approximately one-third of newly synthesized proteins in 
human cells must be removed due to incorrect folding, and 
misfolded proteins form aggregates if they are not removed 
in a timely and effective manner (Gandhi et  al. 2019). 
Cochaperone mainly assist in the correct folding of proteins, 
and in addition to having a domain that can bind to chaper-
ones, they have a domain associated with ubiquitin–protea-
some degradation, which is either a fragment that can inter-
act directly with the proteasome or a domain with ubiquitin 
ligase function. Heat shock proteins (HSPs), such as Hsp70 

and Hsp90, are one of the most important molecular chaper-
ones. In most tissues, the expression of HSPs decreases with 
age, which leads to misfolded protein accumulation. Thus, 
as a protein with the dual identity of an E3s and a molecu-
lar cochaperone, TTC3 connects the molecular chaperone 
and the UPS, which may be involved in maintaining protein 
homeostasis by binding to Hsp70 (McClellan et al. 2005). 
In addition, it has been reported that the two TPR motif-
containing cochaperone in Hsp90 can interact simultane-
ously (Li et al. 2012) and that tau protein can be regulated 
by competing for binding to Hsp90 (Hildenbrand et al. 2011; 
Shelton et al. 2017). According to the above mechanism, it 
is unclear whether TTC3, which also has a TPR motif, can 
also affect the expression level of tau by binding to Hsp90.

Protein Degradation and Aggregates in UPS

The UPS is a member of the two major systems for main-
taining protein homeostasis in cells, and it is responsible for 
80–85% of protein degradation in eukaryotes via the ubiqui-
tin–proteasome pathway (UPP). Abnormalities in any part 
of the UPP may translate into the accumulation of abnormal 
proteins in cells, and neurodegeneration is essentially caused 
by protein accumulation due to protein misfolding. A corre-
lation between tau pathology and UPS dysfunction has been 
demonstrated (Ciechanover and Kwon 2015), with either 
phosphorylated or no phosphorylated tau being degraded 
by the 26S proteasome (Cripps et al. 2006). Moreover, ubiq-
uitin accumulation is observed in the AD brain (Mori et al. 
1987). In addition, a role for the UPS in DS has been dem-
onstrated, and reduced levels of protein ubiquitination have 

Fig. 3  Role of TTC3 in 
cognitive impairment TTC3 is 
involved in the proliferation and 
differentiation of nerve cells 
through the regulation of the 
RhoA, ROCK, CIT-N, PIIa, 
and Akt signaling pathways and 
affects mitochondrial function 
by POLG ubiquitination, which 
may eventually lead to cognitive 
impairment
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been observed in human DS cell lines (Granese et al. 2013), 
whereas inhibition of the UPS has been found to induce 
neuronal degeneration and death in a mouse model of DS 
(Necchi et al. 2011). In other research, it has been suggested 
that increased ubiquitin–proteasome activity in the brain is 
closely associated with both synaptic plasticity and memory 
formation (McFadden et al. 2019).

Under normal circumstances, the TTC3 protein exists 
in a nearly full-length form to assist in maintaining protein 
homeostasis. However, when protein homeostasis is dis-
rupted, abnormal cleavage and aggregation of the TTC3 
protein may occur. In neurodegenerative diseases, activa-
tion of certain proteolytic enzymes may also lead to aberrant 
cleavage of TTC3. Then, N-terminal proteolytic fragments 
enter the nucleus and form aggregates with the help of the 
NLS (Gong et al. 2019). When TTC3 is overexpressed to 
form aggregates, physiological function is lost, and TTC3 
aggregation induces neurotoxicity and further deteriorates 
proteostasis, thereby forming a vicious cycle.

Mitochondrial Dysfunction and Autophagy

Damage to mitochondrial function not only affects mito-
chondrial functional processes but also leads to the block-
age of protein entry into the mitochondria, thereby allow-
ing mitochondrial precursor proteins to accumulate in the 

cytoplasm, leading to protein imbalance. The POLG pro-
tein is the catalytic subunit of DNA polymerase, the only 
polymerase found in the mitochondria of animal cells and 
involved in the maintenance of various mitochondrial func-
tions. It is possible that TTC3 affects mitochondrial func-
tion by regulating POLG, and severe mitochondrial damage 
then initiates the mitophagy process. POLG can affect the 
initial amplification of mtDNA, resulting in neuronal loss 
(Tzoulis et al. 2014). The loss of interneurons and severe 
respiratory defects of the remaining interneurons together 
lead to impaired neural network oscillations, which may lead 
to neurological deficits, such as cognitive impairment(Lax 
et al. 2016).

Conclusion and Perspective

TTC3 is involved in the pathogenesis of cognitive impair-
ment owing to its functional structure and roles in PQC. 
Notably, the proteostasis manipulated by PQC activity is 
involved from the beginning of disease progression, and the 
specific mechanism remains to be further explored. These 
mechanisms are not necessarily parallel, as each has its own 
specific responsibilities, but they are likely to intersect each 
other. However, studies examining homozygous cells have 
not been performed because TTC3 homozygous knockout 

Fig. 4  TTC3-mediated PQC mechanism a TTC3 acts as a cochap-
erone involved in the ubiquitin-protease degradation process and 
enters the nucleus to form aggregates mediated by the NLS, with the 
N-terminus playing a key role. b TTC3 is involved in the ubiquitina-

tion process as an E3 ubiquitin ligase, and the RING finger domain 
is the critical element of TTC3 function. c TTC3 affects mitochon-
drial function by regulating POLG, which promotes autophagy and 
ultimately neuronal loss
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(TTC3 − / −) is lethal, thus partially limiting the progression 
of studies on TTC3. In the limited literature available, it has 
been suggested that TTC3 is linked to ubiquitin on the ring 
finger domain and then activates E3S activity, while TPR 
motifs can interact with proteins to affect disease pathogen-
esis, the role of TTC3 in cognition has not been elucidated. 
Furthermore, specific information regarding the TTC3 
phosphorylation site and NLS is unknown and needs to be 
studied in depth. The overall prognosis of DS-AD remains 
poor, which seriously affects the quality of life of patients 
and increases the socioeconomic burden, and the prevalence 
of these diseases is showing an upward trend. However, 
the expression of TTC3 and the induced phenotype can be 
halted. Further research progress on TTC3 in nerve growth 
and cognitive impairment could provide a better understand-
ing of the role of TTC3 in neurobiology and as a potential 
target for the treatment of such diseases.
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