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Abstract: Pentacyclic triterpenoids are well-known phytochemicals with various biological activ-
ities commonly found in plants as secondary metabolites. The wide range of biological activities
exhibited by triterpenoids has made them the most valuable sources of pharmacological agents.
A number of novel triterpenoid derivatives with many skeletal modifications have been developed.
The most important modifications are the formation of analogues or derivatives with nitrogen-
containing heterocyclic scaffolds. The derivatives with nitrogen-containing heterocyclic compounds
are among the most promising candidate for the development of novel therapeutic drugs. About 75%
of FDA-approved drugs are nitrogen-containing heterocyclic moieties. The unique properties of
heterocyclic compounds have encouraged many researchers to develop new triterpenoid analogous
with pharmacological activities. In this review, we discuss recent advances of nitrogen-containing
heterocyclic triterpenoids as potential therapeutic agents. This comprehensive review will assist
medicinal chemists to understand new strategies that can result in the development of compounds
with potential therapeutic efficacy.

Keywords: pentacyclic triterpenoids; N-heterocycles; hybrids; derivatives; anticancer; oleanolic acid

1. Introduction

Plants are considered common alternative for the treatment of cancer in most countries,
and over 3000 plant species worldwide have anticancer properties [1,2] Plant-derived
natural compounds have attracted the attention of many researchers due to their wide
range of biological activities with various target sites and less toxic effects to normal cells [3].
Pentacyclic triterpenoids (PTs) are the most significant and well-studied phytochemicals.
PTs have been screened for biological activities, and most of them displayed promising
in vitro and in vivo potency [4]. A number of PTs and their derivatives are known to
exhibit a wide range of biological activities such as anticancer [5–7], anti-HIV [8–10],
anti-inflammatory [11,12], antimalarial [13], hepatoprotective [14,15], antimicrobial [16,17]
antioxidant [18,19] and antidiabetic activities [20]. Currently, there is an increase in the
number of patents being issued to protect new PTs with potential therapeutic effects,
especially anticancer and antiviral [21–24]. Although PTs have such interesting biological
properties, several disadvantages (e.g., low water solubility, selectivity, poor bioavailability,
and short half-life) that hinder their potential therapeutic application in clinical use have
been reported. Currently, the pharmacokinetic profile of PTs has not been thoroughly
characterized, although numerous in vivo studies have been reported [25]. A vast number
of studies have been performed to improve their pharmacological activities by introducing
heterocyclic scaffolds into the PT’s structure [26]. On the other hand, PTs can be a potential
lead for the development of novel drugs. As a result, their structural modification has
been reported as a promising strategy to enhance their pharmacological activity [27].
Among these PTs, derivatives with nitrogen-containing heterocyclic scaffolds play a major
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important role. Nitrogen-containing heterocyclic compounds are the most frequently
used therapeutic agents. Firstly, these derivatives are usually more stable with good
bioavailability. Additionally, heterocyclic derivatives have significant absorption bands
upon UV light irradiation, which simplifies their detection in many in vivo studies and
subsequent clinical testing; it helps to define the impurity profile in drug manufacture.
Heterocyclic derivatives are easily prepared in selectively labeled form due to the good
availability of building blocks in an isotopic form (15N, 33S, etc.). The above-mentioned
advantages of heterocyclic derivatives give them great potential for use in pharmaceutical
practice. These compounds have been used to develop various organic synthetic procedures
and have a wide range of therapeutic applications [28,29]. Nowadays, triterpenoids with
nitrogen-containing heterocyclic scaffolds have been extensively studied for their potential
anticancer activities. In this review, we discuss synthesized triterpenoid hybrid compounds
with fused nitrogen-containing heterocyclic ring(s) such as Triazole, Pyrazole, Indole,
Piperazine, and Aminoquinolines with potential anticancer activity.

2. Anticancer Activity of Pentacyclic Triterpenoids

The morbidity and mortality rates caused by cancer are rapidly increasing glob-
ally. According to the 2018 statistics reported by the World Health Organisation (WHO),
about 18.1 million cases of cancer were recorded, and 9.6 million cancer-related deaths.
This means 1 in 6 deaths worldwide is due to cancer [30]. The use of chemotherapeutic
agents in cancer treatment is always associated with side effects affecting organs and
systems in the human body [31]. Many factors are responsible for the high rate of cancer,
including age, population growth, lifestyle, etc. [32]. Cancer is known as the abnormal pro-
liferation of cells, which can later invade different body parts. The currently used strategies
for cancer treatment are chemotherapy, hormone therapy, and a combination of surgery
and radiotherapy. However, some of the limitations associated with the conventional drugs
used for the treatment of cancer are the unselective targeting of cells, multi-drug resistance,
relapse of cancer, and poor outcomes [33]. The search for suitable and easily accessible treat-
ment(s) for cancer, scientists and researchers around the world have turned their attention
to natural products, phytochemicals, and their derivatives due to their therapeutic effects
in the treatment of various diseases. Over 75–80% of the world’s population consume
medicinal plants for their health care [34]. More than 40% of conventional drugs originate
from active natural products [35]. PTs are at the forefront of phytochemicals with anticancer
activities as they act as a modulator of various molecular targets in multiple signaling path-
ways. Triterpenoids are functionalized triterpenes, which can be synthesized from plants
through cyclization of squalene intermediate with six isoprene units [36]. From a biological
viewpoint, most of the important triterpenoid structures are ursane, oleanane, and lupane
triterpenoids (Figure 1) [37]. Many studies on PTs revealed their cytotoxicity on a variety
of tumor growth cells without showing any lethality on normal cells [20]. Some of the
synthetic triterpenoid derivatives, namely 2-cyano-3,12-dioxooleana-1,9(11)-dien-28-oic
acid (CDDO) and its C-28 methyl ester (CDDO-Me), are already in Phase I clinical trials in
cancer patients [25,38]. Betulinic acid derivative called bevirimat exhibited a significant and
clinically relevant reduction of the viral load in ART-experienced and naive patients [39].
However, other clinical trials of bevirimat also revealed a high baseline drug resistance
attributed to naturally occurring polymorphisms in HIV-1 Gag [40]. In terms of anticancer
activity, PTs promote the cell apoptosis, which is one of the most significant mechanisms
to suppress tumor. For example, PTs can trigger apoptosis by Interfering with the mi-
tochondrial function of tumor cells [41]. In addition, they can also induce apoptosis by
up-regulating p53 and caspase-3 gene expressions and suppressing the NF-κB mediated
activation of Bcl-2 in B16F-10 melanoma cells [42]. PTs can enhance tumor necrosis factor
(TNF)-related apoptosis-inducing ligand (TRAIL) [43,44]. Other studies revealed that PTs
inhibit the activation of STAT3 induced by interleukin-6 in DLD-1 colon cancer cells [45].
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Figure 1. Three different types of triterpenoid skeletons described in this review with carbon numbering: ursane (i),
oleanane (ii), and lupane (iii).

3. Triazole

1,2,3-triazole derivatives has attracted much attention due to their interesting phar-
macological activities such as anticancer [46–48], antimalarial [49], antibacterial [50,51],
antifungal [52–54], anti-inflammatory [55], and antiviral activities [56,57]. In addition,
some 1,2,3-triazole-based derivatives are under clinical evaluation for their potential use in
cancer treatment [58]. Hybrid molecules can overcome drug resistance and reduce side
effects since hybrids containing two or more different compounds can also display multiple
modes of action. Hybrid molecules containing 1,2,3-triazole moiety and other anticancer
agents are potential anticancer agents that can display low toxicity and high therapeutic
effects against drug-resistant cancers. In recent years, PTs such as betulinic, oleanolic,
and ursolic acid were found to possess potent anticancer activity with various molecular
targets. The attachment of these phytochemicals with 1,2,3-triazole moiety is a promising
approach to developing novel anticancer agents that are effective against drug-resistant
cancers due to their distinct mechanisms.

3.1. Anticancer Effects of Betulinic Acid-Based 1,2,3-Triazole Molecules

A small library of novel amide-triazole-linked triterpenoid-AZT conjugates were
prepared by Tuyet Anh Dang Thi and his group [59]. The anticancer effects of these
hybrid compounds were evaluated against KB and Hep-G2 tumor cells. The most effec-
tive compounds that emerged from the in vitro cytotoxicity studies were (5a, 5b, and 6
(Figure 2, Table 1)). With similar work, these authors also synthesized 12 novel ester-
triazole-linked triterpenoid-AZT conjugates, and three compounds (7, 8, and 9 (Figure 2,
Table 1)) showed the most potent cytotoxicity activity against tumor cells (KB and Hep-
G2) [60]. Majeed et al. [61] carried out the chemical transformation studies on betulinic
acid through a concise synthesis of betulinic acid-based-1,2,3-triazole derivatives via click
chemistry approach at C-3 position. Their cytotoxic effect was investigated against nine
human tumor cell lines, namely THP-1, HL-60, DU-145, PC-3, HEP-2, MCF-7, A-549,
SF-295, and HCT-15. Most of the derivatives exhibited higher cytotoxic profiles than the
parent molecule. Most of the derivatives exhibited higher cytotoxic profiles than the parent
molecule. In total, two compounds (i.e., 10 and 11 (Figure 2, Table 1)) showed impres-
sive IC50 values (2.5 and 3.5 µM, respectively) against leukemia cell line HL-60 (5–7-fold
higher potency than betulinic acid). The two compounds induced apoptosis, inhibited
cell migration, and colony formation, mitochondrial membrane disruption followed by
DNA fragmentation [61]. Khan et al. (2016) [62] synthesized a series of 1,2,3 triazole
derivatives linked at C-3 and C-28 of betulinic acid using click chemistry approach. All the
synthetic compounds were screened for their in vitro cytotoxicity against four human
cancer cells, namely HL-60, PC-3, A549, and MiaPaCa-2. Among these derivatives, {1N
(4-fluoro phenyl)-1H-1, 2, 3-triazol-4-yl} methyloxy betulinic ester (12) (Figure 2, Table 1)
displayed better potency than the parent compound betulinic acid with IC50 values ranging
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from 5 to 7 µM. It disrupted the mitochondrial membrane potential, rendered Bcl-2 cleav-
age, Bax translocation, and decreased Bcl-2/Bax ratio. These events were accompanied by
activation of caspases 9, 3, which cleaved the PARP-1. It also induced caspase-8, which is in-
volved in the extrinsic apoptotic pathway. Therefore, it induces apoptosis through intrinsic
and extrinsic pathways in human leukemia HL-60 cells [62]. Suman et al. (2017) [63] used
click chemistry and Baylis–Hillman reaction protocols to synthesize betulinic acid-triazole
derivatives. These derivatives were tested for their cytotoxic effects in human pancreatic
cancer (MIA PaCa-2) and murine breast cancer (4T1) cell lines. Based on the in vitro assays,
two compounds (13 and 14) (Figure 3, Table 1) were identified as lead compounds with
IC50 values of 2.38± 0.45 µM (4T1), 1.36± 0.21 µM (MIA PaCa-2) and 2.62± 0.24 µM (4T1),
1.64 ± 0.20 µM (MIA PaCa-2) [63]. A series of triazole-linked betulin and betulinic acid
analogs were synthesized via click chemistry at C-30 position by Shi and colleagues [64].
Their in vitro antitumor activities in leukemia cell line (HL-60) was studied. The in vitro
cytotoxic analysis indicated that most of betulinic acid-based triazoles had higher cytotoxic
activity compared to betulinic acid. In all the synthesized compounds, compound (15)
(Figure 3, Table 1) showed the best IC50 value (1.3 µM) against leukemia cell-line HL-60,
which had an eight- to nine-fold higher potency than betulinic acid [64]. Sidova et al. [65]
used Huisgen 1,3-cycloaddition protocol to synthesize betulinic acid substituted triazole
conjugates and evaluated them for in vitro cytotoxic activities against eight human cancer
cell lines and two noncancer cell lines. Conjugates of 3β-O-acetylbetulinic acid were the
most active compounds, and among them, compound 16 with triazole substituted by
benzaldehyde was found to be the most active with an IC50 of 3.3 µM and therapeutic
index (TI) of 9.1. The compound inhibited DNA and RNA synthesis and caused block
in G0/G1 cell cycle phase which is highly similar to reference drug actinomycin D [65].
Chakraborty et al. (2015) [66] applied the azide-alkyne “click reaction” to synthesis a panel
of novel betulinic acid analogues containing a triazole unit at C-3 attached through a linker.
These analogues were screened for their anticancer activity against various cancer cell lines
and normal human PBMC using MTT assays. Compound 17 (Figure 2, Table 1) showed
the most potent inhibitory effect against cell line HT-29 with an IC50 value of 14.9 µM.
They further investigated its mode of action and it exhibited much higher cytotoxicity
than the standard drug, 5-fluorouracil but showed negligible cytotoxicity towards nor-
mal PBMC. The elevated level of ROS generation, activation of caspase 3 and caspase
9, DNA fragmentation, higher expression of Bax and Bad, lower expression of Bcl2 and
Bcl-xl, and increased level of Bax/Bcl-xl ratio identified 17 (Figure 2, Table 1) as a promis-
ing inducer of apoptosis that follows a mitochondria-dependent pathway. Biophysical
studies indicated that compound 17 (Figure 2, Table 1) acts as a minor groove binder to
the DNA [66]. Novel triazole hybrids of betulin were synthesized using the 1,3-dipolar
cycloaddition reaction between the alkyne derivatives of betulin and organic azides. In this
study, bistriazole (compound 18) (Figure 2, Table 1) was identified as a potent compound
with an IC50 value of 0.05 µM against T47D (human ductal carcinoma cells) with 500-fold
higher potency than cisplatin [67].



Molecules 2021, 26, 2401 5 of 25

Figure 2. Betulinic acid-based 1,2,3-triazole analogues.



Molecules 2021, 26, 2401 6 of 25

Figure 3. Ursolic acid and oleanolic acid-based triazole hybrid compounds.
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3.2. Anticancer Effects of Ursolic/oleanolic Acid-Based 1,2,3-Triazole Molecules

Zhu et al. (2015) [68] investigated the anticancer effect of ursolic acid chlorophenyl tria-
zole (UACT) (19) and 5-fluorouracil (5-FU) against human lung cancer cell lines (H209, 87-5
and Lu135) (Figure 3, Table 1). The results revealed a synergistic effect of the sequential treat-
ment with UACT and 5-FU combination on cytotoxic activities, NF-kB protein activation,
repression of TNF-induced NF-kB-dependent reporter gene expression, and TNF-induced
COX-2, MMP-9, and Cyclin D1 activation in H209 cells. The synergism in apoptotic cell
death was observed in H209, H69, 87-5, and Lu135 cells. The synergistic effect of UACT and
5-FU was observed at a concentration of 50 nM of UACT and 20 µM of 5-FU. Wei et al. [69]
designed and synthesized a library of novel oleanolic acid coupled 1,2,3-triazole derivatives
using a Cu(I) catalyzed Huisgen 1,3-dipolar cycloaddition reaction. The antiproliferative
analysis revealed some of the synthetic compounds excellent anticancer activity on human
tumor cell lines such as HeLa, HepG2, HCT116, A375-S2, and HT1080. Among all the
derivatives, compounds 20, 21, and 22, with p-NO2, p-CN, and p-F substitutions at an
aromatic ring (Figure 3, Table 1) possessed the best inhibitory activity against HT1080
cells. The pharmacology experiments showed that compound 20 significantly induced
HT1080 cell apoptosis [69]. In a similar study, Fengran et al. [70] further synthesized 15
novel 3-oxo-oleanolic acid coupled 1,2,3-triazole derivatives. Compounds 23–27 (Figure 3,
Table 1) displayed the best potent activity and selectivity against A375-S2 and HT1080 cell
lines with IC50 values ranging from 1.69-2.82 µM. In this study, it was evident that the
3-oxo OA derivatives displayed better anticancer activity compared to OA derivatives [70].

Leal and colleagues [71] developed a series of novel N-acylimidazoles and
N-alkylimidazoles ursolic acid analogues bearing imidazole or triazole in different posi-
tions of the ursane skeleton and evaluated the anti-proliferative effect in pancreatic cancer
cells (AsPC-1). The tested compounds exhibited improved the antiproliferative activity
against AsPC-1 cells than the parent compound, ursolic acid. Compound 28 (Figure 3,
Table 1) was seven-fold more potent than ursolic acid with an IC50 value of 1.9 µM. Com-
pound 28 also indicated the induction of p21waf1, p53, and NOXA, which led to cell cycle
arrest and AsPC-1 apoptosis [71]. A total of 18 derivatives of oleanolic acid were prepared
and investigated for their in vitro cytotoxic activity by Pertino et al. [72], and compound
29 (Figure 3, Table 1) showed better activity with an IC50 value of 8.9 µM against gastric
epithelial adenocarcinoma cells (AGS cells). Ursolic acid derivatives containing either an
amide-triazole-AZT linkage (as in 30) or an ester-triazole-AZT linkage (as in 31) (Figure 4,
Table 1) showed moderate cytotoxic activity [59]. High cytotoxicity was observed for
ursolic acid derivative, 32 (Figure 3, Table 1) modified at position C-28. This compound
GI50 values was 1.4 µM against the human breast tumor cell lines (MDA-MB-231) [73,74].
Ursolic acid derivatives (33) (Figure 3, Table 1) containing heterocyclic fragments such
as 1,2,3-triazole and 3-(methyl)-4-methyl-1,2,5-oxadiazole-2-oxide linked at position C-28
displayed the best cytotoxic activity against MCF-7 cells with IC50 value of 1.55 ± 0.08 µM
comparable to doxorubicin. The molecular docking studies indicated that the most likely
cytotoxic mechanism of action is the affinity of hybrid 33 to Mdm2 binding sites [75].

A number of ursolic acid-1-phenyl-1H-[1–3]triazol-4-ylmethylester congeners were
designed and synthesized by Rashid et al. (2013) [76] in an attempt to develop potent
antitumor agents. To synthesize these congeners, UA was subjected to oxidation using
Jones reagent at 0 ◦C that resulted in the formation of C-3 oxidized derivative (34)(Figure 3)
in almost quantitative yield. Propargylation of the carboxylic group at C-28 was tried
with different bases, including NaHCO3, Cs2CO3, pyridine, Et3N, and DBU. Cs2CO3
condition in dry THF delivered the well-poised alkyne derivative 35 (Figure 3) in excellent
yield. On the other hand, aromatic azides were prepared from their respective anilines
by diazotization with sodium nitrite in acidic conditions followed by displacement with
sodium azide in good to excellent yield. 1,3-dipolar cycloaddition reaction of 35 with
aromatic azides in the presence of CuSO4.5H2O and sodium ascorbate in t-BuOH: H2O
(2:1) resulted in the formation of 1,4-substituted-triazolyl derivatives 36a–d (Figure 3) in
excellent yields. All the compounds were evaluated for anticancer activity against a panel
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of four human cancer cell lines, such as A-549 (lung), MCF-7 (breast), HCT-116 (colon),
THP-1 (leukemia), and a normal human epithelial cell line (FR-2) using sulforhodamine-B
assay. The pharmacological results showed that most of the compounds displayed a high
level of antitumor activities against the tested cancer cell lines compared with ursolic acid.
Compounds 36a–d (Table 1) were found to be the most potent compounds.

Figure 4. Ursolic acid and betulinic acid-base pyrazole derivatives.



Molecules 2021, 26, 2401 9 of 25

Table 1. Mechanism and cytotoxicity of pentacyclic triterpenoids (PTs)-based triazole scaffolds on different cancer cells.

Hybrid
Compounds Mechanism/Pathways Cancer Cell Lines Hybrid Compounds

(IC50 µM)
Reference Molecules

(IC50 µM) Bibliography

5a

n.r
KB

Hep-G2

(8.1)
(6.6)

Betulinic acid
(27.5)
(23.9)

Ellipticine
(1.2)
(1.2)

[59]5b (4.6)
(3.5)

6 (8.1)
(5.9)

7 (5.9)
(7.0)

[60]8 (6.3)
(7.4)

9 (7.7)
(11.2)

10 Induced apoptosis and inhibit cell
migration, disruption of

mitochondrial membrane.

THP-1
HL-60

(4.5)
(2.5) Betulinic acid

(20)
(17)

—— [61]
11 (8)

(3.5)

12 Induced apoptosis through both
intrinsic and extrinsic pathways.

HL-60
MiaPaCa-2

PC-43
A549

(7)
(5)
(7)
(7)

Betulinic acid
(8)
(7)
(7)
(8)

—— [62]

13
n.r 4T1

MIAPaCa-2

(2.38 ± 0.45)
(1.36 ± 0.21)

Betulinic acid
(6.29 ± 0.96)
(25.63 ± 3.79)

—— [63]
14 (2.62 ± 0.24)

(1.64 ± 0.20)

15 nr HL-60 (1.3 ± 0.1) Betulinic acid
11.5 ± 2.8 —— [64]
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Table 1. Cont.

Hybrid
Compounds Mechanism/Pathways Cancer Cell Lines Hybrid Compounds

(IC50 µM)
Reference Molecules

(IC50 µM) Bibliography

16
Inhibit DNA and RNA, cause block in

G0/G1 cell cycle phase similar to
actinomycin D.

CCRF-CEM
CEM-DNR

K562
K562-TAX

A549
HCT116

HCT116p53-/-

U2OS

(3.3)
(4.0)
(3.6)
(3.9)
(14.8)
(6.4)
(9.5)

(12.8)

Betulinic acid
(45.5)
(45.4)
(40.0)
(43.1)
(43.4)
(38.0)
(50.0)
(50.0)

—— [65]

17 Induce apoptosis, acts as a minor
groove binder to the DNA HT29 (14.9 ± 1.3) Betulinic acid

(14.9 ± 1.3) —— [66]

18 n.r
T47D2
MCF-7
SNB-19

(0.05 ± 0.01)
(0.09 ± 0.01)
(0.08 ± 0.01)

Betulinic acid
(neg)

(17.7 ± 1.2)
(neg)

Cisplatin
(4.9 ± 1.1)
(5.5 ± 1.0)

(2.3 ± 0.05)

[67]

19

Activate NF-kB protein, repression of
TNF-induced NF-kB-dependent

reporter gene expression, and
TNF-induced COX-2, MMP-9 and

Cyclin D1 activation

n.r n.r n.r n.r [68]

20 Apoptosis inducer in HT1080 cells

HeLa
HepG2
HCT116
A375-S2
HT1080

(10.85)
(24.15)
(12.28)
(4.97)
(3.51)

Oleanolic acid
(200)
(200)
(200)
(200)
(200)

5-Fu
(26.18)
(67.64)
(35.16)
(90.74)
(25.46)

[69]
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Table 1. Cont.

Hybrid
Compounds Mechanism/Pathways Cancer Cell Lines Hybrid Compounds

(IC50 µM)
Reference Molecules

(IC50 µM) Bibliography

23

n.r A375-S2
HT1080

(2.82±0.11)
(1.69±0.26)

Taxol
(59.57±0.17)
(35.18±0.44)

5-Fu
(59.57±0.17)
(35.18±0.44)

[70]

24 (36.54±0.39)
(1.86±0.17)

25 (13.98±0.78)
(1.73±0.45)

26 (34.87±0.62)
(1.82±0.16)

27 (4.76±0.11)
(1.84±0.16)

28
Induction of p21waf1, p53 and NOXA
which leads to cell cycle arrest and

AsPC-1 apoptosis
AsPC-1 (1.9 ± 0.02) Ursolic acid

(15.2 ± 0.1) —— [71]

29 Inhibits proliferation of Gastric
epithelial adenocarcinoma(AGS)

MRC-5
AGS

SK-MES-1
J82

HL-60

(100)
(8.9 ± 0.4)

(50.4 ± 3.5)
(35.4 ± 2.8)
(35.8 ± 4.1)

—–

Etoposide
(0.33 ± 0.02)
(0.58 ± 0.02)
(1.83 ± 0.09)
(3.49 ± 0.16)
(2.23 ± 0.09)

[72]

33 Affinity to Mdm2 binding sites

MCF-7
U-87 MG

A549
HepG2

(1.55 ± 0.08)
(>100)
(>100)
(>100)

Ursolic acid
(25.05 ± 3.17)
(43.82 ± 3.88)
(41.02 ± 3.77)
(37.28 ± 5.02)

Doxorubicin
(4.51 ± 1.12)
(2.05 ± 0.22)
(6.17 ± 1.17)

(10.02 ± 1.67)

[75]
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Table 1. Cont.

Hybrid
Compounds Mechanism/Pathways Cancer Cell Lines Hybrid Compounds

(IC50 µM)
Reference Molecules

(IC50 µM) Bibliography

36a

A-549
MCF-7

HCT-116
THP-1
FR-2

(0.5 ± 0.05)
(5.5 ± 0.08)

(<0.1 ± 0.09)
(0.9 ± 0.02)
(10 ± 0.04)

Ursolic acid
(33 ± 0.03)
(37 ± 0.07)
(42 ± 0.08)
(9.1 ± 0.07)
(31 ± 0.08)

—— [76]
36b

(2.9 ± 0.05)
(<0.1 ± 0.05)
(15 ± 0.06)

(<0.1 ± 0.03)
(69 ± 0.05)

36c

(<0.1 ± 0.001)
(<0.1 ± 0.09)
(0.3 ± 0.001)

(<0.1 ± 0.001)
(>50 ± 4.1)

36d

(0.15 ± 0.01)
(<0.1 ± 0.001)

(9.1 ± 1.0)
(<0.1 ± 0.001)

(>50 ± 3.9)

n.r = not reported. Neg = negative in the concentration used.
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4. Pyrazole

Pyrazole, a five-membered heterocyclic ring, is the most studied compound among
the azole family due to its interesting pharmacological properties such as antibacterial,
anticancer, antioxidant, antifungal, antidepressant, antituberculosis, anti-inflammatory,
and antiviral activities [77–79]. The pyrazole ring is the best scaffold for synthesizing
various pharmaceutical compounds with different therapeutic activities and good safety
profiles [80]. Most of the synthesized pyrazole derivatives have been studied for their
in vitro antiproliferative activities and in vivo antitumor activity, often resulting in promis-
ing lead scaffolds [81–85]. Recently, Bennani et al. also demonstrated that pyrazole deriva-
tives possess high antiproliferative activity against tumors cells such as breast (MCF-7),
lung (A-549), liver (HepG-2), and brain (HeLa) cell lines [86]. In a continuing interest in
pyrazole-based derivatives, PTs with pyrazole rings have been reported.

Anticancer Effects of Triterpenoid-Based Pyrole Molecules

Sun et al. [87] synthesized pyrazole-fused ursolic acid derivative 41 (Scheme 1, Table 2)
and evaluated their in vitro anticancer activities against tumor cells, such as cervical
carcinoma (HeLa cells), hepatocellular carcinoma (HepG2 cells), fibrosarcoma (HT1080
cells), mammary adenocarcinoma (MCF-7 cells), and neuroblastoma (SK-N-MC cells).
This compound induced apoptosis by hyperstimulation of macropinocytosis and caused
the accumulation of vacuoles derived from macropinosomes based on transmission electron
microscopy, time-lapse microscopy, and labelling with extracellular fluid phase tracers.

Scheme 1. Reagents and conditions: (a) BnBr, K2CO3, DMF, 60 ◦C, 92%. (b) PCC, CH2Cl2, 0 ◦C to rt, 84%. (c) R1CO2Et
(R1 = H, Me), NaOMe, THF, rt; R1 CO2Et (R1 = CF3), t-BuOK, THF, rt, 70%. (d) R2 NHNH2·HCl, EtOH, rt. (e) H2, Pd/C,
MeOH, rt.

Li and colleagues [88] synthesized novel ursolic acid derivative 42 (Figure 4, Table 2)
with a nitrogen-containing heterocyclic scaffold and the privileged fragment at the C-
28 position by treating UA with acetic anhydride (Ac2O) in dry pyridine under the 4-
dimethylaminopyridine (CH3)2NC5H4N) at room temperature for 2 h. The 3-acetylated
UA was treated with oxalyl chloride at room temperature for 3 h to produce an intermediary
28-acyl chloride. This compound was then mixed at room temperature for 2 h to synthesize
compound 42. These authors investigated cell proliferation, apoptosis induction, and cell
cycle in human breast cancer lines. The results indicated that 42 significantly increased the
number of SUM149PT and HCC1937 cells lines in the G0/G1 phase in a dose-dependent
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manner. Compound 42 significantly induced apoptosis in breast cancer more than UA [88].
Chen et al. [89] also synthesized 42, which exhibited a remarkable growth of the inhibitory
effect against HL-60 cells leukemia cells with an IC50 value of 0.91 µM, approximately
100-fold more potent than UA [89].

Table 2. Mechanism and cytotoxicity of PTs-based pyrazole scaffolds on different cancer cells.

Hybrid
Compounds

Mechanism
/Pathways

Cancer Cell
Lines

Hybrid
Compounds

(IC50 µM)

Reference Molecules
(IC50 µM) Bibliography

41
Induced apoptosis by
hyperstimulation of

macropinocytosis

Hela
HepG2
HT1080
MCF-7

SK-N-MC

(18.63 ± 2.34)
(27.87 ± 2.98)
(26.7 ± 0.07)

(25.25 ± 0.07)
(28.63 ± 1.03)

Ursolic acid
(43.30 ± 2.22)
(34.12 ± 0.68)
(39.43 ± 0.52)
(57.64 ± 5.75)
(67.64 ± 1.78)

—- [87]

42

Hindered the breast
cancer cell

progression by
inducing apoptosis
and cell cycle arrest

at S and G0/G1 phase

HL-60 (0.91±0.05) Ursolic acid
(40)

Doxorubicin
(0.63) [88,89]

43

Induced apoptosis
and cell cycle arrest

in HepG2, HeLa, and
Jurkat cell lines Jurkat

HeLa
HepG2

(1.4 ± 0.2)
(2.0 ± 0.3)

(0.8 ± 0.05)
Betulinic acid

(26.9 ± 2.2)
(26.0 ± 2.1)
(36.4 ± 1.5)

—- [90]
44 n.r

(2.3 ± 0.3)
(3.0 ± 0.2)
(1.7 ± 0.2)

45 n.r
(11.1 ± 1.3)
(3.0 ± 0.2)
(2.0 ± 0.4)

46

Antiproliferative,
Apoptosis induction
abilities correlated

with upregulation of
NOXA and

downregulation of
Bcl-xL

AsPC-1 (0.9 ± 0.01) (>100) —- [91]

Santos et al. [90] semi-synthesized novel BA derivatives (43, 44, and 45) (Figure 4,
Table 2) with 18–45 times improved cytotoxic activity against HepG2 cell lines and induced
apoptosis and cell cycle arrest in HepG2, HeLa, and Jurkat cell lines. The mechanism of
apoptosis induction was mediated by the activation of the post mitochondrial caspases-9
and -3 cascade and possibly by mitochondrial amplification loop involving caspase-8.
Among these compounds, 43 is the most active compound with an IC50 value 45 times
lower than BA on HepG2 cells and 61 times lower than those found for the non-tumoral
Chang liver cells [90]. Leal et al. [91] synthesized a series of novel oleanane derivatives
bearing imidazole carbamates, N-alkylimidazoles or N-acylimidazoles and evaluated their
antiproliferative activity against AsPC-1 pancreatic cancer cell lines. The results revealed
that the N-alkylimidazole 46 (Figure 4, Table 2) was the most active compound with
apoptosis induction abilities correlated with upregulation of NOXA and downregulation
of Bcl-xL. The antiproliferative activity of compound 46 was further tested in more solid
tumor cell lines with IC50 values lower than 1 µM.
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5. Indole

Indole ring is one of the nitrogen heterocyclic compounds widely found in nature
and commonly found in plant hormones, including tryptophan and auxins, serotonin or
5-hydroxytryptamine, and melatonin, which plays a significant role in the animal physio-
logical and biochemical process [92]. The hybridization of indole with PTs is an effective
strategy to search and develop novel anticancer candidates. The resulting single molecule
containing one or more pharmacophores with different mechanisms of action may lead to
the enhancement of the desired properties of the combined components and potentially
reduce the drug resistance.

Anticancer Effects of Triterpenoid-based Indole Molecules
Khusnutdinova et al. prepared novel 2,3-Indolotriterpenic alcohols by successive

modification of 3-oxo triterpenic acids (Fisher reaction, reduction of C17-COOH, cya-
noethylation) (Scheme 2) and evaluated them for in vitro antitumor activity. Compounds
2,3-indolouvaol (51) and 2,3-indolo-28-cyanoethoxybetulin (53) showed potential in vitro
antitumor activity against NCI-H522 and COLO 205 cells, inducing the death of 12.65%
and 42.78% of these cells, respectively [93].

Scheme 2. Conditions: (a), LiAlH4, THF, 2 h; (b), CH2=CHCN, 30% KOH, TEBAC, 1,4-dioxane, 5 h.

Khusnutdinova et al. [94] attempted the modification of the carboxyl group of [3,2b]-
indolotriterpenic acids (N-propargylation, Cu(I) catalyzed Mannich reaction) with N-
methylpiperazine and morpholine moiety. Among the modified compounds, oleanane-
type conjugate with N-methylpiperazine 56 (Figure 5) displayed the highest anticancer
potency against leukemia cell line SR (−2.2%) and nonsmall cell lung cancer cell line
NCI-H460 (−25.3%). Tang et al. [95] designed and synthesized a series of novel oleanolic
acid-based C(6)-indole substituted celastrol analogues. Among all these semisynthetic
analogues, compounds 57 and 58 (Figure 5) displayed excellent in vitro antiproliferative
activities against Bel7402 cancer cells with IC50 values of 0.02 µM and 0.01 µM, respec-
tively [95]. Fan et al. [96] synthesized a series of ursolic acid-based indole derivatives with
compound 59 (p < 0.05) (Figure 5), showing promising therapeutic effects against the
growth of U251 and C6 glioma cells at a concentration of 10 µM. This compound inhibited
glioma cell development, induced apoptosis, and cell cycle arrest in the G0/G1 phase
with decreasing population in the G2/M and S phases via the down-regulation metabolic
pathways. This compound is a potential anticancer agent for the treatment of glioma [96].
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Figure 5. Oleanolic and ursolic acid-based indole hybrids.

6. Piperazine

The piperazine is a nitrogen-containing heterocyclic ring known for its medicinal
importance. It is considered the most attractive scaffold for the development of novel anti-
cancer agents [97]. In 2016, Rathi and co-workers [98] published a review of the anticancer
potential of piperazine derivatives. Molecular hybridization has been identified as one
of the successful strategies for developing novel chemotherapeutic candidates involving
the combination of two or more different bioactive fragments. The combination of PTs
and piperazine into a single-molecule (hybrid) has been reported with potential anticancer
activity. Compounds methyl 3-O-[4-(1-piperazinyl)-4-oxo-butyryl]olean-12-ene-28-oate
(60) and compound 2-O-[4-(1-piperazinyl)-4-oxo-butyryl]-3,23-dihydroxyurs-12-ene-28-
oate (61) were synthesized by Zhao et al. [99]. These compounds were evaluated for their
biological activity using the Cell Counting Kit-8 method, and Western blotting analysis on
A549 cells, MCF-7cells, and Hela cells. Both compounds 60 and 61 exhibited excellent anti-
cancer activity than the reference drug, Gefitini [99]. Giniyatullina et al. [100] synthesized
A-azepanobetulinic acid N-methylpiperazinylamide through a series of transformations
(oximation, Beckmann, reduction) of N-methylpiperazinylamide. They evaluated their
in vitro cytotoxicity against some cell lines, namely LNCAP, PC3 22RW1, Huh7, and VA13.
Compounds 62 and 63 (Figure 6, Table 3) displayed the most potent cytotoxicity against
the five cancer cell lines with an IC50 ranging from 0.37 µM to 3.58 µM [100]. Compound
64 (Figure 6, Table 3) effectively induced cell apoptosis in HepG2 cells [101].
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Figure 6. Ursolic acid and betulinic acid-based indole hybrids

The ursolic acid derivative 65 with an acyl piperazine moiety at C-28 was synthesized
by treating ursolic acid with ethylene dibromide (C2H4Br2) in Dimethylformamide (DMF)
for 24 h. The obtained compound was introduced with piperazine in DMF in the presence
of Potassium carbonate (K2CO3) at 80 ◦C, and then reacted with an aromatic to obtain
the targeted compound. The newly synthesized compound was evaluated for anticancer
activity against human gastric cancer (MGC-803) and breast cancer (Bcap-37) cell lines
using standard MTT assay in vitro. The compound showed a cell apoptosis-inducing effect
higher than the positive control, HCPT, and UA [102]. Wang et al. [103] designed and
synthesized 19 new nitrogen heterocycle-containing ursolic acid derivatives and evaluated
their potential antiproliferative activity against the cervical (Hela) and gastric (MKN45)
cell lines. The potent anticancer compound was found to be compound 66 (Figure 7,
Table 3) with IC50 values of 2.6 µM and 2.1 µM. The study of the mechanism and the
in vivo antitumor study of this compound demonstrated reduced apoptosis regulator (Bcl-
2/Bax) ratio, disrupted mitochondrial potential and induced apoptosis, and suppressed
the growth of Hela xenografts in nude mice [103]. Li et al. [88] indicated that apoptosis in
breast cancer cells was induced by ursolic acid piperazine hybrid derivative (compound 67
(Figure 6)), along with cell cycle arrest induction at S and G0/G1 phase. Thus, compound
67 is a promising therapeutic agent for the treatment of breast cancer. With earlier literature
report by Chen et al. [89] suggesting the therapeutic potential of a similar compound
against leukemia as summarized in Table 3 [89]. Kahnt et al. [104] prepared 11 conjugates
containing piperizine hybrid heterocycles. Amongst all the ursolic acid derivatives, com-
pound 68 was most potent with EC50 values of 1.5 µM for A375 melanoma and 1.7 µM for
A2780 ovarian carcinoma) [104].
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Table 3. Mechanism and cytotoxicity of PT-based piperazine scaffolds on different cancer cells.

Hybrid
Compounds

Mechanism
/Pathways

Cancer Cell
Lines

Hybrid
Compounds

(IC50 µM)

Reference Molecules
(IC50 µM) Bibliography

60

n.r
MCF-7
Hela
A549

(7.05 ± 1.45)
(7.75 ± 1.09)
(9.91 ± 2.11)

—–

Gefitini
(17.83 ± 7.85)
(15.40 ± 4.63)
(11.02 ± 3.27)

[99]

61
(7.58 ± 1.25)
(8.13 ± 1.69)

(13.13 ± 4.37)

62

n.r

LNCAP
PC3

22RW1
Huh7
VA13

(1.12)
(1.11)
(0.37)
(0.74)
(0.19)

—–

Paclitaxel
(0.01)

(0.015)
(0.016)
(0.002)
(0.001)

[100]

63

(n.r)
(3.58)
(n.r)

(2.75)
(n.r)

64

Inhibits
proliferation,
Induce cell

apoptosis by
G1 cell-cycle

arrest and
through

intrinsic and
extrinsic

apoptosis
pathway.

MGC-803
HCT-116

T24
HepG2
A549

HL-7702

(9.82 ± 0.29)
(18.97 ± 0.53)
(13.64 ± 0.43)
(5.40 ± 0.79)

(11.06 ± 0.37)
(100)

Ursolic acid
(27.08 ± 0.29)
(38.78 ± 0.16)
(29.29 ± 0.80)
(30.21 ± 0.58)
(35.79 ± 0.37)

(100)

5-FU
(40.94 ± 0.95)
(29.58 ± 1.31)
(37.56 ± 0.49)
(30.79 ± 0.82)
(36.34 ± 0.57)
(58.74 ± 2.31)

[101]

65

Induced cell
apoptosis in

MGC-803
cells.

MGC-803
Bcap-37

(2.50 ± 0.25)
(9.24 ± 0.53)

Ursolic acid
(24.32 ± 0.57)
(28.69 ± 0.35)

Hydroxycamptothecin
(20)
(20)

[102]

66

Decreased
the apoptosis

regulator
(BCL2/BAX)

ratio,
disrupted mi-
tochondrial

potential and
induced

apoptosis,
and

suppressed
the growth of

Hela
xenografts in

nude mice

Hela
MKN45

(2.6 ± 1.1)
(2.1 ± 0.3)

Ursolic acid
(15.1 ± 2.7)
(16.7 ± 1.4)

Cisplatin
(15.1± 0.9)
(2.8±0.1)

[103]
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Table 3. Cont.

Hybrid
Compounds

Mechanism
/Pathways

Cancer Cell
Lines

Hybrid
Compounds

(IC50 µM)

Reference Molecules
(IC50 µM) Bibliography

68

Cytotoxicity
through

fluorescence
microscopy,
annexin V
assays and

cell
cycle

analysis.

A375
A2780
HT29

MCF-7
FaDu

NIH 3T3

(1.5 ± 0.4)
(1.9 ± 0.3)
(5.7 ± 0.5)
(4.4 ± 0.7)
(3.7 ± 0.6)
(4.6 ± 1.0)

Ursolic acid
(n.r)

(11.7 ± 0.6)
(10.6 ±0.7)
(12.7±0.1)

(n.r)
(13.1±1.1)

Doxorubici
(n.r)

(0.01 ± 0.01)
(0.9 ± 0.2)
(1.1 ± 0.3)

(n.r)
(0.06 ± 0.03)

[104]

n.r = reported.

Figure 7. Ursolic acid and betulinic triterpenic analogues with amminoquinoline heterocyclic hy-
brid scaffold.

7. Aminoquinolines

The principle of molecular hybridization is efficient as it is centered on the com-
bination of two different distinct pharmacophores by linking covalently two or more
structural entities with distinct biological functions. The positive synergistic effects of these
compounds can also occur along with expected pharmacokinetic and pharmacodynamic
profiles. In addition, by enhancing bioavailability and distribution through cell mem-
branes of cell organelles, this process can solve a variety of common problems associated
with drug molecules and shielding active compounds from enzyme degradation [105].
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Quinones are a large and substantial family of cyclic compounds combined with a large
variety of medicinal agents for therapeutic applications [106]. Figure 7 represents ursolic
acid and betulinic triterpenic hybrids (69–71) with aminoquinoline heterocyclic scaffold.
Sommerwerk et al. [107] synthesized a series of pentacyclic triterpenic derivatives and
tested their activity against a number of human cancer cells using SRB assay to access their
cytotoxicity. A triacetylated 4-isoquinolinyl derived compound of asiatic acid (69) was the
most promising compound with IC50 values of 0.19 µM for melanoma (518A2), 0.22 µM for
colorectal adenocarcinoma (HT29), 0.54 µM for breast (MCF7), 0.29 µM for lung adenocar-
cinoma (A549), 0.08 µM for ovarian (A2780) and 3.23 µM nonmalignant mouse fibroblast
(NiH3T3). This compound was further examined by apoptosis through propidium io-
dide/acridine orange staining, fluorescence spectroscopy, and cell cycle investigation [107].
Hoenke et al. [108] synthesized a sequence of betulinic acid amide derivatives in an attempt
to investigate their activity against some cancer cell lines compared to NiH3T3. Compound
70 was the most cytotoxic and therefore showed lower EC50 values of 1.48 ± 0.1 µM for
melanoma (A375), 4.65 ± 0.5 µM (MCF7), 2.16 ± 0.2 µM (A2780), 2.26 ± 0.2 µM for hy-
popharyngeal carcinoma (FaDu) and >30 µM (HT29) compared to >91.2 µM (NiH3T3).
On the other hand, doxorubicin was used as a reference drug with EC50 values of >30 µM
(HT29), 1.1 ± 0.3 µM (MCF7), 0.01 ± 0.01 µM (A2780), not detected for A375 and FaDu
compared to 1.3 ± 0.6 µM (NiH3T3). Therefore compound 62 can be further investigated
as a antitumor agent [108]. Kadela-Tomanek et al. [109] synthesized Betulin-1,4-quinone
hybrids using a linker method of combining two active structures in an attempt to produce
a more biologically active derivatives with anticancer activity and better bioavailabil-
ity. The synthesized derivatives were tested in vitro against a number of human cancer
cells such as breast (MCF-7, T47D, and MDA-MB-231), melanoma (C-32), lung (A549),
colon (Colo-8), and gliblastoma (SNB-19). They found out that their derivatives were
cytotoxic towards the cancer cells with NAD[P[H-quinone oxidoreductase (NQO1) protein
level namely MC-7, C-32 and A549. Compound 71 was the most promising hybrid with
IC50 values of 1.27 ± 0.06 µM (C-32), 2.43 ± 0.68 µM (MDA-MB-231), 6.67 ± 1.30 µM
(Colo-8), 14.9 ± 2.30 µM (MCF-7). However, its cytotoxicity against SNB-19 and T47D
was not impressive with IC50 values of 41.99 ± 0.11 µM and 99.39 ± 6.98 µM, respectively.
Compound 71 reduced the proliferative activity of all tested cells during enzymatic mecha-
nism of action. This compound was tested for its transcriptional activity of gene encoding
of cell-cycle (p21 and p53), proliferation maker (H3-histone) and apoptosis. Furthermore,
this compound interacted with hydrophobic matrix of the active site of the enzyme near
FAD, Trp105, Phe178, and Tyr128 cofactor, which was observed by an increase in gene
expression (TP53) [109].

8. Perspectives and Concluding Remarks

The growing incidences of cancer are one of the major issues in the developing world.
Novel therapeutic agents that would be useful for the treatment of cancers that have
acquired resistance to the existing drugs are desperately needed. PTs have the advantage
of creating various derivatives with potential pharmacological properties. This review
summarized the synthesized PTs derivatives with fused nitrogen-containing heterocyclic
scaffolds, which have displayed significant anticancer activity. We noted that recent
studies had been done on triterpenoid with nitrogen-containing heterocyclic scaffolds
to understand the mechanism of action of these hybrids. The introduction of various
nitrogen-containing heterocyclic moieties in PTs brings new mechanism of actions that
lead to high anticancer activity. The hybrid compounds exhibited high anticancer activity
such as 18, (36a–36d), 43, 44, 45, 46, and 68. Some hybrid compounds have been reported
to be the modulators for multiple targets at different stages of cancer progression, such as
proliferation, angiogenesis, metastasis, and apoptosis. Almost all the reported hybrid
compounds displayed enhanced anticancer activity compared to the parent PTs. The
above-mentioned significant points identify the enormous potential of these triterpenoid-
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based nitrogen-containing heterocyclic moieties in pharmaceutical applications suggesting
a massive scope for these promising compounds because of their diverse molecular targets.
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