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Adipose tissue (AT) biology is linked to cardiovascular health since obesity is associated
with cardiovascular disease (CVD) and positively correlated with excessive visceral fat
accumulation. AT signaling to myocardial cells through soluble factors known as
adipokines, cardiokines, branched-chain amino acids and small molecules like
microRNAs, undoubtedly influence myocardial cells and AT function via the endocrine-
paracrine mechanisms of action. Unfortunately, abnormal total and visceral adiposity can
alter this harmonious signaling network, resulting in tissue hypoxia and monocyte/
macrophage adipose infiltration occurring alongside expanded intra-abdominal and
epicardial fat depots seen in the human obese phenotype. These processes promote
an abnormal adipocyte proteomic reprogramming, whereby these cells become a source
of abnormal signals, affecting vascular and myocardial tissues, leading to meta-
inflammation, atrial fibrillation, coronary artery disease, heart hypertrophy, heart failure
and myocardial infarction. This review first discusses the pathophysiology and
consequences of adipose tissue expansion, particularly their association with meta-
inflammation and microbiota dysbiosis. We also explore the precise mechanisms
involved in metabolic reprogramming in AT that represent plausible causative factors for
CVD. Finally, we clarify how lifestyle changes could promote improvement in
myocardiocyte function in the context of changes in AT proteomics and a better gut
microbiome profile to develop effective, non-pharmacologic approaches to CVD.

Keywords: adipose tissue, myocardiocytes, microbiota, obesity, inflammation
1 INTRODUCTION

Obesity is a chronic and multifactorial metabolic disease described in most scientific literature as the
epidemic of the 21st century. In fact, by 2016, this condition affected 650 million adults, equivalent
to 13% of the adult population worldwide, while in 2019, 38.3 million children under the age of 5
were overweight or obese (1). In the United States, obesity accounts for approximately 21% of
n.org September 2021 | Volume 12 | Article 7350701

https://www.frontiersin.org/articles/10.3389/fendo.2021.735070/full
https://www.frontiersin.org/articles/10.3389/fendo.2021.735070/full
https://www.frontiersin.org/articles/10.3389/fendo.2021.735070/full
https://www.frontiersin.org/journals/endocrinology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/endocrinology#articles
http://creativecommons.org/licenses/by/4.0/
mailto:v.bermudez@unisimonbolivar.edu.co
https://doi.org/10.3389/fendo.2021.735070
https://www.frontiersin.org/journals/endocrinology#editorial-board
https://www.frontiersin.org/journals/endocrinology#editorial-board
https://doi.org/10.3389/fendo.2021.735070
https://www.frontiersin.org/journals/endocrinology
http://crossmark.crossref.org/dialog/?doi=10.3389/fendo.2021.735070&domain=pdf&date_stamp=2021-09-15
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annual national health care costs ($190 billion) (2). In addition,
this entity is frequently clustered to other comorbidities such as
metabolic syndrome (MetS), insulin resistance (IR), type 2
diabetes mellitus (T2DM), non-alcoholic fatty liver disease
(NAFLD), chronic kidney disease (CKD), gout, and
cardiovascular disease (CVD) (3). CVD is the leading cause of
death worldwide, with approximately 17.9 million deaths each
year, of which 85% are attributable to myocardial infarction (MI)
and stroke (4).

Research has centered on evaluating the causality of obesity in
CVD in recent years, focusing on areas such as the potential role
of adipose tissue (AT) on cardiac tissue (5, 6). AT is a highly
functional and complex endocrine organ, characterized by the
release of adipokines, batokines, microRNAs, prostaglandins,
bioactive lipids and other regulators of metabolic homeostasis,
which interact with vascular, hepatic, renal, digestive, cerebral,
skeletal muscle and myocardial tissue through paracrine and
endocrine mechanisms (5, 7–10).

One hallmark feature in obesity is the ectopic and visceral
adipose tissue (VAT) accumulation leading to AT transcriptome
and secretome modification due to adipocyte hypertrophy and
hyperplasia. This condition is related to tissue´s hypoxia and
fibrosis, immune cell infiltration, stimulating the release of pro-
inflammatory, pro-atherogenic and anti-angiogenic substances
that affect AT biology and communication with other target
tissues (11). In addition, myocardial cells are also affected by
signaling molecules from the dysfunctional or “sick” AT
(SickAT), given their link with heart hypertrophy and fibrosis,
atrial fibrillation (AF), MI, among other CVD (12–15).

These data highlight the importance of establishing
therapeutic tools to help combat obesity and, by extension,
CVD. In a nutshell, obesity etiology is derived from an energy
imbalance produced in the context of an obesogenic lifestyle (16)
characterized by a hypercaloric diet and insufficient physical
activity (PA) to counteract the SickAT expansion and subsequent
defective signaling processes (10, 17, 18). Hence, PA and
nutritional interventions (NI) might improve the SickAT
profile and, consequently, enhance adipose tissue and
myocardiocyte crosstalk. Therefore, this review discusses both
AT and SickAT distribution and biology and their relationship
with myocardial tissue. We will also address the molecular
mechanisms by which exercise, food supplementation, and
Abbreviations: AF, atrial fibrillation; AMI, acute myocardial infarction; AT,
adipose tissue; BAT, brown adipose tissue; BeAT, beige or brite adipose tissue;
BMI, body mass index; BCAAs, Branched-chain amino acids; BW body weight; C/
EBP, CCAAT-enhancer-binding proteins; CKD, chronic kidney disease; CVD,
cardiovascular disease; CVS, cardiovascular system; EAT, epicardial adipose
tissue; eNOS, endothelial nitric oxide synthase; FFA, free fatty acid; GD, gut
dysbiosis; GM, gut microbiota; HCD, hypercaloric diet; IF, intermittent fasting;
iNOS, inducible nitric oxide synthase; IR, insulin resistance; LPS,
lipopolysaccharides; MetS, metabolic syndrome; NAFLD, non-alcoholic fatty
liver disease; NI, nutritional intervention; NP, natriuretic peptide; OS, oxidative
stress; PA, physical activity; PAT, pericardial adipose tissue; PPARg, peroxisome
proliferator activated receptor g; PVAT, perivascular adipose tissue; SickAT, sick
(dysfunctional) adipose tissue; SCAT, subcutaneous adipose tissue; SCFA, short-
chain fatty acids; T2DM, type 2 diabetes mellitus; WAT, white adipose tissue;
VAT, visceral adipose tissue.
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changes in eating habits can counteract obesity, taking as a
pivotal point the role of the gut microbiota (GM) in SickAT
pathogenesis to establish the non-pharmacological treatment
of CVD.
2 THE SICK ADIPOSE TISSUE: FROM
DISTRIBUTION TO INTERACTION

The AT is a dynamic and anatomically heterogeneous organ
acting as connective tissue throughout our organism. Beyond its
particular vasculature, innervation and predominant adipocyte
content, its microenvironment includes numerous immune cells,
endothelial and stromal cells, fibroblasts, preadipocytes, and
abundant extracellular matrix (ECM) (19–21). Each
component possesses characteristic properties and can secrete
various hormones, growth factors, microRNAs (miRNAs),
cytokines, and chemokines coordinated, with autocrine,
endocrine, and paracrine action on neighboring and remote
organs/or cells (12, 22, 23). AT can also be classified by
anatomical location, embryonic origin, morphology or
function, the latter which can be grouped into white (WAT),
brown adipose tissue (BAT) (24).

WAT is responsible for storing energy as fatty acids (FA)
within triacylglycerides (TAG), supplying energy and controlling
metabolic homeostasis through the white adipocyte endocrine
functions (25). The main fat deposit in mammals is widely
distributed throughout the subcutaneous adipose tissue
(SCAT), gonadal and inguinal adipose depots. Adipose tissue
located in the abdominal cavity, including intrahepatic and
mesenteric, omental, and retroperitoneal fat, can be considered
VAT (18, 19). Other intrathoracic AT depots identified include
epicardial adipose tissue (EAT), occupying the space between the
pericardium and myocardium, with a direct relationship with the
coronary arteries; pericardial (PAT), located between the visceral
and parietal pericardium, and perivascular (PVAT), which
surrounds the remaining blood vessels (22, 26). It should be
noted that both VAT and cardiovascular system (CVS)-based
depots are considered a risk factor for cardiometabolic diseases,
an association that has been widely reported (11, 26).

Unlike WAT, BAT has adipocytes with smaller lipid droplets,
more abundant mitochondria and substantial vascularization,
which provide its characteristic brown color (27). Likewise, BAT
has high levels of uncoupling protein 1 (UCP1), which confer
thermogenic properties by uncoupling between respiration and
ATP synthesis during the FA oxidation in adipocytes (28, 29);
hence, UCP1 is recently considered as a potential therapeutic
target against obesity (30). In humans, BAT is found in specific
areas (supraclavicular fossa, interscapular and paravertebral
regions, in the axilla and nape) and represents only 4.3% of the
total fat mass (31, 32). Notably, another type of adipocyte has
been characterized within WAT deposits, and it has shown
mixed characteristics of both white and brown adipocytes. For
that reason, this new type of adipocyte has been coined as beige
adipose tissue (BeAT). As stated above, BeAT reside within the
WAT and can be mainly found within the inguinal WAT (33).
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Also, BeAT express the UCP1 gene and, by extension,
thermogenic properties (34). Note that this browning process
occurs through exposure to cold, b-adrenergic stimulation and
pharmacological modulation of WAT (35).

2.1 Changes in Adipose Tissue
Microenvironment and Meta-Inflammation:
The Sick Forgotten
According to the WHO, obesity is defined as excessive or
abnormal fat accumulation with negative health repercussions,
determined by a body mass index (BMI) ≥ of 30 kg/m2 (36).
Although its etiology includes genetic, social, environmental
and/or cultural factors, in most cases, it is characterized by an
imbalance between energy intake and energy expenditure,
attributed to poor eating habits and sedentary lifestyles (16).
This hypercaloric or overnourished state leads to more
significant fat accumulation in AT, mainly in the form of
ectopic or visceral depots (37). AT can increase in abundance
through two different processes: hypertrophy and hyperplasia or
new adipocytes formation.

Hyperplasia is considered a beneficial and adaptive process by
which new functional adipocytes can be formed from fibroblastic
preadipocytes without altering their secretory profile and
maintaining vascularization of the AT microenvironment (37,
38), which is associated with better metabolic health (39). A
transcriptional cascade regulates this cell line differentiation
carried out by peroxisome proliferator-activated receptor
Frontiers in Endocrinology | www.frontiersin.org 3
gamma (PPAR g) and CCAAT enhancer-binding proteins (C/
EBP), in conjunction with pro-adipogenic factors such as bone
morphogenetic proteins (BMPs) (40, 41). However, hypertrophy
and subsequent adipocyte dysfunction disrupt these signaling
processes and preserve the pro-inflammatory phenotype
characteristic of obese individuals (Figure 1) (42, 43).

The pre-existing adipocytes gain volume via increased fat
accumulation, experiencing heightened mechanical stress by
contact with adjacent cells and other extracellular matrix
components (ECM) (44). Over time, AT expansion results in
reduced regional blood flow, altered oxygen diffusion and finally
tissue hypoxia, all of that related to both oxidative stress
activation (OS) (45) and increased transcriptional activity of
hypoxia-inducible factor 1a (HIF1a), nuclear factor kappa B
(NF-kB), and cAMP response element-binding protein (CREB)
genes, whose transcripts, in turn, drives to adipokines,
chemokines, metalloproteases and growth factors gene
expression, all of these related to a pro-inflammatory peptidic
secretome (46). Concurrently, these hypoxia-induced factors
downregulate anti-inflammatory and metabolism-regulatory
adipokines such as adiponectin, which occurs alongside
reduced transcription of antioxidant and thermoregulation-
related genes, particularly catalase encoders UCP2, PPARg and
peroxisome proliferator-activated receptor-gamma coactivator
1a (PGC-1a) (47–49). Consequently, transcriptomic and
proteomic changes in AT lead to a low-grade inflammatory
environment characterized by functionally-altered fibroblasts,
FIGURE 1 | Sick adipose tissue microenvironment and its interactions. Hypertrophic adipocytes and immune cells infiltration characterize the adipose tissue of
obese individuals in response to a hypoxic environment as a signal for cell death and inflammation. This phenomenon leads to proteomic dysregulation and deflective
peripheral signals promoting metabolic alterations in other tissues like muscle cells, particularly the myocardiocytes. In addition, obesogenic habits in overweighed
people cause changes in the intestinal microbiota triggering adipose tissue chronic inflammation and cellular senescence. UCP2, uncoupling protein 2; PGC-1a,
peroxisome proliferator-activated receptor gamma coactivator 1a; PPARg, peroxisome proliferator-activated receptor gamma; VEGF-A, vascular endothelial growth
factor A; MMP, metalloproteinases; HIF1a, hypoxia-inducible factor 1a; LPS, lipopolysaccharides; SCFA, short-chain fatty acids; CB1, cannabinoid receptor 1; ECM,
extracellular matrix.
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endothelial cells and immune cells niche (50, 51). Regarding the
latter, macrophages have been identified as the predominant cells
of this system in AT, showing a pro-inflammatory M1 phenotype
in obese individuals compared to the anti-inflammatory M2 in
lean individuals (52). In this scenario, the hypoxic inflammatory
state of AT promotes the release of interferon-g (IF-g) by T
helper 1 (Th1) lymphocytes, inducing M1 macrophage
recruitment and polarization, which causes increased release of
pro-inflammatory cytokines such as tumor necrosis factor-alpha
(TNF-a), monocyte chemoattractant protein 1 (MCP-1),
interleukin (IL) -6, IL-12, IL-1b and IL-23 (53–56).

Obese patients exhibit clusters of lipid-binding macrophages
from dead adipocytes, a phenomenon well-correlated with AT
inflammation and insulin resistance (57, 58). In addition, obesity
promotes CD8 + and CD4 + T lymphocytes infiltration together
with effector B-cells, heightening pro-inflammatory factors
release and consequently AT dysfunction with defective
extracellular signaling (59, 60). Similarly, myeloid cells, mast
cells (50, 51) and neutrophils are also present in SickAT, showing
that they contribute to tissue damage through elastase secretion
and thus promote macrophage recruitment (61, 62).

Among the essential SickAT characteristics in obese patients are
altered angiogenesis and endothelial dysfunction (ED). Although
SickATupregulates vascular endothelial growth factorA(VEGF-A)
and HIF1a expression (both linked to angiogenesis), production is
insufficient to generate neovascularization and counteract hypoxia,
inflammation and necrosis characteristic of obese patients (63–66).
Furthermore, SickAT leads to reactivity in the endothelium of the
surrounding vessels, inducing the synthesis of intracellular
adhesion molecule (ICAM-1), P-selectin and E-selectin, which in
turn promotes macrophage infiltration worsening the pro-
inflammatory milieu (67). Additionally, adipocyte-endothelial
crosstalk can contribute to vasomotor alterations, deteriorating
the oxygen bioavailability in EAT, PVAT and PAT (68, 69).

Likewise, HIF1a upregulation, immune cell infiltration and
hyperactivity are associated with AT fibrosis. Remarkably, the
increased synthesis of ECM components, mainly type-VI collagen
and its cleavage products such as endotrophin, have been associated
with metabolic dysfunction in obese mice via mechanical stress
caused by limits on AT expansion (44, 70–72). Interestingly, HIF1a
expression is correlated with metalloproteinases (MMP) -2 and
MMP-9 in EAT, which are considered necessary for expansion and
secretome alterations (69).

On a different plane, adipocytemetabolic activity is substantially
modified in a hypoxic state. In fact, some glycolytic enzyme genes
such as hexokinase 2 (HK2), phosphofructokinase (PFKP) and
GLUT1 exhibit an increased expression in adipocyte cell cultures
under hypoxic conditions (73, 74). Furthermore, although GLUT4
is themain isoformfound inadipocytes,GLUT1 is themost efficient
glucose transporter at low-oxygen levels (75). As expected in
hypoxic states, the above changes suggest adipocytes have
increased glucose uptake and metabolism (76), as confirmed by
their increased lactate secretion (77).

In summary, lipid metabolism proteomics tends towards
lipolytic extreme under hypoxic conditions (78). The SickAT
microenvironment is characterized by multiple agents influencing
Frontiers in Endocrinology | www.frontiersin.org 4
insulin signaling, like IL-6, TNF-a, resistin, and IL-1b (79). Under
normal conditions, insulin inhibits lipolysis through themTORC1-
Egr1-ATGL pathway, so inhibition of insulin´s secondmessengers
cascade increases lipolytic activity (80). Furthermore, fatty acid
uptake by adipocytes is blunted under hypoxic conditions (74),
leading to plasma free fatty acids increase worsening insulin
signaling (81) and contributing to the pro-inflammatory state
(82). It should be highlighted that intrathoracic and visceral AT,
BAT, BeAT and SCAT depots are affected in obesity (83), the
thermogenic properties of BAT can be disturbed by mild
inflammatory cells infiltration in severely obese individuals (84),
leading to diminished glucose and FFA oxidative metabolism, and
therefore contribute to IR and dyslipidemia development (84–86).
In contrast, BeAT occurs less frequently owing to the dysfunctional
state of WAT in obese patients (87).

2.2 Microbiota Dysbiosis
The gastrointestinal tract contains a complex population of
microorganisms, the gut microbiota (GM), which exerts a
marked influence on human health and disease (88). Multiple
factors contribute to establishing the intestinal microbiota during
early childhood and as it evolves into adulthood, but it is not
hard to imagine that one of the main factors that shape the gut
microbiota structure throughout our lives is our diet. In addition,
gut bacteria play a crucial role in maintaining and proper
function of the immune system and intermediary metabolism.
Abnormalities in the intestinal bacterial composition (dysbiosis)
have been associated with many inflammatory, infectious,
autoimmune and metabolic diseases.

GM is constituted by bacteria, archaea, viruses and fungi,
interacting symbiotically with the host (88). However, hypercaloric
diet (HCD) and obesogenic habits alter the microbiota-host
relationship, affecting its composition and interaction with the
organism (89). A growing body of evidence in this area has
centered on comparing energy and body fat storage in germ-free
mice with transplantedmicrobiota of wildmice or obese individuals.
Thefindingswere that although themicemaintained the samediet in
both cases, there was a substantial increase in adiposity and IR
development after microbial transplantation, which could be
attributed to the role of the microbiota in calorie extraction and
absorption (90–92). Although the possible mechanisms triggered by
HCD and obesity involved in the GM-AT axis interaction have not
been fully elucidated yet, specific hypotheses have been proposed to
explain these findings.

Significant among these theories is the influence of microbial
products on AT. In physiological situations, the intestinal wall has
selective permeability due to the tight junction proteins between
enterocytes; however, an HCD can decrease expression of these
proteins and allow passage of lipopolysaccharides (LPS), bacterial
products of gram-negative bacteria (93–95). Once in circulation,
LPS spread throughout the body and act on type 4 toll receptors
(TLRs) located in AT adipocytes and immune cells (96), activating
pathwaysdependentonmyeloiddifferentiation factor 88- (MyD88-
) and TIR-domain-containing adapter-inducing interferon-b
(TRIF). This process activates the nuclear translocation of NF-kB
and the subsequent release of pro-inflammatory substances,
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contributing to the typic low-grade inflammation seen in SickAT
(97, 98). Furthermore, it has been reported that LPS/TLR4 pathway
activation can decrease WAT browning (99) and adaptive
thermogenesis (100). Another interesting observation is that
GD can increase permeability by activating the intestinal
endocannabinoid system, acting on its CB1 receptors associated
with obesogenic habits (101).

Likewise, several commensal bacteria species of the GM
ferment indigestible carbohydrates and fiber to obtain energy
by forming short-chain fatty acids (SCFA) (102–104), mainly
acetate, butyrate and propionate. These metabolites have key
roles in energy metabolism (105) and immunomodulation (106),
by acting on the family of free fatty acid receptors (FFAR),
especially FFAR2 (GPR43) and FFAR3 (GPR41), located in
gastrointestinal, nervous, and AT tissue (107). Therefore, GD
present in obese individuals may lead to changes in SCFA levels
and, by extension, SickAT-related metabolic alterations. Higher
SCFA production has been reported to promote lipogenesis by
activating carbohydrate responsive element-binding protein
(ChREBP) and sterol regulatory element-binding transcription
factor 1 (SREBP1), favoring weight gain in animals models (108,
109). Similarly, studies have shown that SCFAs can inhibit
fasting-induced adipocyte factor (FIAF), which can suppress
enzyme lipoprotein lipase (LPL) activity and thus increase
triacylglycerol (TAG) storage and accumulation in AT (90, 91).

Additionally, SCFAs stimulates peptide YY (PYY) and
glucagon-like peptide 1 (GLP-1) secretion, which in turn slow
down the intestinal transit time and thus increase nutrient
absorption (109, 110), influencing appetite control (111). Other
GT-AT axis-related mechanisms such as the TMA/FMO3/TMAO
signaling pathway (112), nucleotide-binding oligomerization
domain-containing 1 (NOD1) and NOD2 (113) proteins, and
modulation of the miRNA-181 family (114) have also been
explored in the context of obesity and its possible implications
in the switch to SickAT. However, given the lack of a proven causal
link between microorganisms, their products and specific
mechanisms in humans, together with the heterogeneity of GT
and the fact that Bacteroidetes and Firmicutes are predominant in
both obese and healthy individuals (115), further research is
warranted in this area.
3 INTERCELLULAR SIGNALING BETWEEN
ADIPOCYTES AND MYOCARDIAL CELLS

3.1 Adipokines
3.1.1 Leptin
Leptin is a peptidic hormone secreted by AT, so peripheral leptin
levels tend to remain directly proportional to AT volume (116).
Consistent with this finding, obese patients show elevated leptin
levels, but signaling defects mean that appetite suppression is
reduced or nullified (117). Thus, obesity-related hyperleptinemia
has been suggested as an important factor in CVD genesis (118).
From a molecular perspective, leptin plays a role in atherosclerosis
initiation by the hyper-production of reactive oxygen species
(ROS) in endothelial cells (119). The explanation of this
Frontiers in Endocrinology | www.frontiersin.org 5
phenomenon relies on increased fatty acid oxidation via protein
kinase A stimulation, which increases MCP-1 production,
facilitating macrophage infiltration into the sub-endothelial
(120). Furthermore, in vitro studies have shown that leptin
increases cholesterol uptake in macrophages by ACAT1
modulation (121). These results match with clinical findings
obtained in other studies; indeed, leptin levels are correlated
with markers of atherosclerosis such as the intima-media
thickness of the carotid artery (122) and likewise with the
severity of coronary artery disease (CAD) (123).

It has also been hypothesized that leptin can induce
cardiomyocyte hypertrophy (124). This effect seems mediated
by multiple mechanisms, such as increased endothelin 1 (ET-1)
and ROS production in cardiomyocytes in response to leptin
levels (125). Another theory is that leptin activates the mTOR
(126) and PPAR-a signaling pathways (127). Consistent with the
above, clinical studies have shown a positive correlation between
serum leptin levels and left ventricular thickness in obese or
insulin-resistant patients (128). In contrast, another study
conducted in a murine model proposes that leptin exhibits
antihypertrophic properties. Based on these findings, mice with
left ventricular hypertrophy reverted to normal ventricular
function when normal leptin levels were restored (129).

Nonetheless, rather than a direct consequence of restored
leptin levels, these findings may stem from reversing metabolic
alterations inherent to leptin deficiency, so these results should be
interpreted cautiously. On the other hand, the antihypertrophic
properties associated with leptin levels have been reported in some
studies (130–132). In conclusion, it remains uncertain whether
cardiac hypertrophy is due to leptin pro-hypertrophic action or is
instead an effect of resistance to leptin antihypertrophic action on
cardiac remodeling.

3.1.2 Interleukin 6
As AT produces around a third of circulating IL-6, it can be
considered an adipokine (133); however, its role in cardiomyocyte
function is somewhat controversial. In acute phases, IL-6 signaling
has been attributed a cardioprotective effect by inducing anti-
apoptotic pathways and conferring protection against OS (134).
However, IL-6 also decreases myocardial contractility and
eventually increases nitric oxide (NO) production may be
through inducible nitric oxide synthase (iNOS) activation (135,
136). Likewise, a study in animals reported no significant effects of
treatment with IL-6 on left ventricular remodeling (137), while
another study found that IL-6 signaling blockade suppresses
myocardial inflammation and ventricular remodeling (137).
Since human and murine IL-6 show only 41% similarity, animal
studies should be approached with caution. Regarding human
studies, elevated IL-6 levels have been correlated with ventricular
dysfunction (138), heart failure, arrhythmias and worse clinical
outcomes (139), indicating a need for further study to clarify the
role of IL-6 in CVD.

3.1.3 Adiponectin
Under SickAT conditions, adiponectin secretion is considerably
reduced, impacting negatively on cardiovascular function (140). On
the other hand, normal adiponectin levels have been shown to
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improve cardiomyocyte dysfunction in animal models, probably
due to mechanisms related to IRS-1 and the c-Jun pathway (141).
Furthermore, adiponectin is necessary to activate PPARg signaling,
which confers protection against myocardial hypertrophy and
cardiac remodeling (142). Likewise, adiponectin inhibits iNOS
and NADPH oxidase expression, decreasing OS under ischemic
conditions (143). On a different level, adiponectin stimulates COX-2
expression and prostaglandin E2 synthesis, conferring
cardioprotective and anti-inflammatory properties (144).

Clinically, hypoadiponectinemia is independently associated
with ED (145), while normal adiponectin levels are associated
with a lower risk of ischemic events in men (146). Conversely,
low adiponectin levels positively correlate with left ventricular
hypertrophy, regardless of age or other metabolic factors (147).
However, a systematic review found no significant relationship
between adiponectin levels and cardiovascular mortality, and a
10% increased risk of death from any cause was reported (148).
This finding requires considering concurrent situations such as
kidney failure and age-related adiponectin resistance, leading
to bias when analyzing different populations (149, 150).
Nonetheless, the prevailing view in the literature is that
adiponectin confers cardioprotection at normal concentrations,
while hypoadiponectinemia is related to an increased risk of
developing ED as well as myocardial dysfunction.

3.2 BCAAs
Branched-chain amino acids (BCAAs), valine, leucine and
isoleucine, are essential amino acids playing a critical energetic
role in different tissues, including myocardial cells and
adipocytes (151). For example, in physiological circumstances,
adipocytes oxidize BCAAs as an important energy substrate;
however, different stimuli or organic conditions such as insulin
resistance, obesity or cardiovascular disease cause adipose cells
reprogramming, reducing BCAA metabolism in the heart, AT
and liver (152–154).

The mechanisms underlying these changes have not been
fully elucidated yet; however, epigenetic changes such as PP2Cm,
KLF15, or GRK2 gene expression during heart disease could
modify the cells’ metabolic profile. Subsequently, alterations in
BCAA catabolism and use caused by these metabolic changes
could lead to rising arterial amino acid levels (27, 153). Likewise,
AT inflammation has been linked to tricarboxylic acid cycle
modifications, resulting in reduced BCAA catabolism and use,
which provides an alternative explanation for the accumulation
of amino acids in plasma (155, 156) (Figure 2). These variations in
local and organic BCAA concentrations lead to chronic mTOR
receptor expression in myocardial cells, and thus, autophagy
suppression pathways induction, alterations in insulin sensitivity
and tissue transport, as well as protein synthesis pathway
activation, promoting the inhibition of autophagy protective
functions, by modifying the bioenergetic heart homeostasis and
cardiac hypertrophy stimulation, respectively (157).

Given these findings, it is not surprising that a correlation
between heart failure and elevated BCAA levels has been found in
numerous studies (152, 158). For example, a clinical trial
conducted by Peterson et al. evaluated total amino acid
concentrations in patients with heart failure, finding them to be
Frontiers in Endocrinology | www.frontiersin.org 6
abnormally high (159). Similarly, results reported by Kato et al.
indicated elevated plasma amino acid levels as a consequence of
metabolic changes in sodium-sensitive hypertensive rodents (160).
In contrast, a clinical trial conducted by Aquilani et al. reports a
decreased BCAA levels in patients with chronic heart failure
compared to healthy individuals. Although these results could
seem contradictory, factors such as the site of amino acid
quantification and the variability in BCAA levels due to both
duration and severity of pre-existing disease could explain the
differences between findings (161). In this regard, AT and cardiac
tissue exert a reciprocal influence on each other in various
pathological scenarios via modifications in BCAA catabolism
and consumption (154–156, 162).
3.3 Cardiokines
The heart is conventionally viewed as a contractile organ acting as
a muscular pump to provide nutrients to the body (163). Beyond
these functions, however, it can exert regulatory actions on other
organs, such as the kidney, liver or AT (164). These modulatory
activities are carried out mainly through molecules synthesized
and secreted by the heart, known as cardiokines (165–168).

To date, it has identified up to 16 cardiokines, which are thought
to exert homeostatic functions related to growth, cell death, fibrosis,
hypertrophy and cardiac remodeling. In addition, although these
molecules have predominantly paracrine and autocrine functions,
certain cardiokines show endocrine mechanisms of action, allowing
them to act on distant tissues (169). Such is the case of the firsts
cardiokines identified, known as atrial (ANP) and brain (BNP)
natriuretic peptides (NPs) (164, 170). Besides their participation as
blood pressure regulators, both peptides play a critical role in
modulating AT energy metabolism (171).

In this way, different stimuli such as ischemia, reperfusion,
OS, hemodynamic stress, and cardiac hypertrophy can trigger
NP synthesis and release by different cardiac cells into the
circulation and ultimately reaching the AT (172). In this tissue,
NPs bind to the NPR-A receptors, activating the guanylyl cyclase
and cGMP formation. This process, in turn, activates the PKG,
an enzyme responsible for phosphorylating key factors such as
UCP-1, PPARGC1A, CYCS, PRD1-BF 1 and RIZ1, inducing
white adipocyte browning, increasing lipogenesis, mitochondrial
biogenesis and lipid oxidation (171, 173).

Collectively, these phenomena have a double effect. Fatty
acids are released into the bloodstream as energy substrates to
compensate for the low heart contractility observed during the
abovementioned pathological scenarios (174), while increased
mitochondrial production, thermogenesis, and fatty acid
oxidation promote weight loss (175, 176). These reports were
verified by other studies showing abnormally elevated NP
concentrations during CVD and decreased levels of these
peptides in obese individuals (164, 177). For example, in one
study carried out by Kovacova et al. (29), the NPRR expression
was significantly lower in obese than normal-weight individuals.
These findings replicated those obtained in studies carried out in
humans and murine, wherein plasma and cardiac levels of both
BNPs and ANPs were significantly lower in obese than normal-
weight subjects (175, 178).
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3.4 miRNAs and EVs
miRNAs are small, non-coding RNA molecules functioning as
regulatory agents in numerous physiological and pathological
processes by participating in post-transcriptional mRNA and
translation into protein processes (179, 180). These molecules are
synthesized in response to a wide range of stimuli by different
tissues (181), among which AT and EAT are responsible for the
production and release of multiple miRNA varieties (14, 182).

Most miRNAs on EAT operate through autocrine fashion and
have been implicated in various AT processes such as adipocyte
differentiation, fatty acid metabolism, cholesterol homeostasis,
adipogenesis, browning and inflammation (183–185). Other
miRNAs are released into the circulation via exosomes, from where
they travel to and penetrate the heart or other distant organs (186).
Although it has been established that EAT releases differentmiRNAs
towards the heart in response to tissue dysfunction or certain specific
stimuli (13), but the functions and underlyingmechanisms of action
have not been fully characterized. Nonetheless, recent studies have
identified new miRNAs and their potential role in the pathogenesis
and development of heart diseases (12, 187, 188).

In this vein, miRNAs have been implicated in atrial fibrillation
(AF), as demonstrated in the study carried out by Liu et al. (189),
wherein miR-320d were transported in vitro by exosomes to FA
cardiomyocytes, revealing enhanced cell viability and decreased
post-transfection cardiomyocytes apoptosis, reversing several
FA characteristic effects by inhibiting factor STAT3. Likewise,
Frontiers in Endocrinology | www.frontiersin.org 7
a possible cardioprotective role has been suggested tomiR-146a due
to an inhibitory effect on early growth response factor-1 (EGRF1)
in suppressing typical post-MI phenomena such as apoptosis,
inflammatory responses and cardiac fibrosis (190). Similar results
were obtained by Luo et al., in which miR-126 overexpression
in hypoxic H9c2 cells led to reduced local inflammation, pro-
fibrotic protein expression, and microvasculature and cell
migration, thus mitigating the effects of cardiac injury in the
infarcted area (191).

Numerous miRNAs play a positive role in some cardiac
pathologies beyond acute myocardial infarction (AMI) and AF,
including CAD. For example, it has been shown that during
CAD progression, miRNA-3614 expression is downregulated in
EAT, which produces an inhibitory effect on factors such as
TRAF6, which regulates immune cell recruitment and activation
as apoptosis and cardiac remodeling during myocardial ischemia
(189, 192). In this context, a study by Zou et al. identified miR-
410-5p and its promoting effects on cardiac fibrosis in mice with
regular diets by silencing Smad7; concurrently, miR-410-5p
demonstrated anti-fibrotic effects in mice fed high-fat diets
(193). These results suggest a dual role for miRNAs in
cardiovascular pathologies; besides the cardioprotective role of
some miRNAs, these molecules can exert harmful effects on
cardiac tissue, promoting effects such as local inflammation,
hypertrophy, remodeling and cardiac fibrosis in different
CVDs (183, 194–198).
FIGURE 2 | Heart and Adipose Tissue Crosstalk: Key Messengers. Cardiokines: stimuli such as cardiac ischemia, reperfusion, oxidative and hemodynamic stress
stimulate the production of cardiokines, which signaling in an endocrine and paracrine mechanism to the adipose tissue promoting weight loss by increasing
thermogenesis and both the release and oxidation of fatty acids. Adipose tissue dysfunction is a stimulus for miRNAs release, which travel through the bloodstream
to the myocardial tissue inside exosomes, exerting cardioprotective against myocardial infarction, coronary artery disease and atrial fibrillation. On the other hand,
obesity, IR and cardiovascular diseases decrease BCAAs oxidation in adipose tissue, which decreases autophagy with heart hypertrophy and, finally, the alteration of
the bioenergetic homeostasis of the heart. FA, Fatty Acids; AT, Adipose Tissue; CV, Cardiovascular; IR, Insulin resistance.
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4 NON-PHARMACOLOGICAL APPROACH
TO ADIPOCYTE-MYOCARDIOCYTE
DEFECTIVE SIGNALING: IMPACT
OF LIFESTYLE

Preclinical and clinical evidence suggests that positive lifestyle
changes derived from increased PA and NI could improve the
above-described pro-inflammatory metabolic status of obese
patients, highlighting their utility as possible non-pharmacological
therapeutic strategies to manage obesity and cardiovascular risk.

In this regard, studies suggest that PA reduces circulating levels
of insulin, leptin, and pro-inflammatory cytokines and raise
adiponectin and apelin concentrations (199–202). In addition,
increasing PA has been linked to heightened endothelial NOS
(eNOS) expression and iNOS expression reduction (199, 203).
These findings suggest that PA as a strategy helps restore a healthy
metabolic state at the preclinical level.

Additionally, clinical studies have reported an anti-
inflammatory, cardioprotective and slimming effect of PA. For
example, a study in obese men showed that exercise was more
effective than diet in reducing body weight (BW), improving the
systemic inflammatory profile and IR and circulating levels of
adipokines (204). Likewise, a study conducted in obese patients
with T2DM subjected to dietary restriction and aerobic exercise
reported that after a 3-month intervention, adiponectin levels rose
while BMI and TNF-a, IL-6 and leptin levels fell significantly (205).

Concerning the different intensities of PA, a clinical trial
demonstrated that moderate exercise combined with calorie
restriction aided in normalizing adiponectin, leptin and resistin
levels in obese adolescents (206). Furthermore, a meta-analysis
performed by Maillard et al. (207) reported that high-intensity
interval training effectively reduced SCAT and VAT. Similarly,
anothermeta-analysis found that bothmoderate andhigh-intensity
PAhave a similar effect onweight reduction andbody composition;
however, results were seen more quickly when performing high-
intensity exercise (208). Therefore, besides its anti-inflammatory
properties, exercise can reduce BW, indirectly counteracting
SickAT defective signaling by modifying its composition.

Studies have also demonstrated that PA has a regulatory effect
on circulating microRNAs in individuals with cardiometabolic
abnormalities. In this context, a clinical trial showed that
circulating levels of miR-192 and miR-193b (associated with a
prediabetic state) were modified after 16-week exercise
intervention (209). Along similar lines, a combined aerobic
and resistance exercise program in obese patients for three
months was associated with significantly decreased levels of the
inflammatory miRNA miR-146a-5p (210).

Aside from the weight loss achieved with exercise, dietary
interventions have also been shown to positively impact AT and
CVS crosstalk. In this regard, it has been proven that caloric
restriction in the rat diet causes significantly reduced expression
of iNOS, TNF-a and IL-1b in PVAT (211). Furthermore,
another study conducted in rats showed that calorie control-
induced weight loss was associated with improved endothelial
NOS function, reduced TNF-a levels and normalized plasma
adipokines y hormones levels such as leptin and insulin (212).
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Therefore, diet is a rationale tool to improve the cardiovascular
functionality of the PVAT.

In another study, Kim et al. showed that intermittent fasting
(IF) with an isocaloric diet increased VEGF expression in WAT,
favoring macrophage polarization towards the M2 phenotype,
which is linked to increased thermogenesis and AT browning
(213). In this regard, a clinical trial in obese patients reported
that IF combined with caloric restriction and liquid meals
promotes significant BW loss and improves risk indicators for
CAD (214). Furthermore, other studies conducted by the same
research group (215) and Trepanowski et al. (216) were able to
show that in addition to reducing BW, the abovementioned diet
decreases levels of leptin IL-6, TNF-a and insulin-like growth
factor-1 (IGF-1). These results point to IF and low-calorie diets
as a possible strategy to manage AT visceral adiposity and
secretory profile, owing to their cardioprotective effect.

Regarding the role of the nutritional maneuvers approach on
circulating microRNAs, Hsieh et al. (217) showed through a
preclinical study that a low-fat diet could reverse obesity-
associated inflammatory miRNA profiles via BW reduction.
Consistent with this finding, evidence in humans suggests that
BW loss achieved by very-low-calorie NI in obese women (218)
or protein-rich diets in obese men (219) allow positive
modulation of circulating levels of different miRNAs such as
miR-34a, miR-208, miR-193a, miR-223, miR-320, miR-433,
miR-568 and miR-181a.

Likewise, preclinical and clinical studies have shown the
prebiotic and probiotic effects in reducing cardiovascular risk
by leptin resistance (220) and leptin level reductions (221, 222).
In addition, an adiponectin increase (223, 224) and lowering
both apelin (225) and ANP levels (226) have been consistently
reported, a fact attributed to HCD-induced GD correction and
thus a reduced LPS-induced endotoxemia and SCFA levels.
Likewise, 3-n PUFA supplementation has been associated with
recovery of the adipokine and cardiokine profile, resulting in a
healthier cardio-metabolic state. In this context, studies in
animal models and humans have linked supplements
administration with a significant reduction in leptin (227, 228),
follistatin-like 1 (229) and BNP levels (230), and adiponectin
increase (231). Finally, polyphenols such as lycopene, resveratrol
and curcumin have also been linked to improved inflammatory
and adipokine profile, body composition and cardiac fibrosis/
hypertrophy in study subjects (232–235).

These data suggest that PA and different NI, either alone or in
combination, are associated with the upregulation of adipokines,
cardiokines, miRNAs and other components associated with
crosstalk between AT and CVS. Therefore, these strategies are
beneficial in reducing cardiovascular risk in obese patients due to
their mechanisms capable of counteracting the characteristic
pro-inflammatory state of SickAT.
5 CONCLUSIONS

Adipose tissue is a multifunctional exhibiting well-characterized
inter-organ paracrine and endocrine networking, including
myocardial tissue communication. Obesity is characterized
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by metabolic changes in SickAT caused by a hypoxic
microenvironment due to adipocyte hypertrophy driving to
immune cell infiltration and a systemic pro-inflammatory
state affecting target cells such as cardiomyocytes. Excessive
adipokines, microRNA, BCAAs characterize SickAT defective
signaling, and other pro-inflammatory substances release
altering myocardial cells function and, consequently, CVD
development. Likewise, heart cells can also alter AT signals,
thereby causing a vicious cycle that fuels meta-inflammation.
Under this premise, lifestyle changes such as PA, low-calorie
diets, IF, and food supplementation are fundamental non-
pharmacological therapeutic tools to combat obesity and CVD
due to their identified regulatory mechanisms in AT and
CVS signaling.
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7. Rodrıǵuez A, Becerril S, Ezquerro S, Méndez-Giménez L, Frühbeck G.
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Bermúdez et al. The Sick Adipose Tissue
31. Leitner BP, Huang S, Brychta RJ, Duckworth CJ, Baskin AS, McGehee S,
et al. Mapping of Human Brown Adipose Tissue in Lean and Obese Young
Men. Proc Natl Acad Sci USA (2017) 114(32):8649–54. doi: 10.1073/
pnas.1705287114
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Luminal Metabolites on the Colonic Epithelium and Physiopathological
Consequences. Amino Acids (2007) 33(4):547–62. doi: 10.1007/s00726-006-
0477-9

104. Kim CH. Microbiota or Short-Chain Fatty Acids: Which Regulates Diabetes?
Cell Mol Immunol (2018) 15(2):88–91. doi: 10.1038/cmi.2017.57

105. Postler TS, Ghosh S. Understanding the Holobiont: How Microbial
Metabolites Affect Human Health and Shape the Immune System. Cell
Metab (2017) 26(1):110–30. doi: 10.1016/j.cmet.2017.05.008

106. Ratajczak W, Rył A, Mizerski A, Walczakiewicz K, Sipak O, Laszczyńska M.
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