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Abstract
Purpose: The diagnosis of cataract is mostly clinical and there is a lack of objective and specific
tool to detect and grade it automatically. The goal of this study was to develop and validate a
deep learning model to detect and localize cataract on Swept Source Optical Coherance Tomog-
raphy (SS-OCT) images.
Methods: We trained a convolutional network to detect cataract at the pixel level from 504 SS-
OCT images of clear lens and cataract patients. The model was then validated on 1326 different
images of 114 patients. The output of the model is a map repreenting the probability of cataract
for each pixel of the image. We calculated the Cataract Fraction (CF), defined as the number of
pixel classified as “cataract” divided by the number of pixel representing the lens for each
image. Receiver Operating Characteristic Curves were plotted. Area Under the Curve (ROC AUC)
sensitivity and specitivity to detect cataract were calculated.
Results: In the validsation set, mean CF was 0.024 § 0.077 and 0.479 § 0.230 (p < 0.001). ROC
AUC was 0.98 with an optimal CF threshold of 0.14. Using that threshold, sensitivity and specific-
ity to detect cataract were 94.4% and 94.7%, respectively.
Conclusion: We developed an automatic detection tool for cataract on SS-OCT images. Probabil-
ity maps of cataract on the images provide an additional tool to help the physician in its diagnosis
and surgical planning.
© 2022 Spanish General Council of Optometry. Published by Elsevier España, S.L.U. This is an
open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-
nc-nd/4.0/).
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Introduction

Cataract surgery is one of the most performed surgeries
globally annually. Its diagnosis is still mostly clinical today
based on slit-lamp examination using the Lens Opacities
is (P. Z�eboulon).
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Classification System III1 and visual acuity. Objective grading
could be of great use in clinical practice. Indeed, slit lamp
assessment and quantification of the lens opacity is subjec-
tive and lacks reproducibility. Visual acuity is often a poor
measurement of optical quality and does not fully describe
the impact of cataract on the patient’s vision.

In many cases, subtle cataracts can produce a significant
visual impairment despite relatively preserved visual acuity.
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This dissociation between the clinical aspect of the lens and
the patient’s symptoms might postpone the surgery or might
trigger more tests in search of other causes of decreased
vision. Automatic cataract detection would also be interest-
ing in remote settings with limited access to medical care to
screen patients and refer them when surgery is needed.
Very few objective and automatic tools exist to detect and
grade cataract severity. Scheimpflug images have been used
to measure the nucleus density.2 Despite interesting results,
it does not quantify the anterior cortex or posterior subcap-
sular cataracts, which are often responsible for higher visual
discomfort. Double pass aberrometry is an interesting tech-
nology that measures light scattering in the ocular media. It
produces a sensitive and quantitative measurement well
correlated with visual acuity and quality of vision.3,4 How-
ever, it is incapable of discriminating between scattering
due to the lens or to other media such as the cornea or the
vitreous. It also requires the spherocylindrical correction of
the patient and is unusable in case of high myopia. Several
studies have tackled the problem of cataract detection using
Deep Learning (DL), either using slit lamp5 or fundus photo-
graphs6 with promising results. These approaches are, how-
ever, potentially flawed by the imaging technique used
themselves. Indeed, slit lamp photograph requires some
training and is operator-dependent. Fundus photographs can
be affected by any ocular media opacity, which could pro-
duce false-positive cataract cases. Recently, Swept-Source
Optical Coherence Tomography (SS-OCT) has been used to
quantify cataract severity using the lens average pixel
density.7�9 Given its longer wavelengths, SS-OCT is repro-
ducible and is less affected by corneal opacities than other
technologies. Recent SS-OCT devices produce high-resolu-
tion lens images with an unmatched level of detail. We
recently showed how DL could detect corneal edema at the
pixel level on OCT images.10,11 This study aims to develop
and validate a DL model to detect cataract at the pixel level
on SS-OCT images following a somewhat similar methodol-
ogy.
Methods

This retrospective study was conducted at the Rothschild
Foundation Hospital and was authorized by our Institutional
Review Board. It agrees with the tenets of the declaration of
Helsinki. Informed consent was obtained from all patients.

Patients and images

All images were exported from the Anterion (Heidelberg,
Heidelberg, Germany) SS-OCT. The Metrics app was used,
which produces six radial scans of length 16 mm. The image
resolution was 2150 £ 1824 pixels. Axial and transverse reso-
lutions are under 10 mm and 30mm, respectively.

Included patients belonged to either one of the following
clinical categories: clear lens or cataract. The presence of
any corneal disease was an exclusion criterion. Clear lens
patients were preoperative of refractive surgery and had a
Best Corrected Visual Acuity (BCVA) of at least 20/20.
Cataract patients had a clinical cataract diagnosis
responsible for significant visual discomfort and were
scheduled for surgery. All kind of cataracts were
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included, and four experienced cataract and refractive
surgeons of the department performed the patient inclu-
sions (PZ, CP, WG and DG).

The first set of patients constituted the development set
which was randomly split into a training set and a test set
with an 80%/20% ratio at the patient level, not at the image
level. Both eyes of each patient were included in the same
set. The development set was used to train the model and
test its performance during training. All images of the devel-
opment set were manually segmented. All lens pixels of a
given image were labeled “Normal” for the clear lens
patients or “Cataract” for the cataract patients. All other
pixels were labeled as “Background”.

A separate set of patients constituted the validation set
which was used to validate the model on unseen data.

For each patient, we also collected the age and logMAR
BCVA. Clear lens patients’ BCVA was reported as 20/20 even
if it was measured higher as higher acuity values might not
have been tested for all patients.

Preprocessing

All images were cropped to a 1100 £ 1100 pixel square
around the lens using fixed coordinates for each image. The
resulting cropped image was then rescaled to 0.5 times its
original size for memory purposes. No other preprocessing
technique was applied.

Deep learning methodology

A U-Net12,13 model was trained with a Stochastic Gradient
Descent optimizer, a fixed learning rate of 0.001, and a
cross-entropy loss function. Data augmentation was per-
formed for each image and epoch with a random rotation
between -15° and 15°, a random horizontal flip.

During training, the model’s performance was evaluated
with individual Dice coefficients for each pixel class. The
training was stopped as soon as both the training and the test
set reached satisfactory Dice values to prevent overfitting.

Model training was performed using Python 3.7 and
PyTorch library.

Metrics and statistics

’’The Cataract Fraction (CF) defined as the number of pixels
classified as ‘Cataract’ ‘Cataract’ divided by the total num-
ber of pixels representing the lens was calculated for each
image. CF was averaged over all radial scans available for
each eye.

The comparability of the development set and the valida-
tion set regarding age and logMAR BCVA was tested using
Mann Whitney U test as data were not normally distributed
according to the ‘D’Agostino Pearson test. Mean CF was com-
pared between “Normal” and “Cataract” groups using Mann
Whitney U test for the same reason. Receiver Operating
Characteristic Curves were plotted and Area Under the
Curve (ROC AUC), optimal CF threshold, sensitivity, and
specificity to detect cataract were calculated for each set.

The pixel-wise output probabilities of the network for the
“Cataract” class are represented color coded overlayed on
the original uncropped images for several examples. Hotter
colors mean a higher probability of cataract.
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A p value below 0.05 was considered as significant.
Statistic tests were performed using Python 3.7 and SciPy

libraries.
Figures were created using Matplotlib library.
Results

504 images of 84 eyes of 43 patients were included in the
development set, and 1326 images of 221 eyes of 114
patients in the validation set. The main characteristics of
patients of each group are presented in Table 1.

LogMAR BCVA were comparable for clear lens patients (p
>0.05) and cataracts patients (p =0.10) between both set.
Age was comparable for cataract patients of both sets
(p=0.07). However, a significant age difference was observed
in clear lens patients of both sets (p=0.01).

Training was conducted for 21 epochs. Training curves of
the Dice coefficients during training for each set are pre-
sented in Fig.1.

In the development set, the mean Cataract Fraction (CF)
was 0.002§0.003 and 0.625§0.236 (p< 0.001) for the clear
lens and cataract patients, respectively. It was 0.024§0.077
and 0.479§0.230 (p<0.001), respectively, in the validation set.

In the development set, ROC AUC was calculated at 1.00,
with an optimal CF threshold value of 0.19. Using that
threshold, sensitivity and specificity to detect cataract were
both 100%.

In the validation set, ROC AUC was 0.98 with an optimal CF
threshold of 0.14. Using that threshold, sensitivity and speci-
ficity to detect cataract were 94.4% and 94.7%, respectively
(Fig.2).

Examples of the ’model’s result on different nuclear and
cortical cataract cases are provided in Fig.3.
Discussion

We developed a deep learning model to detect cataract on
SS-OCT images with good diagnostic performances.

Cataract detection and grading is classically performed
clinically using the Lens Opacities Classification System III.1

However, reliable automatization of the process would be
very useful both for telemedicine and in routine practice for
cataract surgeons. Indeed, a precise and repeatable assess-
ment of the ’lens’ opacity would allow for a better under-
standing of the ’patient’s discomfort in early stages, an
objective measurement of ’cataract’s progression and could
help surgical planning. Also, in some cases of associated
Table 1 Main patients’ characteristics in the different groups.

Development se

Clear lens C

Images, N 263 2
Eyes, N 43 4
Patients, N 21 2
Age (mean § std) 38.0 § 10.0* 7
logMAR BCVA (mean § std) 0.00 § 0.00 0

* p < 0.05
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corneal disease or vitreous opacity, it can be hard to deter-
mine the impact of the lens opacity on the ’patient’s vision.
A cataract diagnosis tool unaffected by such conditions
would be precious to our practice.

SS-OCT longer wavelengths make it more robust to cor-
neal diseases. Its combination with deep learning may con-
stitute the best option for such a tool so far.

Few other methods have been described to assess lens
opacity objectively. Table 2 shows comapres the theoretical
advantges of each described or existing technique along the
6 following criteria: grading capability, abitilty to detect all
three kinds of cataract, specificity to the diagnosis of cata-
ract, interpretability of the result, robustness to corneal dis-
ease and finally inter-operator variability. We selected those
criteria because we believe they are the desired require-
ments for an objective cataract detection and grading tool.
We develop those elements for each tool in the following
section. It should be noted that some points are hypothe-
sized based on the physical properties of each device.

Scheimpflug tomography was the first objective tool used
for that matter with the PNS (Pentacam Nucleus Staging). It
provides a single numerical value, based on the pixel inten-
sity in the nucleus region. However, it is limited to the
nucleus density and does not consider the anterior and pos-
terior cortex, which are often responsible for more visual
discomfort. It is also limited in cases of severe nuclear cata-
ract.9 Despite those limitations, it is well correlated to clini-
cal nuclear opalescence, visual acuity, and contrast
sensitivity.2,3,14 It should be noted that results are probably
more affected thant SS-OCT in cases of corneal diseases
given the shorter wavelength used.

Ocular Scattering Index measured from the double pass
aberrometer HD-Analyzer, (Visometrics, Spain) provides a
single metric to quantify light scattering from ocular
media.15 It is well correlated to visual acuity, clinical lens
opacity grading and contrast sensitivity in cataract eyes.3,14

However, it is not reliable in cases of high myopia and is
affected by any ocular media opacity.16,17 Interpretability is
limited as it is not possible to know from which ocular struc-
ture the scattering arises.

SS-OCT have also been used to quantify cataract by using
lens pixels intensity. It is well correlated to clinical nuclear
opalescence and visual acuity.7�9 In a previous study, we
compared the diagnostic performances of the OSI, Average
Lens Density (ALD) measured on IOL-700(Carl Zeiss Meditec
AG) SS-OCT images, and Scheimpflug based nuclear staging.
In a cohort of 285 eyes, ALD had the best diagnostic perfor-
mance with a Receiver operating characteristic curves (ROC)
area under the curve (AUC) of 0.97. In the same cohort, OSI
t Validation set

ataract Clear lens Cataract

41 792 534
1 132 89
2 66 48
0.4 § 8.4 34.6 § 10.0* 73.4 § 11.5
.31 § 0.20 0.00 § 0.00 0.27 § 0.30



Fig. 1 Training curves for the training and test set for clear lens patients and cataract patients.

Fig. 2 Receiver operating characteristic curves for the devel-
opment and validation sets. AUC: Area under the curve; Dev:
Development set; Val: Validation set
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and Scheimpflug-based nuclear staging had ROC AUCs of 0.96
and 0.90 respectively. This thechnique can not, however,
distinguish the different kinds of cataracts.

In depth analysis of SS-OCT volumetric data has also been
described with promising results using a prototype
instrument.18

Two main approaches have been used recently to detect
and grade cataract using Deep Learning. The first uses slit
lamp photographs, while the second uses fundus photographs.
Using slit lamp photographs, Keenan et al. achieved similar or
better performances than human readers in grading all types
of cataracts.5 Lu et al. also describe a model to detect and
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grade cataract on slit lamp photographs. It achieved good
performances for cortical and nuclear cataract.19 Slit-lamp
photographs are, however, subject to inter-examinator vari-
ability and require a certain amount of training to achieve
good quality images. Using fundus photographs and a global-
local attention network, Xu et al. achieved a 90.64% classifi-
cation accuracy in detecting cataract.6 Fundus images have
the advantage of being widely accessible. However, they are
affected by any corneal or vitreous opacities and the pupil
diameter.In all cases, interpretability is limited to visualiza-
tion techniques calculated secondarily highlighting wich
region of the image allowed the classification by the model.
In the case of fundus imaging, the clinical relevance of such
technique is questionable.

Only two studies20,21 used deep learning combined with SS-
OCT images to detect and grade cataract. Both describe mod-
els to classify OCTscans in different stages of nuclear cataract
with good performance. However, in addition to assessing
nuclear cataracts only and disregarding cortical cataracts, it
should be noted that clinical grading is subjective, and mod-
els trained with such data will be biased and produce the
same kind of errors as humans. As previously, interpretability
is limited to the same visualisation techniques common for
deep neural networks. In the case of nuclear cataract staging,
this information is of limited interest.

We voluntarily did not use clinical grading as ground truth
categories for training as we believe it is highly subjective.
Instead, we only used the clinical diagnosis of cataract to
label all pixels of a given lens with the same label. Even
though some subjectivity exists in this labeling method, it is
limited as most ophthalmologists would agree on the defini-
tion of a significant cataract based on the association of the
patient’s symptoms, visual acuity and slit lamp examination.
We also used a segmentation model instead of a classifica-
tion model. This method ensures that interpretability is built



Fig. 3 Examples of our model’s results. For each case, the original image is on the left, and the model results overlayed on the orig-
inal image is on the right. Hot colors indicate a high probability of cataract. A and C are cases of cortical cataracts. B and D of nuclear
cataracts. E is a case of anterior cortical cataract and F is a case of cortical and posterior subcapsular cataract.

Table 2 Comparison of the theoretical advantages of objective cataract detection systems.

Our
approach

HD
Analyzer

PNS SS-
OCTALD

AI
Slit Lamp

AI Fundus
photograph

AI SS-OCT
classification

Grading ‘ @ @ @ @ @ @
Three types of cataracts @ @ ‘ ‘ @ ‘ ‘

Specific to cataract @ ‘ @ @ @ ‘ @
Interpretability @ ‘ @ @ @ ‘ ‘

Robust to corneal diseases @ ‘ ‘ @ ‘ ‘ @
Independent from user’s

experience
@ @ @ @ ‘ @ @

PNS: Pentacam Nucleus Staging
SS-OCTALD: Average Lens Density measured on IOL700 images.
AI Slit Lamp: Deep learning classification of Slit lamp photographs
AI Fundus photograph: Deep learning classification of Fundus photographs
AI SS-OCTclassification: Deep learning nuclear cataract classification using SS-OCT images.
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in the model by providing colormaps of the probability of
cataract without using any additional visualization tech-
nique. As cataracts might be heterogenous, our labeling pro-
cess could be characterized as noisy at the pixel levels. The
clear lens labeling, however, is rather pure. The combination
of our labelling process and a segmentation approach allows
the model to learn which part of the image has a higher
probability of presence of localized cataract or clear lens.

Eventhough the goal of the study was not to assess specif-
ically the model’s performance to detect each type of cata-
ract, the image outputs of the model seems promising for
that matter. Fig. 3 provides examples of local detection of
cataract in different cases of cataracts. Despite having no
S47
prior knowledge of the different layers of the lens, the
model seems to perform remarkably well in cases of isolated
nuclear or cortical cataract. Moreover, Fig. 3 F, shows the
correct detection of subcabsular cataract. A more thorough
evaluation will be included in a subsequent study.

We found a significant age difference between the devel-
opment and validation set clear lens patients. Although this
difference can be explained by sampling fluctuation given
the small size of the development set, it could constitute a
bias for the validation set’s result.

Despite having found an AUC of 1 for the development
set, we do not believe the model is overfitted. This is cer-
tainly due to less variance in the development set. The
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validation ’set’s results are in-line with clinical findings, and
no unexplainable results were observed.

Through error analysis, we found that the false-negative
cases were very localized cataracts in young patients, such
as polar cataracts. Some false-positive cases were from
unusual presentations of clear lens or rare artifacts. These
errors could certainly be reduced by increasing the training
set size to include more uncommon cases of both clear lens
and cataract patients. Other false-positive cases were prob-
ably due to age-related modifications of the lens. Indeed, in
some older clear lens patients, the model detected weak
signals of cataract in the nuclear region. Nuclear opacifica-
tion is a progressive process, and two 60-year-old patients
with 20/20 BCVA and similar nuclear opacity might not
exhibit the same subjective discomfort. For that matter, it is
impossible to define a clear cut-off between nuclear cata-
ract and clear lens.

The current version of the model is not built for cataract
grading, but rather for cataract detection and localization.
We aim to address the problem of cataract grading in a sub-
sequent study. Also, the model’s robustness to artifacts pro-
duced by corneal diseases will be tested in future works.
Finally, the model’s repeatability should also be evaluated.

We believe that the model’s built-in interpretability,
helps the clinician reading the images without providing a
definite categorical diagnosis and leaves the final diagnosis
to the physician. This could certainly aid younger surgeon
during their training but might be of limited use in it’s cur-
rent state for experienced surgeons.

In conclusion, we developed a deep learning model to
detect cataract at the pixel level on SS-OCT images. It is the
only OCT-based tool so far seemingly capable of detecting
and differentiating both nuclear and cortical cataract. In
that sens, it helps the physician reading the images and
could also be used in remote settings with telemedicine for
automated diagnosis.
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