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Abstract

Background: Recent studies showed that progenitor cells could differentiate into mature vascular cells. The main
physiological factors implicated in cell differentiation are specific growth factors. We hypothesized that simply by varying
the oxygen content, progenitor cells can be differentiated either in mature endothelial cells (ECs) or contractile smooth
muscle cells (SMCs) while keeping exactly the same culture medium.

Methodology/Principal Findings: Mononuclear cells were isolated by density gradient were cultivated under hypoxic (5%
O2) or normoxic (21% O2) environment. Differentiated cells characterization was performed by confocal microscopy
examination and flow cytometry analyses. The phenotype stability over a longer time period was also performed. The
morphological examination of the confluent obtained cells after several weeks (between 2 and 4 weeks) showed two
distinct morphologies: cobblestone shape in normoxia and a spindle like shape in hypoxia. The cell characterization showed
that cobblestone cells were positive to ECs markers while spindle like shape cells were positive to contractile SMCs markers.
Moreover, after several further amplification (until 3rd passage) in hypoxic or normoxic conditions of the previously
differentiated SMC, immunofluorescence studies showed that more than 80% cells continued to express SMCs markers
whatever the cell environmental culture conditions with a higher contractile markers expression compared to control (aorta
SMCs) signature of phenotype stability.

Conclusion/Significance: We demonstrate in this paper that in vitro culture of peripheral blood mononuclear cells with
specific angiogenic growth factors under hypoxic conditions leads to SMCs differentiation into a contractile phenotype,
signature of their physiological state. Moreover after amplification, the differentiated SMC did not reverse and keep their
contractile phenotype after the 3rd passage performed under hypoxic and normoxic conditions. These aspects are of the
highest importance for tissue engineering strategies. These results highlight also the determinant role of the tissue
environment in the differentiation process of vascular progenitor cells.
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Introduction

During embryogenesis, vasculogenesis is one of the first initiated

processes. Conversely in the adult, the new vessels formation is

initiated from the existent blood vessel ramifications. Data

accumulated in recent years indicate that the circulating

mononuclear cell (MNCs) fractions contain a population of bone

marrow derived cells called progenitor cells that contribute to the

neovascularization of injured vessels. Different authors [1–5]

suggested that these progenitor cells could differentiate in the

presence of different specific cytokines and angiogenic growth

factors (vascular endothelial growth factor (VEGF), platelet

derived growth factor BB (PDGF-BB)…), into mature and

functional endothelial (ECs) or vascular smooth muscle (SMCs)

cells depending on the added specific growth factors. During

wound healing, ischemia, vascular wall remodelling or tumour

development, the formation of new blood vessels is preceded by

the recruitment of MNCs at the injured sites which further

promote vasculogenesis [6–9]. Various authors investigated also

the role of the oxygen concentration on stem cells differentiation

and it was shown that hypoxia increased the production of

angiogenic growth factors such as transforming growth factor b1,
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PDGF-BB and VEGF [10–12]. The main physiological factors

implicated in cell differentiation are angiogenic growth factors (i.e:

VEGF, bFGF and IGF) [2,3,13] and a decrease of the oxygen level

in the tissue (hypoxia) [5]. Oxygen plays a main role in

physiological and pathological states [14]; it is a potent

biochemical signalling molecule with important regulation prop-

erties for cellular behaviour (migration, differentiation, prolifera-

tion…) [15–17]. However, the possible involvement of hypoxia in

MNCs differentiation into SMCs has never been demonstrated

and even mentioned up to now.

We hypothesized here that the only oxygen concentration

tuning combined with growth factors favouring ECs differentiation

(VEGF, FGF, EGF, IGF) [18] allow the differentiation of

circulating progenitor cells into mature ECs or contractile SMCs,

characteristic of mature vascular cells found in vivo.

We demonstrate that progenitor cells isolated from rabbit

fraction cultivated onto specifically coated solid substrates (either

by type I collagen: a compound of the arterial wall and known as

an ideal substrate for adhesion and proliferation of vascular

smooth muscle cells in vitro [2] or by a Polyelectrolyte

Multilayered Film architecture which previously demonstrated

an important speeding up of endothelial progenitor cells

differentiation into mature and functional endothelial cells [19])

in normoxic conditions (21% O2 atmosphere or 151 mmHg) lead

to mature ECs and to SMCs when cultivated in exactly the same

medium but under moderate hypoxic conditions (5% O2 or

36 mmHg). Whereas it is well established that the culture of

mature SMCs leads to a decrease of contractile markers associated

with a pathological phenotype [20–22], we focused on SMCs-like

cells obtained under hypoxia conditions and we checked the

preservation of the contractile phenotype after further cell

expansion (effect of passage number) and culture even under

normoxic conditions.

These experiments demonstrate clearly the deterministic role of

the oxygen content in vascular progenitor cells differentiation into

mature functional cells constituting the vascular wall (media and

intima).

Methods

1) Polyelectrolyte Multilayer Films (PEMs)
PEMs were built with cationic poly (allylamine hydrochloride)

(PAH, MW = 70 kDa), and anionic poly(sodium-4-styrene sulfo-

nate) (PSS, MW = 70 kDa) solutions (Sigma-Aldrich, France) as

Figure 1. Morphological aspect of differentiated cell. Optical phase contrast microscopy visualization of differentiated cells seeded on type I
collagen (A, B) and polyelectrolyte multilayer films (PEMs) (C, D) until confluence under normoxic (A, C) and hypoxic (B, D) environment.
Objective620, scale bar 55 mm. The morphological examination of the confluent cells showed cobblestone shape (A, C) in normoxia and a spindle
like (B, D) shape in hypoxia.
doi:10.1371/journal.pone.0005514.g001

O2 Controls Progenitor Cells
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previously described [19,23]. Briefly, PEMs were prepared on

glass coverslips (CML, Nemours, France) pretreated with 0.01 M

SDS and 0.12 M HCl for 15 min at 100uC and then extensively

rinsed with deionized water. Glass coverslips were deposited in 24-

well plates (Nunc, France). PAH-(PSS-PAH)3 films were obtained

by alternated immersion of the pretreated coverslips for 10 min in

polyelectrolyte solutions (300 mL) at 5 mg/mL in the presence of

10 mM Tris-(hydroxymethyl) aminoethane (Tris) and 150 mM

NaCl at pH 7.4. After each deposition, the coverslips were rinsed

three times during 10 min with 10 mM Tris and 150 mM NaCl at

pH 7.4. All the films were sterilized for 10 min by UV light

(254 nm).

2) Isolation and culture of Mononuclear Cells from
peripheral blood circulation

The experimental procedures were used in accordance with the

‘‘Principle of Laboratory Animal Care and the Guide for the Care

and Use of Laboratory Animals’’ (National Institute of Health

publication No. 80–23, revised 1978). Blood (50 mL) was collected

from white New Zealand rabbits (male, average weight 3–3.5 kg,

CEGAV, France) carotid into heparinised plastic syringes.

Peripheral Blood Mononuclear Cells (MNCs) were isolated using

a density gradient as previously described [19]. The cells were then

cultivated in endothelial basal medium (EBM-2: Lonza, Belgium)

supplemented with angiogenic growth factors (EGM-2-single-

Figure 2. Vascular cell phenotype characterization. The endothelial cell were characterized by the expression of specific markers: CD31 (A–D)
and von Willebrand Factor (E–H) and the smooth muscle cells by the expression of contractile markers: a- Smooth Muscle Actin (a-SMA: E–H), Smooth
Muscle Myosin Heavy Chain (SM-MHC: I–L) and Calponin (M–P). Images were obtained by confocal microscopy observation at cell confluence on both
coated surfaces (type I collagen and Polyelectrolyte Multilayer films (PEMs)) and cultivated under normoxic and hypoxic conditions. Objective640,
NA = 0.8, scale bars 75 mm. The figure showed the positive expression of specific ECs markers for cell differentiated under normoxic environment and
positive expression of specific contractile SMCs markers for cell differentiated under hypoxic environment.
doi:10.1371/journal.pone.0005514.g002

O2 Controls Progenitor Cells
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QuotsH Lonza, Belgium). Cells were counted using Trypan BlueH
and were seeded at a density of 16106 cells/cm2 in 24-well plates

containing glass coverslips coated either by Type I collagen 1%

(BD Biosciences, France) or a PEMs films, made of PSS and PAH

(Sigma, France) with a final PAH-(PSS-PAH)3 architecture

corresponding to 3.5 pairs of deposited PAH/PSS layers [19].

The cultures were placed in normal cell culture incubator at 37uC
in an atmosphere with 5% CO2 and 21% O2, (O2/CO2

incubator, Sanyo, France). After three days, the medium was

removed in order to discard unattached cells. The cells (CD34+,

CD133+ were identified previously [19]) were then placed under

hypoxia at 37uC, 5% CO2 and 5% O2 or under normoxia at

37uC, 5% CO2 and 21% O2 (control) and medium changed every

two days. The differentiation and morphological evolution of the

adherent cells were followed by Phase-contrast microscopy

observations (Nikon DIAPHOT 300, Japan).

3) Immunostaining for smooth muscle cells (SMCs) and
endothelial cells (ECs) specific markers

At confluence and after the third passage, cells were also

immunolabelled against SMCs and ECs specific markers. Three

antibodies were used to characterize the contractile SMCs

phenotype: i) Alpha Smooth Muscle Actin (a-SMA), ii) Smooth

Muscle Myosin Heavy Chain (SM-MHC) and iii) Calponin. Two

other antibodies were used for the ECs phenotype: i) CD31 ii) von

Willebrand factor (vWF) (all from Dako, France). Prior to the

immunolabelling with the intracellular antibodies (a-SMA, SM-

MHC, Calponin and vWF), the cells were fixed with paraformalde-

hyde (PAF) 4% (w/v in phosphate buffer saline) for 10 min and

permeabilized with Triton X-100 0.5% (w/v in distilled water) for

15 min. For CD31 labelling the second step (permeabilization) was

not performed. The cells were incubated for 45 min at 37uC with the

primary monoclonal antibodies, diluted at 1/50 in RPMI 1640

without phenol red, containing bovine serum albumin (BSA 0.5%,

w/v). After two washes with RPMI 1640, the secondary antibody

labelled with Alexa-FluorH 488 diluted at 1/100 was incubated for

30 min at 37uC. The cells were observed by fluorescence confocal

microscopy (LEICA DMIRE2 HC Fluo TCS 1-B, Germany) using

the 488 nm spectral line.

4) Immunostaining for extracellular matrix (ECM) proteins
At confluence, hypoxia differentiated cells were immunostained

for ECM proteins characterization via two specific proteins such as

i) laminin and ii) type IV collagen. The differentiated cells were

fixed with PAF 4% for 10 min and incubated for 45 min at 37uC
with the primary monoclonal antibodies, diluted at 1/50 in RPMI

1640 without phenol red, containing 0.5% BSA. After two washes

with RPMI 1640, the secondary antibody labelled with Alexa-

FluorH 488 diluted at 1/100 was incubated for 30 min at 37uC.

The cells were observed using fluorescence confocal microscopy

(LEICA DMIRE2 HC Fluo TCS 1-B, Germany).

5) Evaluation of the maintenance of the SMCs phenotype
In order to check that after a first step of culture under hypoxia, the

differentiation into SMCs was stable versus time, cells were further

cultivated either under hypoxia or normoxia. After differentiation the

Figure 3. Extracellular matrix synthesis. The confocal microscopy observations of Extracellular matrix protein: laminin (A, B) and type IV collagen
(C, D) of cells seeded on both coated surfaces (type I collagen and Polyelectrolyte Multilayer films (PEMs)). Objective640, NA = 0.8, scale bars 75 mm.
doi:10.1371/journal.pone.0005514.g003
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confluent cells cultivated on type I collagen and PEMs were amplified

and separated in two batches. The first batch was kept under hypoxic

condition (37uC, 5% CO2 and 5% O2) whereas the second batch was

placed in normoxic conditions (37uC, 5% CO2 and 21% O2). Cells

were then cultivated in these different conditions until the third

passage (P3) and mature SMCs from rabbit aorta cultivated under the

same conditions were used as control.

6) Fluorescence Activated Cell Sorting (FACS)
FACS analyses (EPICS XL, Beckman Coulter, France) were

performed to quantify the percentage of positive cells and the

fluorescence intensity of the specific contractile markers expressed

by the differentiated SMCs. After P3, FACS was performed to

identify intracellular antigens in cells. For that, trypsinized

differentiated cells were labelled as previously described. The

non-specific binding was evaluated by the incubation of cells only

with the second antibody. Within the differentiated cell area, as

determined by forward and sideward scattering, 10,000 events

were collected and the percentage of positive cells and the mean

fluorescence intensity (MFI) were determined.

7) Statistics
The data were expressed as mean6standard error of the mean

(s.e.m.) for each condition. Each experiment was repeated in

triplicate independently three times. Mean values were compared

with the unpaired t-test (Statview IV, Abacus Concepts Inc,

Berkley, CA, USA), in which p represents the rejection level of the

null-hypothesis of equal means.

Results and Discussion

Peripheral blood mononuclear cells (MNCs) fraction containing

progenitor cells was isolated and seeded in 24-well plates

containing glass coverslips coated with type I collagen or with a

Polyelectrolyte Multilayer Film (PEMs) at 16106 cells/cm2. We

used type I collagen known as an ideal substrate for vascular

progenitor cells culture [2] and PEMs for their high potentialities

to boost progenitor cell differentiation [19]. After 4 days of culture

in normoxic conditions, unattached cells were removed and the

adherent cells (CD34+, CD133+) were divided in two fractions and

placed under hypoxia (5% CO2 and 5% O2) or normoxia (5%

CO2 and 21% O2) until confluence (between 2 and 4 weeks). At

confluence and for both surface types, the phase-contrast

microscopy cell observation showed cobblestone morphology in

normoxic conditions (Figure 1A, 1C) and a spindle like

morphology in hypoxic conditions (Figure 1B, 1D).

In order to evaluate the cell phenotype of differentiated cells, we

checked the expression of specific markers of vascular cells (SMCs

and ECs) i.e. alpha-Smooth Muscle Actin (a-SMA), Smooth

Muscle Myosin Heavy Chain (SM-MHC) and Calponin known to

assess vascular SMCs differentiation and their contractile function

[2,24,25] and CD31 and von Willebrand Factor (vWF) for the ECs

phenotype evaluation [26,27]. As expected under normoxic

conditions, the confocal microscopy observations showed the

presence of positive cells for ECs markers [Figure 2A and 2E (for

type I collagen coating), 2C and 2G (for PEMs coating)] and

negative cells for SMCs markers [Figure 2I, 2M and 2Q (for type I

collagen), 2K, 2O and 2S (for PEMs)]. Under hypoxia a surprising

positive expression of SMCs markers was observed [Figure 2J, 2N

and 2R (for type I collagen), 2L, 2P and 2T (for PEMs)]. No

expression of ECs markers was noticed under this condition

whatever the surface coating [Figure 2B and 2F (for Type I

collagen), Figure 2D and 2H (for PEMs)] indicating thus a total

absence of cellular differentiation into ECs at a low concentration

of O2. All these observations constitute a signature for the

progenitor cells switching into SMCs phenotype. These results

suggest first the potentiality of MNCs cells to differentiate into a

SMCs phenotype under a hypoxic environment and second the

expression of the specific markers confirmed the contractile

phenotype of these cells [28] (similar to SMCs in vivo). In the

literature the hematopoietic stem cells differentiation into mature

and functional SMCs requires the culture medium supplementa-

tion with specific growth factors, especially PDGF-BB [2,3]. Our

results demonstrate that the oxygen concentration tuning alone

allows phenotype switch either to endothelial cells or smooth

muscle cells.

The extracellular matrix (ECM) contributes to the control of the

cellular function and is involved in maintaining the cells in a

differentiated state [29,30]. During blood vessel formation the

SMCs are responsible for extracellular matrix formation via

protein (fibronectin, laminin, collagens…) secretion [31]. The

ECM deposition contributes in vivo and in vitro (tissue

engineering approach) to arterial wall constitution and cell

function via different signalling pathways (kinase pathways

activation) [31,32]. We investigated the capacity of the differen-

tiated cells under hypoxic conditions to synthesize their own ECM,

and we evaluated the secretion of two extracellular proteins

(Laminin and type IV collagen), which play a major role in ECM

synthesis and contribute to maintain the contractile phenotype of

the differentiated cells [31]. Confocal microscopy observations

showed the deposition of both of these proteins. The comparison

between both surfaces showed moreover a stronger synthesis of

ECM by the cells cultivated on PEMs (Figure 3). These data

obtained under hypoxic conditions confirmed the capacity of

MNCs to differentiate into SMCs, exhibiting a contractile

phenotype, sign of a correct physiological state and integrity of

the ECM. This integrity plays a key role to maintain this state and

suggests stability over longer time periods.

The phenotype stability over a longer time period of the SMCs

derived from MNCs cultivated under hypoxia is a major issue to

use this route in tissue engineering for example. The SMCs

phenotype stability was investigated at low or high oxygen

concentration. After the first passage of hypoxic differentiated

cells (cells positive to SMCs markers), the obtained cells were

expanded under two conditions. For the first assay we maintained

cells under hypoxic condition and for the second assay we placed

cells in normoxic condition. In order to check the stability of the

SMCs phenotype under these conditions, several passages (P3)

were performed. Whatever the experimental condition (hypoxic

Figure 4. Phenotype stability under hypoxia. After the third passage, the smooth muscle cells phenotype stability of differentiated cell
cultivated under hypoxic conditions was investigated by confocal microscopy observation (A) and flow cytometry analyses (B, C). A: Confocal
microscopic observations showed positive cells for contractile markers: a- Smooth Muscle Actin (a-SMA), Smooth Muscle Myosin Heavy Chain (SM-
MHC) and Calponin confluence on both coated surfaces (type I collagen and Polyelectrolyte Multilayer films (PEMs)). Objective640, NA = 0.8, scale
bars 75 mm. B: Flow cytometry showed that more than 80% cells expressed SMCs markers. C: Mean fluorescence intensity analyses showed a higher
SMCs contractile markers expression for differentiated cells compared to control (mature SMCs) whatever the surface coating. (1)PEMs versus control,
(*) Collagen versus control, (#) PEMs versus collagen. (1,* and #: p,0.05 and 111 and ***: p,0.001).
doi:10.1371/journal.pone.0005514.g004
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Figure 5. Phenotype stability under normoxia. After the third passage, the smooth muscle cells phenotype stability of differentiated cell
cultivated under normoxic conditions was investigated by confocal microscopy observation (A) and flow cytometry analyses (B, C). A: Microscopical
observations show positive cells for contractile markers: a- Smooth Muscle Actin (a-SMA), Smooth Muscle Myosin Heavy Chain (SM-MHC) and

O2 Controls Progenitor Cells
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and normoxic conditions) we never detected ECs markers (data

not shown).

Under hypoxia the cell characterization showed the positive

staining for SMCs markers with a regular cytosolic distribution of

all observed SMCs markers (Figure 4A) for both coating types

(Type I collagen and PEMs). These data were correlated with

FACS analyses which indicated that, after the third passage, more

than 80% of cells were positive for both surfaces (Figure 4B). We

compared moreover the Mean Fluorescence Intensity (MFI) of

SMCs contractile markers expression of the differentiated cells

with mature SMCs extracted from rabbit aorta and cultivated in

the same medium in normoxic and hypoxic conditions. Mature

SMCs were cultivated on the usually employed tissue culture

plastic surface (TCPS) [33] showing no difference with a control

performed on type I collagen and PEMs. The expression of a-

SMA, SM-MHC and calponin for cells cultivated on both Type I

collagen and PEM coated surfaces was significatively higher for

the differentiated cells compared to mature SMCs, although less

important on the collagen coated surface for a-SMA.

Under normoxic conditions, the expanded cells were also

qualitatively and quantitatively characterized by confocal micros-

copy observations and by FACS analyses. As for hypoxic

conditions, the visualized cells were positive for SMCs contractile

markers with again a regular cytoplasmic distribution (Figure 5A).

FACS analyses showed also that more than 80% of differentiated

cells were positive to SMCs contractile markers (Figure 5B). The

MFI of contractile markers for differentiated cells was significa-

tively higher than for mature SMCs for both surfaces coating and

with no differences for differentiated cells cultivated on type I

collagen and PEMs coated surfaces (Figure 5C). It is also

important to state that no significatively difference was found in

the expression of the three contractile markers once comparing the

data obtained in hypoxic and normoxic conditions.

It is well known that in vitro mature SMCs extracted from vessels

switch their phenotype from a contractile (healthy) to a

proliferative (pathological) phenotype [34,35]. This switch consti-

tutes a strong limitation for blood vessel tissue engineering. The

present differentiation approach allowed us to obtain a ‘‘healthy’’

phenotype of SMCs which could constitute an alternative for

vascular tissue engineering. We observed effectively a quite

stronger expression of the contractile markers for the differentiated

cells compared to mature SMCs. In a different context (in

particular during vascular wall remodelling after bypass surgery) a

reduced tissue oxygenation together with the presence of

inflammatory cells could be at the origin of vascular wall

recolonization by SMCs, the origin of which was not elucidated

up to now [9,36–38].

To conclude we demonstrated that progenitor cells cultivated in

hypoxic conditions and without specific growth factor enhancing

SMCs differentiation displayed morphological and phenotypic

properties of SMCs as showed by the expression of SMCs

contractile markers. Moreover, these differentiated SMCs main-

tained their contractile phenotype when replaced in normoxic

conditions suggesting that these cells developed a stable and

functional phenotype comparable to physiological SMCs found in

functional blood vessels.

These results highlight the crucial role of the tissue environment

and especially the O2 content in the differentiation process of

vascular progenitor cells. These observations combined with

previous ones [19] could constitute a basis for tissue engineering

and clinical application strategies for in vitro tissue reconstruction.

For example in vascular tissue engineering, starting from an

unique peripherical blood sample cultivated on PEM and with the

same culture media, but in normoxic or in hypoxic conditions

either mature ECs (21% O2) or contractile SMCs (5% O2) can be

obtained in less than one month. The different layers (media and

intima) could be associated to build for example a natural a natural

and autologous vascular graft.
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