
September 2015 | Volume 3 | Article 1451

Review
published: 23 September 2015
doi: 10.3389/fbioe.2015.00145

Frontiers in Bioengineering and Biotechnology | www.frontiersin.org

Edited by: 
Hilal Taymaz Nikerel,  

Bogazici University, Turkey

Reviewed by: 
Maria Suarez Diez,  

Helmholtz Zentrum für 
Infektionsforschung, Germany  

Hannes Link,  
Max Planck Institute for Terrestrial 

Microbiology, Germany

*Correspondence:
 Adelfo Escalante,  

Departamento de Ingeniería Celular y 
Biocatálisis, Instituto de 

Biotecnología, Universidad Nacional 
Autónoma de México,  

Avenida Universidad 2001,  
Colona Chamilpa, Cuernavaca, 

Morelos 62210, Mexico  
adelfo@ibt.unam.mx

Specialty section: 
This article was submitted to 

Systems Biology, a section of the 
journal Frontiers in Bioengineering 

and Biotechnology

Received: 08 July 2015
Accepted: 07 September 2015
Published: 23 September 2015

Citation: 
Martínez JA, Bolívar F and 

Escalante A (2015) Shikimic acid 
production in Escherichia coli: from 

classical metabolic engineering 
strategies to omics applied to 

improve its production.  
Front. Bioeng. Biotechnol. 3:145.  

doi: 10.3389/fbioe.2015.00145

Shikimic acid production in 
Escherichia coli: from classical 
metabolic engineering strategies to 
omics applied to improve its 
production
Juan Andrés Martínez , Francisco Bolívar and Adelfo Escalante*

Departamento de Ingeniería Celular y Biocatálisis, Instituto de Biotecnología, Universidad Nacional Autónoma de México, 
Cuernavaca, Mexico

Shikimic acid (SA) is an intermediate of the SA pathway that is present in bacteria and 
plants. SA has gained great interest because it is a precursor in the synthesis of the 
drug oseltamivir phosphate (OSF), an efficient inhibitor of the neuraminidase enzyme 
of diverse seasonal influenza viruses, the avian influenza virus H5N1, and the human 
influenza virus H1N1. For the purposes of OSF production, SA is extracted from the 
pods of Chinese star anise plants (Illicium spp.), yielding up to 17% of SA (dry basis 
content). The high demand for OSF necessary to manage a major influenza outbreak is 
not adequately met by industrial production using SA from plants sources. As the SA 
pathway is present in the model bacteria Escherichia coli, several “intuitive” metabolically 
engineered strains have been applied for its successful overproduction by biotechnolog-
ical processes, resulting in strains producing up to 71 g/L of SA, with high conversion 
yields of up to 0.42 (mol SA/mol Glc), in both batch and fed-batch cultures using com-
plex fermentation broths, including glucose as a carbon source and yeast extract. Global 
transcriptomic analyses have been performed in SA-producing strains, resulting in the 
identification of possible key target genes for the design of a rational strain improvement 
strategy. Because possible target genes are involved in the transport, catabolism, and 
interconversion of different carbon sources and metabolic intermediates outside the 
central carbon metabolism and SA pathways, as genes involved in diverse cellular stress 
responses, the development of rational cellular strain improvement strategies based on 
omics data constitutes a challenging task to improve SA production in currently over-
producing engineered strains. In this review, we discuss the main metabolic engineering 
strategies that have been applied for the development of efficient SA-producing strains, 
as the perspective of omics analysis has focused on further strain improvement for the 
production of this valuable aromatic intermediate.

Keywords: Escherichia coli, metabolic engineering, shikimic acid, transcriptome, metabolome, antiviral drug, 
influenza
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introduction

Compounds derived from the aromatic amino acid (AA) pathway 
play important roles in the pharmaceutical and food industries 
as raw materials, additives, or final products (Patnaik et al., 1995; 
Bongaerts, 2001; Báez et al., 2001; Yi et al., 2002; Chandran et al., 
2003; Báez-Viveros et  al., 2004; Gosset, 2009). This metabolic 
pathway is present in bacteria and plants, starting with conden-
sation of the central carbon metabolism (CCM) intermediates 
phosphoenolpyruvate (PEP) and erythrose-4-phosphate (E4P) to 
form the first AA pathway intermediate d-arabinoheptulosonate-
7-phospate (DAHP). From this compound to chorismic acid 
(CHA), the pathway is mostly linear and represents the first 
part of the AA pathway, known as the common AA pathway or 
the shikimic acid (SA) pathway (Figure 1). One of the specific 
intermediates on this pathway is SA, which is a highly functional-
ized six-carbon cyclic compound with three asymmetric centers. 
Therefore, SA is an enantiomeric precursor for the production 
of many high valuable biological active compounds for different 
industries. SA is the precursor for the synthesis of compounds with 
diverse pharmaceutical applications, including as an antipyretic, 
antioxidant, anticoagulant, antithrombotic, anti-inflammatory, 
or analgesic agent, for the synthesis of anticancer drugs, such 
as (+)-zeylenone (which has been shown to inhibit nucleoside 
transport in Ehrlich carcinoma cells and to be cytotoxic to cul-
tured cancer cells), and for antibacterial or hormonal applications 
[reviewed in Estevez and Estevez (2012), Liu et al. (2012), and 
Diaz Quiroz et al. (2014)] (Figure 2).

Specifically, SA has great pharmaceutical relevance because 
it is the precursor for the chemical synthesis of oseltamivir 
phosphate (OSF), known as Tamiflu®, used as the antiviral 
inhibitor of the neuraminidase enzyme for the treatment of 
diverse seasonal influenza viruses, including influenza A and B, 
the avian influenza virus H5N1, and the human influenza virus 
H1N1 (Krämer et  al., 2003; Estevez and Estevez, 2012; Ghosh 
et  al., 2012; Diaz Quiroz et  al., 2014). For this purpose, SA is 
obtained from the seed of the Chinese star anise plant Illicium 
verum, which contains between 2 and 7% of the intermediate. 
However, it can only be retrieved from plants after 6 years of crop 
growth and harvested in September and October (Li et al., 2007; 
Raghavendra et al., 2009; Wang et al., 2011). To recover SA from 
the seed, a 10-step process is required, taking ~30 kg of seed to 
produce 1 kg of SA. According to Li et al. (2007) on their 2007 
patent, ~90% of the Chinese harvest is used by Roche (2009) for 
OSF production.

In 2009, Roche reported Tamiflu® sales to be 3.5 billion dol-
lars, with a production capacity of up to 33 million treatments 
per month and 400 million packages per year (Scheiwiller and 
Hirschi, 2010). For the antiviral production, up to 1.3  g of SA 
are required to manufacture 10 doses to treat only one person, 
estimating a production requirement for this antiviral drug 
alone of ~520,000 kg/year (Rangachari et al., 2013). Even so, this 
reported production capacity could be insufficient in the case of 
an influenza pandemic, particularly with more pathogenic and 
infective strains. An estimated production of 30 billion doses, 
requiring 3.9 million kilograms of SA, would be necessary to 
cover a severe influenza outbreak (Rangachari et  al., 2013). 

According to the World Health Organization regarding influenza 
outbreak preparedness, only 66 million people in medium to low 
income countries are covered up with antiviral stocks, represent-
ing only 2.25% of the populations in these countries (World 
Health Organization, 2011). This situation results in a possibly 
low production capacity since in 2010, 100 million people were 
infected with common strains of influenza in Europe, Japan, 
and the United States alone. Moreover, before 2010, pandemic 
influenza has affected between 20 and 40% of the population, 
causing over 20 million deaths (Scheiwiller and Hirschi, 2010; 
World Health Organization, 2011).

For the reasons mentioned before and due to the relevance 
of SA in diverse industrial setups, many studies concerning SA 
production have been conducted within the past years, resulting 
in new and insightful strategies for its production, including 
recovery technologies, chemical synthesis methods, and biotech-
nological production methods using microorganisms. In fact, 
one of the most studied alternatives for SA production processes 
is biotechnological synthesis using recombinant microbial strains 
that are capable of producing high yields and that have high pro-
ductivities, as there are key advantages over chemical synthesis, 
which include environmental friendliness, the availability and 
abundance of low-cost renewable feed stocks, and selectivity 
and diversity of the obtained products (Chen et al., 2013). These 
strains can be obtained by genetic modification, altering cellular 
properties to enhance their production capacity through the 
application of diverse metabolic engineering (ME) approaches 
(Krämer et al., 2003; Ghosh et al., 2012; Diaz Quiroz et al., 2014). 
However, despite the great achievements accomplished through 
this discipline, performance improvement has become limited 
after the first breakthroughs, mainly because of the traditional 
local pathway modification strategies. This is probably due to the 
limited understanding of the overall mechanism of metabolic 
regulation (Matsuoka and Shimizu, 2012). Therefore, given the 
importance of finding not only a particular pathway but also 
global information regarding cell physiology and metabolism to 
overcome production limitations, a systems biology approach 
supported by omics data may be the solution for improving SA 
production. The goal of this work is not only to review the lit-
erature on the great biotechnological achievements made for SA 
production, mainly in Escherichia coli, but also to outline future 
perspectives on research performed in the omics era, which 
could provide relevant tools for understanding cell behavior and 
production optimization via biotechnological processes.

Classical Metabolic engineering Approaches  
for SA Production
Metabolic engineering has been used since 1991 for strain 
modification by using recombinant DNA technology to enhance 
the production of specific metabolites (Matsuoka and Shimizu, 
2012). The efforts to use ME have extended from the early years to 
optimize many cellular behaviors or parameters, such as substrate 
consumption, robustness, and tolerance toward toxic compounds 
and media conditions (Matsuoka and Shimizu, 2012). Classical 
ME strategies for strain development include various steps, such 
as the selection of a proper organism, elimination of competing 
pathways, deregulation of desired pathways at the enzyme activity 
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and transcriptional levels, and overexpression of enzymes at flux 
bottlenecks (Patnaik et al., 1995). Regarding the selection of an 
organism, E. coli has been preferred for industrial purposes and 
ME applications because of the knowledge available on E. coli 
physiology and the great numbers of tools developed to modify its 
genome (Chen et al., 2013). Therefore, many advances had been 
made regarding SA in E. coli, rendering strains capable of being 
used in industrial applications (Frost et al., 2002; Li et al., 2007).

In E. coli, the SA pathway starts by condensation of the CCM 
intermediates PEP and E4P by three DAHP synthase isoenzymes, 
AroG, AroF, and AroH (coded by aroG, aroF, and aroH, respec-
tively), to produce DAHP. These three isoenzymes are responsible 
for the redirection from CCM intermediates toward the synthesis 
of aromatic compounds and are allosterically regulated spe-
cifically by the final products of AA biosynthesis. AroG catalyzes 

FiGURe 1 | Schematic representation of the main glucose transport system, central carbon metabolism (CCM) (glycolysis and pentose phosphate 
pathways), their interconnection with SA pathway and final aromatic amino acids pathway in E. coli. PTS, phosphotransferase:PEP:glucose system. 
CCM key intermediates and protein encoding genes: TCA, tricarboxylic acid pathway; E4P, erythrose-4-P; PGNL, 6-phospho d-glucono-1,5-lactone; PEP, 
phosphoenolpyruvate; PYR, pyruvate; ACoA, acetyl-CoA; CIT, citrate; OAA, oxaloacetate; zwf, glucose 6-phosphate-1-dehydrogenase; tktA, transketolase I; pykA, 
pykF, pyruvate kinase II and pyruvate kinase I, respectively; lpdA, aceE, and aceF, coding for PYR dehydrogenase subunits; gltA, citrate synthase; pck, PEP 
carboxykinase; ppc PEP carboxylase; ppsA, PEP synthetase. SA pathway intermediates and genes: DAHP, 3-deoxy-d-arabino-heptulosonate-7-phosphate; DHQ, 
3-dehydroquinate; DHS, 3-dehydroshikimate; SA, shikimic acid; S3, SHK-3-phosphate; EPSP, 5-enolpyruvyl-shikimate 3-phosphate; CHA, chorismate; aroF, aroG, 
aroH, DAHP synthase AroF, AroG and AroH, respectively; aroB, DHQ synthase; aroD, DHQ dehydratase; aroE and ydiB, SHK dehydrogenase and SHK 
dehydrogenase/quinate dehydrogenase, respectively; aroA, 3-phosphoshikimate-1-carboxyvinyltransferase; aroC, CHA synthase. Terminal aromatic amino acids 
products: l-TRP, l-tryptophan; l-PHE, l-phenylalanine; l-TYR, l-tyrosine. Continuous arrows indicate single enzymatic reactions; dashed arrows show several 
enzymatic reactions; dashed-dotted arrows (blue) show repression of DAHPS isoenzymes allosteric regulatory circuits. Adapted from Keseler et al. (2013) and 
Rodriguez et al. (2014).

~80% of DAHPS activity and is specifically feedback regulated 
by l-phenylalanine, AroF (~20% of DAHPS activity) is feedback 
regulated by l-tyrosine, and AroH (~1% of DAHPS activity) is 
regulated by l-tryptophan. Additionally, the transcription of 
aroG and aroF is controlled by the tyrR repressor, with the end 
products of the AA pathway (l-phenylalanine and l-tyrosine, 
respectively) acting as corepressors, whereas the transcription of 
aroH is controlled by the trpP repressor, with l-tryptophan acting 
as a corepressor (Keseler et al., 2013) (Figure 1). The ME solution 
for this first flux bottleneck is the expression of a DAHP AroG and 
AroF synthase that is not sensitive to feedback inhibition (fbr) 
(AroGfbr and AroFfbr). Mutations in the aroG and aroF genes lead 
to l-phenylalanine and l-tyrosine feedback-insensitive mutants 
with increased net carbon flux from CCM to the SA pathway 
(Keseler et al., 2013; Lin et al., 2014; Rodriguez et al., 2014); these 
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FiGURe 2 | Relevant SA derivatives with high added value. OSF, viral inhibitor of diverse influenza virus types, including seasonal types A and B, avian virus 
H5N1, and human virus H1N1. (−)-Zeylenone is a compound with antiviral, anticancer, and antibiotic activities. (−)-Valiolamine, a very strong α-glucosidase with 
inhibitory activity against porcine intestinal enzymes sucrase, maltase, and isomaltase. [PT(datch)(SA)2] is an active compound against L1210 leukemia. 3,4-Oxo-
isopropylidene-SA, with antithrombotic activity and anti-inflammatory effects. Analogs of 1α, dihydroxy-19-Nor previtamin D3 is a compound with promising 
applications in the treatment of osteoporosis and malignancies. Adapted from Estevez and Estevez (2012) and Diaz Quiroz et al. (2014).
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mutants have been used in most SA production strains (Table 1) 
(Chandran et al., 2003; Escalante et al., 2010; Chen et al., 2012, 
2014; Rodriguez et al., 2013). Forward reactions convert DAHP to 
dehydroquinic acid (DHQ), then to 3-dehidroquinate (DHS) and 
finally to SA by the enzymes 3-dehydroquinate synthase (aroB), 
3-dehydroquinate dehydratase (aroD), and shikimate dehydroge-
nase (aroE), respectively (Figure 1). Although the pathway to SA 
conversion is small and linear, its regulation and the competition 
for precursor metabolites remain quite complicated because the 
SA pathway is dependent on the glycolytic and pentose phosphate 
pathways (PPPs) to provide the starting precursors PEP and E4P, 
respectively (Gosset, 2009; Escalante et  al., 2012; Ghosh et  al., 
2012; Rodriguez et al., 2014).

SA production starts in CCM, further away from glucose con-
sumption. In E. coli, the majority of glucose transport occurs via 
the PEP:glucose phosphotransferase system (PTS), which uses a 
phosphate group from one molecule of PEP to simultaneously 
import and phosphorylate periplasmic glucose, resulting into 
6-phosphate glucose (G6P) and pyruvate (PYR) (Figure 1). For 
these reasons, the application of ME strategies only on the SA 
pathway would not render a significantly optimized strain for SA 
production (Ghosh et al., 2012).

To optimize productivity and yields from a given carbon source, 
modification of the CCM pathways supplying the needed precur-
sors and energy sources for product synthesis is required (Patnaik 
and Liao, 1994). For the E4P supply, the PPP is the responsible 
for its production. The overexpression of transketolase I (TktA, 

coded by tktA) and transaldolase (coded by talA), resulting in the 
preferential use of TktA to improve the E4P pool for the synthesis 
of DAHP (Flores et al., 1996; Draths et al., 1999; Frost et al., 2002; 
Chandran et  al., 2003; Escalante et  al., 2010; Rodriguez et  al., 
2013).

Regarding increasing the PEP pool, the first problem arises 
with the consumption of 50% of the PEP resulting from the 
catabolism of one molecule of glucose-6-P by PTS during the 
translocation and phosphorylation of one molecule of glucose. A 
rational approach is to reconvert PYR to PEP by overexpressing 
PEP synthase (coded by pps); this solution, along with the expres-
sion of a DAHPSfbr (AroGfbr or AroFfbr), leads to a 51% (mol/mol) 
yield of DHS and related SA pathway metabolites. This yield 
is in fact higher than the 43% (mol/mol) yield calculated from 
stoichiometric reactions, reflecting the effective redistribution of 
the PEP to PYR pool ratio and the ability of the strain to redirect 
this new imbalance into the SA pathway (Yi et al., 2002; Chandran 
et al., 2003; Krämer et al., 2003; Escalante et al., 2010; Rodriguez 
et  al., 2013). Overexpression of the pps gene has been studied; 
the maximum yield of SA is not obtained under the maximum 
concentration of the enzyme. In fact, it has been found that 
expression of this enzyme over the optimized level would only 
reduce the yields of SA intermediates, probably due to energetic 
imbalances (Yi et al., 2002).

The maximum theoretical yield limitation can be changed by 
restructuring the metabolic network, providing the system with 
a new stoichiometric matrix. Therefore, a natural solution for the 

http://www.frontiersin.org/Bioengineering_and_Biotechnology/archive
www.frontiersin.org/Bioengineering_and_Biotechnology
http://www.frontiersin.org


TABLe 1 | Relevant E. coli engineered strains for SA production.

Producing 
strain

Phenotypic traits Special comments Culture conditions Title 
(g/L)

Yield 
(mol SA/
mol glc)

Reference

SA112 BW25113ΔaroKL, 
Ppps::PlacQ1,PcsrB::PlacQ1Pt5-pps, 
PT5-csrB, 5Ptac-tktA

CIChE evolved to optimize SA 
production

Shake flasks cultures with 10 g/L 
glc, 1 g/L peptone

1.70 0.25 Cui et al. 
(2014)

DHPYAAS-T7 DH5α ΔptsHIcrr, ΔaroKL, ΔydiB  
pAOC-TGEFB:aroE, aroB, glk, tkta, aroFfbr

Plasmid overexpression of SA 
related genes

Shake flasks cultures (50 mL), M9 
broth supplemented with 25 g/L 
glycerol, 10 g/L peptone, 15 g/L YE

1.066 0.23 Chen et al. 
(2012)

PB12.SA22 JM101 ΔptsH,ptsI,crr::Kmr ΔarokL::cmr 
pJLBaroGfbrtktA, pTOPO-aroBaroE

Laboratory evolved PTS− glucose− 
into glucose+ derivative phenotype

1 L batch bioreactor 25 g/L glc and 
15 g/L YE

7.05 0.22 Escalante 
et al. (2010)

SA5 B0013 ΔarokL::dif ΔptsG::dif ΔydiB:dif 
ΔackA-pta::dif pTH-aroGfbr-ppsA-tktA

Plasmid over expression of SA 
related genes

7 L fed-batch bioreactor, initial 
15 g/L glc supplemented with AA 
and vitamins

14.6 0.3 Chen et al. 
(2014)

SA114 BW25113ΔaroKL, Ppps::PlacQ1, 
PcsrB::PlacQ1 PT5-pps,PT5-csrB, 5Ptac-tktA, 
5Ptac-pntAB

CIChE evolved to optimize SA Shake flasks, 10 g/L glc, 1 g/L 
peptone

2.99 0.31 Cui et al. 
(2014)

SP1.1pts-/
pSC6.090B

DH5α ΔptsH-ptsI-crr ΔserA::aroB 
ΔaroL::Tn10 Δ aroK::Cmr Ptacglf glk, 
aroFfbttktA, PtacaroE, serA

Heterologous glk and glf 
from Z. mobilis to restore glc 
transport and phosphorylation in 
PTS− glc− phenotype

10 L fed-batch bioreactor 
55–170 mM Glc + 15 g/L YE

84 0.33 Chandran 
et al. (2003)

SA116 BW25113ΔaroKL, 
Ppps::PlacQ1,PcsrB::PlacQ1 PT5-pps, PT5-
csrB, 5Ptac-tktA, 5Ptac-nadK

CIChE evolved to optimize SA Shake flasks 10 g/L glc, 1 g/L 
peptone

3.12 0.33 Cui et al. 
(2014)

AR36 JM101 ΔptsH, ptsI, crr::Kmr ΔarokL::cmr 
ΔpykF ΔlacI pTrcAro6-aroB, tktA, aroGfbr, 
aroE, aroD zwf

Constitutive strong over 
expression by synthetic operon 
on plasmid

1 L batch bioreactor 100 g/L 
glc + 15 g/L YE

41.8 0.42 Rodriguez 
et al. (2013)

glc, glucose; YE, yeast extract.
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PEP pool was to eliminate the PTS system, which would not only 
modify the amount of PEP but also redistribute the stoichiometric 
matrix to raise the maximum theoretical yield to 86% (mol/mol) 
(Chandran et al., 2003; Krämer et al., 2003). The main problem 
with this solution is the resultant low level of glucose transport, 
which results in a strain with hampered growth (PTS− pheno-
type) (Flores et al., 1996, 2007; Aguilar et al., 2012). Nevertheless, 
various strategies have been developed to revert this low glucose 
consumption and low growth phenotype. Using rational ME 
strategies, substitution of the PTS for another glucose transport 
system has been performed. Chandran et al. used heterologous 
expression of the Zymomonas mobilis (Glf) glucose transporter, a 
glf-encoded glucose facilitator and a glk-encoded glucose kinase 
(Glk), thereby allowing cells to consume glucose more efficiently 
without consuming PEP (Frost et  al., 2002; Chandran et  al., 
2003; Krämer et al., 2003). Another strategy is to apply labora-
tory adaptive evolution onto a PTS− strain. Flores et al. used a 
continuous culture with glucose as a single carbon source to select 
high glucose consumption-evolved derivative strains (PTS− glc+ 
phenotype). Characterization of these mutants revealed overex-
pression of the galP and glk genes encoding galactose permease 
and glucokinase, respectively, allowing and improving glucose 
transport and phosphorylation capabilities and resulting in an 
increased specific growth rate and PEP availability (Flores et al., 
1996, 2007; Aguilar et al., 2012).

Finally, with precursors known to induce redirection, deregu-
lation, and overexpression of the SA pathway genes aroB, aroD, 
and aroE have been achieved, resulting in an efficient carbon flux 

from CCM to the SA pathway. The highest production to date 
corresponds to the SP1.1pts-/pSC6.090B strain, a PTS− derivative 
strain with a plasmid containing two tac promoters, the first of 
which controls expression of the glf, glk, aroFfbr, and tktA genes 
and the second of which controls expression of the aroE and 
serA genes (Chandran et  al., 2003). The reasoning behind this 
construction was to increase the PEP pool by deleting PTS, to 
recuperate glucose consumption by overexpressing glf and glk, 
to assure E4P pool enhancement by overexpressing tktA and to 
induce a deregulated pull toward the AA pathway via an aroFfbr, 
as discussed before. The second promotor in the plasmid was 
designed to overexpress aroE, allowing continuous flux of the SA 
pathway; additionally, a second copy of aroB was introduced into 
the chromosome instead of reintroducing the serine production-
related gene serA to the cell via the plasmid and was used as a 
selection marker for plasmid retention. This approximation, along 
with the deletion of genes related to SA consumption (aroK and 
aroL), allowed SA accumulation, achieving a production capacity 
of 87 g/L SA, with a yield of 36% (mol/mol) and a productivity 
of ~5.3 g/L h when a 10 L glucose-fed batch was cultured. This 
strain has the highest titer accumulation recorded in the literature 
to date (Table 1; Figure 3).

Even with these rational strategies, the yield of the SP1.1pts-/
pSC6.090B strain is far from the theoretical maximum yields 
of PTS− derivative strains. In 2010, Escalante et  al. presented a 
JM101 PTS− derivative strain with high glucose consumption 
capacity that was capable of overexpressing the galP and glk genes 
and that was produced from an adaptive evolution process. This 
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FiGURe 3 | Relevant engineered E. coli strains for SA production. Metabolic traits of E. coli derivative strains engineered for SA production resulting in highest 
SA titer and yield from glucose. The figure illustrates alterative glucose transporter GalP (galactose permease) selected by the cell after laboratory adaptive evolution 
process of a PTS− mutant (Flores et al., 1996, 2007; Aguilar et al., 2012). Glf (glucose facilitator) and Glk (glucokinase) from Z. mobilis (plasmid cloned). Resultant 
characteristics of engineered strains are shown for pSC6.090B (Chandran et al., 2003), PB12.SA22 (Escalante et al., 2010), AR36 (Rodriguez et al., 2013), and 
SA116 strain (Cui et al., 2014). CCM key intermediates and protein encoding genes: TCA, tricarboxylic acid pathway; E4P, erythrose-4-P; PGNL, 6-phospho 
d-glucono-1,5-lactone; PEP, phosphoenolpyruvate; PYR, pyruvate; ACoA, acetyl-CoA; CIT, citrate; OAA, oxaloacetate; zwf, glucose 6-phosphate-1-dehydrogenase; 
tktA, transketolase I; pykA, pyruvate kinase II; lpdA, aceE and aceF, coding for PYR dehydrogenase subunits; gltA, citrate synthase; pck, PEP carboxykinase; ppc 
PEP carboxylase; ppsA, PEP synthetase. SA pathway intermediates and genes: DAHP, 3-deoxy-d-arabino-heptulosonate-7-phosphate; DHQ, 3-dehydroquinate; 
DHS, 3-dehydroshikimate; SA, shikimic acid. Continuous arrows indicate single enzymatic reactions; dashed arrows show several enzymatic reactions. Bold arrows 
show improved carbon flux. Black squares in plasmids/operons indicate gene interruption; c, chromosomal gene interruption or integration; p, plasmid-cloned genes.
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strain (PB12), along with a two-plasmid expression system for 
aroGfbr-tktA and aroB-aroE, respectively, under lacUV5 promot-
ers inducible by IPTG (PB12.SA22), allowed a yield of 29% (mol/
mol) (Escalante et al., 2010). Further modifications allowed them 
to find that a pykF deletion could result in higher yields of total 
aromatic compounds, up to 50% (mol/mol), even when present-
ing an SA yield diminution (0.21%). In this case, the amount of 
flux reduced from PEP to PYR was redirected throughout the SA 
pathway, and without the correct amounts of enzymes, new bot-
tlenecks appeared, causing other metabolites and intermediates 
to accumulate (Escalante et al., 2010). Therefore, it was clear that 
regulating gene expression and dosage remained a problem for 
more efficiently redirecting flux not only toward but also within 

the SA pathway. Regarding that topic, Rodriguez et  al. utilized 
the PB12 pykF−aroKL− strain and developed a plasmid with a 
constitutively strong promoter onto a synthetic operon contain-
ing the aroB, tktA, aroGfbr, aroE, aroD, and zwf genes (AR36) for 
synchronous expression of the relevant genes found in previous 
research. With this expression design, the AR36 derivative strain 
is able to redirect the carbon flow to SA even in high glucose 
conditions (above 100 g/L of the initial substrate concentration) 
without producing high acetate titers. This strain produced up to 
43 g/L of SA via simple batch processes, with SA yields of 42% 
(mol/mol) and total SA pathway intermediate yield up to 67% of 
the theoretical maximum, representing the highest yield managed 
to be produced to date (Rodriguez et al., 2013) (Table 1; Figure 3).
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Regarding the expression and regulation of key SA production 
genes, most of the research has been performed using plasmid 
expression; however, there are multiple drawbacks, ranging from 
structural and segregational instability to metabolic burden, of 
plasmid replication. Cui et  al. (2014) resolved this problem by 
constructing a strain with an aroGfbr, aroB, aroE, and tktA gene 
cluster integrated into the chromosome and by tuning the copy 
number and expression by using chemically induced chromo-
somal evolution (CIChE) with triclosan. They also overexpressed 
the ppsA and csrB genes to enhance the PEP pyruvate pool. This 
strain rendered a 1.70 g/L SA titer, with a yield up to 0.25 (mol/
mol). Finally, they studied and improved cofactor availability 
for SA production optimization; in this case, NADPH avail-
ability was increased because aroE-encoded enzymes require 
this specific cofactor for the DHS to SA conversion reaction. By 
plasmid-based or chromosomal overexpression of the NADPH 
availability-related genes pntAB or nadK, this cofactor pool was 
enhanced, which was directly correlated to the SA production 
capabilities of the strain. As they changed the promoters and the 
expression of all the chromosomally inserted genes related to SA 
production mentioned above, they managed to construct a strain 
capable of producing a yield of 0.33 (mol/mol) SA from glucose 
(Figure 3).

Many other examples of SA production platforms in E. coli 
have been studied in the literature, the most relevant of which are 
referred to in Table 1, rendering many industrially competitive 
strains and processes. Nevertheless, the main efforts throughout 
the past two decades were directed toward a particular pathway 
approach. As shown in Table  1, few SA production processes 
have been designed utilizing an overview of global regulation 
and manipulation, which can be obtained from omics data. 
Transforming this global information into global knowledge on 
the complexity of cell regulation would reveal the existing regula-
tory bottlenecks, allowing us to metabolically engineer potential 
strains using a systems biology approach, finally ensuring a truly 
rational strain design with optimized production capabilities.

Omics Approaches for the Study of  
the SA Pathway in Escherichia coli

Classical ME approaches applied to diverse E. coli strains to 
obtain SA-overproducing derivatives have targeted key genes in 
the CCM and SA pathways, allowing successful reconfiguration 
of the biochemical network of engineered strains and resulting in 
the efficient redirection of carbon flow from CCM to SA produc-
tion. However, the inactivation of key genes coding for enzymes 
involved in global regulatory processes, such as the PTS system 
or coding for key node enzymes, such as the PykF enzyme results 
in global metabolic reconfiguration, which frequently introduces 
significant flux imbalances. This often produces undesirable 
outcomes, including the accumulation of intermediates, feedback 
inhibition of upstream enzymes, the formation of unwanted 
byproducts, and the diminution of cellular fitness via the 
rerouting of resources toward the unnecessary or non-essential 
production of pathway enzymes. By understanding these newly 
created flux imbalances in SA-overproducing derivative strains, 

it is possible to boost the overall cellular physiology, product titer, 
productivity, and yield, taking into account a global view of cel-
lular metabolism (Biggs et al., 2014). Combinatorial approaches 
allow researchers to work with this scenario by conducting global 
cellular searches, but the necessity for high-throughput screening 
is often a drawback for pathway engineering. The other approach 
is to augment knowledge and computational tools to properly 
predict designs to achieve a desired metabolic outcome (Fong, 
2014). Several high-throughput approximations, such as genomic, 
transcriptomic, and proteomic predictions, have been applied to 
aromatic AAs and engineered SA-overproducing strains for the 
identification of non-intuitive targets other than those genes/
enzymes involved in the CCM and SA pathways that might be 
suitable for further modification by ME.

The identification of YdiB (ydiB) as a 
Key enzyme in Byproduct Formation  
During SA Synthesis
The analysis of available genome sequences using Hidden Markov 
Model profiles to identify all known enzymes of the SA pathway 
has shown that some genes have been lost in diverse microbial 
groups, particularly in host-associated bacteria (Zucko et  al., 
2010). This condition has been proposed to result in the develop-
ment of undesirable metabolic traits, such as the hydroaromatic 
equilibration observed in E. coli, resulting in the synthesis of so-
called missing metabolites, such as quinic acid (QA) and DHQ, 
by a reversion of the SA biosynthetic pathway (Knop et al., 2001; 
Zucko et al., 2010). The coproduction of high quantities of the 
byproducts DHS and QA is not a desirable trait; they significantly 
reduce the SA yield because QA is co-purified during the down-
stream process of SA purification from the culture supernatant 
(Knop et al., 2001; Krämer et al., 2003; Diaz Quiroz et al., 2014).

The strain W3110.shik1 (ΔaroL, aroGfbr, trpEfbr, and tnaA) 
engineered for SA production growing in low glucose (high 
phosphate) or glucose-rich (low phosphate) conditions resulted 
in the production of SA in cultures with mineral broth, as the 
single inactivation of shikimate kinase II (aroL) allows carbon 
flux to CHA through shikimate kinase I (aroK), resulting in 
the synthesis of aromatic AAs. However, under carbon-limited 
conditions, SA production decreased by 59%, and the byprod-
ucts DHS, DHQ, gallic acid (GA), and QA were detected in the 
culture supernatant with respect to phosphate limiting culture 
conditions (Johansson et  al., 2005). Global transcriptomic 
analysis (GTA) of the strain W3110.shik1 in chemostatic culture 
conditions, comparing between glucose and phosphate limiting 
conditions, allowed identification of the significantly upregu-
lated genes ydiB (coding for shikimate dehydrogenase/quinate 
dehydrogenase), aroD, and ydiN, which encodes a putative 
transporter, in carbon limiting conditions. The upregulation of 
these genes, particularly ydiB (10× with respect to its paralogs, 
aroE), was proposed to increase the YdiB level, which uses DHQ 
and SA as substrates, as this enzyme has a lower Km for SA in the 
presence of NAD+ (Keseler et al., 2013). Additionally, the intra-
cellular concentration of NAD+ is reported to be 40-fold higher 
than that of NADH+, suggesting that the dehydrogenase activity 
on SA to produce DHS is favored by YdiB in vivo (Johansson and 
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FiGURe 4 | identification of key genes of the SA pathway involved in the biosynthesis of aromatic byproducts QA and DHS from SA as determined 
by global transcriptomic analysis in E. coli w3110.shik1. Overexpression of ydiB, aroD, and ydiN genes allowed proposing that under carbon limiting growth 
conditions, SA is intracellularly accumulated as consequence of an inefficient export to periplasmic space or as consequence of its back transport to the cytoplasm 
as consequence of extracellular accumulation. YdiN, a putative transporter coded by ydiN was proposed to be involved in SA back import. Backflow of SA to DHS 
was possibly catalyzed by YdiB, whereas synthesis of DHQ from DHS was performed by AroD enzyme and finally, YdiB performed synthesis of QA from DHQ. 
Adapted from Johansson and Lidén (2006).
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Lidén, 2006). These results suggests that byproduct formation 
during SA production was associated with the reversal of the bio-
synthetic pathway from (1) SA + NAD(P)+ ↔ DHS + NAD(P)
H  +  H+ and (2) DHS  +  NAD(P)H  +  H+  ↔  QA  +  NAD(P)+ 
by YdiB or (3) DHS + H2O ↔ DHQ by AroD (Figure 4). The 
presence of a large amount of intracellular SA was proposed to 
drive the reversal of the pathway, whereas YdiN was proposed 
to be the exporter of the aromatic byproducts (Johansson and 
Lidén, 2006).

As these results suggest an important role of YdiB in byproduct 
synthesis during SA production and its intracellular accumula-
tion under glucose limiting conditions, a rational strategy to 
avoid byproduct synthesis was the inactivation of ydiB and/or 
the upregulation of its paralogs, aroE, coupled to efficient SA 
secretion from the cell. The upregulation of aroE expression 
(simultaneously with other key genes of the CCM and SA path-
ways) in PTS− gluc+aroK−aroL− engineered strains resulted in the 
highest SA titer and yield reported with low byproduct formation 
(Chandran et al., 2003; Rodriguez et al., 2013) (Table 1).

The replacement of ydiB by its paralogs, aroE, in a modular 
biosynthetic pathway design for l-tyrosine production in E. coli 
MG1655 resulted in the elimination of a bottleneck caused by 
the high affinity of YdiB protein for the accumulation of QA and 
DHS. This replacement in the modular plasmid construction Plac-

UV5aroE, aroD, aroBop, aroGfbr, ppsA, tktA (op = optimize codon 
usage) resulted in the accumulation of 700 mg/L of SA, which 
was in turn successfully channeled to l-tyrosine (Juminaga et al., 
2012). However, combinational plasmid overexpression of the 
aroB, aroD, aroE, ydiB, aroK, aroL, aroA, aroC, and tyrB genes with 
ydiB resulted in high l-tyrosine production. This result suggested 
that ydiB but not its paralog, aroE, is an attractive target for the 
overproduction of this aromatic AA because aroE in E. coli codes 
for a feedback-inhibited shikimate dehydrogenase, resulting 

in a bottleneck for l-tyrosine production (Lütke-Eversloh and 
Stephanopoulos, 2008).

The impact of pykF inactivation on the Protein 
Levels of SA Pathway enzymes
The pyruvate kinase isoenzymes Pyk I and Pyk II (coded by pykF 
and pykA, respectively) play key roles in CCM via Pyk activity, 
together with 6-phospho-fructokinase I (coded by pkfA) and 
glucokinase (glk), controlling carbon flux through the glycolytic 
pathway (Keseler et al., 2013). Pyk I and Pyk II are key allosteric 
enzymes that catalyze one of the two substrate-level phosphoryla-
tion steps yielding ATP and the irreversible trans-phosphorylation 
of PEP and ADP into PYR and ATP, maintaining a permanent 
flux of PYR to acetyl-CoA (Keseler et al., 2013).

Inactivation of the pykF gene in E. coli PTS− derivatives 
(PB12 strain) engineered for SA production has resulted in the 
increased flux of carbon into the SA pathway (Escalante et  al., 
2010), increasing the DAHP concentration above 370% (and the 
total SA pathway aromatic yield) with respect to the pykF+ paren-
tal strain. Further applications of ME strategies in the PB12 strain 
pykF− resulted in the derivative strain AR36, which produces 
up to 40 g/L SA with a yield of 0.42 mol SA/mol glc (Table 1) 
(Rodriguez et al., 2013), demonstrating that the inactivation of 
pykF in a PTS− derivative strain significantly improves PEP flux 
toward SA synthesis.

Global proteomic analysis in a pykF− derivative of E. coli 
(BW25113) compared with its pykF+ parental strain revealed 
the differential overexpression of 24 proteins, including enzymes 
from the SA pathway and aromatic AAs. The upregulation of key 
SA pathway enzymes, including the DAHPS AroG isoenzyme 
(2.66 times more abundant with respect to the pykF+ strain), 
which is involved in the synthesis of DAHP, the first intermediate 
of the SA pathway, and the AroB enzyme (DHQ synthase, 4.72 
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times more abundant with respect to the pykF+ strain) (Kedar 
et al., 2007). These results support the positive impact of pykF− 
inactivation not only on increased PEP availability but also on 
increased carbon flux toward the SA pathway.

The identification of Other Possible Key 
Catabolic and Biosynthetic Genes involved  
in SA Production
Batch fermentation cultures of the E. coli PB12.SA22-derivative 
strain for SA production (PTS− Glc+aroK−, aroL−aroGfbr, tktA, 
aroB, and aroD; Table 1) using complex production media con-
taining 25 g/L glucose and 15 g/L yeast extract (YE) showed two 
characteristic growth stages: a fast growth phase associated with 
low glucose consumption during the first 8–10 h of cultivation 
and low SA production, and a second slow growth stage with high 
glucose consumption until this carbon source was completely 
consumed (25  h of cultivation). Interestingly, SA production 
continues during the STA phase after glucose, used as a carbon 
source, was completely consumed, until the end of fermentation 
(50 h) (Escalante et al., 2010). This behavior suggested that dur-
ing the EXP growth phase, this strain preferentially consumed 
some YE components to support growth, whereas glucose was 
used to produce SA and other pathway intermediates, suggesting 
the existence of regulatory and physiological differences between 
EXP and STA phases (Cortés-Tolalpa et al., 2014).

GTA was performed to corroborate this hypothesis during 
SA production in batch fermentation cultures using complex 
fermentation broth (Chandran et al., 2003; Escalante et al., 2010; 
Rodriguez et al., 2013) by comparing global expression profiling 
between the mid-exponential growth phase (EXP, 5 h of cultiva-
tion), the early stationary phase (STA1, 9 h) and the late STA phase 
(44  h); EXP/STA1, EXP/STA2, and STA1/STA2 comparisons 
were conducted (Cortés-Tolalpa et al., 2014) (Figure 5).

The relevant results showed EXP growth in the derivative 
strain PB12.SA22 during the first 9 h of cultivation. When the 
l-tryptophan provided by YE available in the supernatant was 
completely consumed (6  h), the strain entered the low-growth 
phase (even in the presence of glucose) until 26 h of cultivation, 
when glucose was completely consumed; this was associated 
with low SA production. Interestingly, during the stationary 
stage, SA production continued until the end of fermentation 
(50 h), achieving the highest accumulation (7.63 g/L of SA) in 
the absence of glucose (Figures 5A,B, upper panel).

GTA comparisons among EXP/STA1, EXP/STA2, and STA1/
STA2 showed no significant differences in the regulation of genes 
from the CCM and SA pathways, but for the EXP/STA1 com-
parison, the upregulation of genes coding for sugar transport, 
AA catabolism and biosynthesis, and nucleotide/nucleoside 
salvage was observed (Figure  5A). Interestingly, in the STA2 
phase, the highest SA production was observed in the absence 
of glucose in supernatant, associated with the upregulation of 
genes encoding transporters for the AAs l-lysine, l-arginine, 
l-histidine, l-ornithine, and l-glutamic acid and enzymes 
involved in the synthesis, interconversion, and catabolism of 
l-arginine. As all of these AAs are provided by YE, this result 
suggests that this AA could play a key role in fueling carbon 
to SA synthesis, and likely also in l-arginine conversion to the 

TCA intermediate succinate through the super-pathway of 
l-arginine and l-ornithine degradation (Keseler et  al., 2013) 
(Figure 5B). These results indicate the origin of carbon required 
for the highest SA production during the STA phase after 
glucose was completely consumed. Additionally, the upregula-
tion of genes involved in the pH stress response and inner and 
outer membrane modifications suggests a cellular response to 
environmental conditions imposed on the cell at the end of 
fermentation (44 h) (Cortés-Tolalpa et al., 2014).

The upregulation of genes coding for the biosynthesis and 
interconversion pathways of almost all AAs was also observed 
by GTA in cultures under C-limiting condition of the derivative 
strain W3110.shik1 grown in minimal broth. These changes were 
postulated to correlate to aromatic AA starvation with these 
culture conditions, although this strain maintained functional 
shikimate kinase I (aroK), allowing the accumulation of SA 
but maintaining carbon flux toward CHA and aromatic AAs 
(Johansson and Lidén, 2006).

As demonstrated by GTA in the SA-producing strain PB12.
SA22 during batch culture fermentations in complex media 
containing YE, several metabolic constraints limit the growth 
capabilities of this strain, stopping growing even in the presence 
of glucose. The highest SA production observed in the late sta-
tionary stage in the absence of glucose was probably supported 
by the non-aromatic AA content of YE. This evidence supports 
valuable information to further optimize culture strategies, as YE 
feeding increased the SA titer and yield in engineered strains.

Omics Data integration into Metabolic 
Modeling: Moving Toward Data integration 
for Rational Strain improvement

Although ME is capable of reconfiguring a biochemical network 
to redirect the substrate conversion into valuable compounds 
by manipulating the microorganism genetic code, its classical 
rational approach often introduces significant new flux imbal-
ances. This has often caused undesirable outcomes due to the 
accumulation of intermediates, feedback inhibition of upstream 
enzymes, and the formation of unwanted byproducts of cellular 
fitness diminution via the rerouting of resources toward the 
unnecessary or non-essential production of pathway enzymes 
(Biggs et  al., 2014). By understanding these newly created flux 
imbalances on mutant strains, it is possible to boost overall cel-
lular health and the product titer, productivity, and yield, taking 
into account a holistic view of cellular metabolism (Biggs et al., 
2014). Since the development of the omics, there has been an 
increased interest to understand the behavior of complete bio-
logical systems. Omics renders biological data from all levels of 
metabolism going all the way from genome to metabolome, these 
data combined give us the possibility to study the whole organ-
ism instead of single components. To achieve this, mathematical 
models play the important role of converting omics data into 
organismal information and knowledge (Åkesson et  al., 2004; 
Fong, 2014). There are several frameworks and approaches for the 
mathematical modeling of metabolism developed to collect high-
throughput data to understand as well as to predict phenotypic 
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FiGURe 5 | identification of possible key genes involved in carbon supply for SA synthesis as determined by global transcriptomic analysis in E. coli 
PB12.SA22 in batch culture using complex fermentation broth. Global transcriptomic analysis (GTA) showed no changes in expression profile in comparisons 
between EXP/STA1 (A) and STA1/STA2 (B) stages of those genes coding for enzymes of CCM and SA pathways but differential overexpression of diverse genes 
involved the transport, catabolism and interconversion of amino acids was observed (in red color) [(A,B), lower panels]. During STA1/STA2 comparison, genes 
coding for l-arginine, l-lysine, l-glutamic acid, and l-ornithine transporters were upregulated. These amino acids are probably converted to succinate fueling carbon 
to TCA. Additionally diverse genes coding for stress response proteins to pH and osmotic pressure were overexpressed. Blue arrows in upper panels showed 
samples from fermentor culture analyzed for GTA. Growth (•), glucose consumption (▪), and SA production (▴). Adapted from Escalante et al. (2010), Keseler et al. 
(2013), and Cortés-Tolalpa et al. (2014).
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function. Computational applications have been developed using 
models as quantitative mathematical representations of biological 
systems and or their components to a suitable level of simplifica-
tion (Jouhten, 2012). These computational tools can be used to 
identify new biological pathways in the host microorganism for 
the selection and improvement of important genotypic charac-
teristics to improve the production of the desired compound 
(Long et al., 2015). In this section, we discuss some mathematical 
models and computational tools that can be used in ME to utilize 
all high-throughput omics data and render new insights into flux 
distributions, regulation constraints, and modification targets to 
optimize the production of desired metabolites.

To understand the challenges and virtues of mathematical 
modeling, we must observe that biological systems are complex 
in nature, involving the transport of information through many 
layers, including the genome, transcriptome, proteome, and 
metabolome; therefore, regulatory steps between the interactions 
of these layers finally render the complex outcome of the pheno-
typic behavior (Cloots and Marchal, 2011; Fong, 2014). Therefore, 
mathematical models have been used to evolve and clarify the 
complex network interactions and system characteristics to 
reveal the underlying mechanisms. Despite this high degree of 
complexity, with all the recent advances and data sets available, 
mathematical modeling promises to generate experimentally 
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testable hypotheses, predictions, and new insights into systems 
biology to better understand cell behavior (Stelling, 2004).

The first step in mathematical modeling is reconstructing 
the metabolic network. With the advent of the genomic era 
since approximately 1999, reconstruction can be achieved on a 
genome-wide scale for many organisms and has been used to 
expand the knowledge on metabolic networks and to identify new 
or non-intuitive metabolic reactions to be engineered for further 
strain improvements (Åkesson et  al., 2004; Kim et  al., 2012). 
Genome-scale models are assembled and manually curated from 
the annotated genome, and biochemical information is used to 
render a representation of the metabolic network on which math-
ematical representations will set a matrix of equations to model 
its behavior. The reconstruction of a genomic metabolic network 
starts through the examination and identification of the coding 
regions or open reading frames on the sequence. After analysis 
with established algorithms and biochemical and physiological 
databases (EcoCyc, MPW, and KEGG WIT), sequences can be 
converted into feasible reactions, and a metabolic network can 
be reconstructed from genomic information (Covert et al., 2001). 
This reconstructed network, based on genomic data, is now the 
backbone of an in  silico organism. Many organisms have been 
completely sequenced and have simultaneously been extensively 
biochemically studied, which in turn can make the reconstructed 
metabolic network more complete (Covert et  al., 2001). In 
recent years, ~40% of all eukaryotic models and 30% of the total 
prokaryotic models have been published, advancing from highly 
characterized organisms (E. coli and Saccharomyces cerevisiae) 
to less characterized species with more complex biological 
systems that have special characteristics for specific applications 
(Kim et al., 2012). When a network is described with sufficient 
detail, some qualitative predictions can be made, and with the 
inclusion of stoichiometric, thermodynamic, and kinetic data, 
the reconstructed metabolic map of an organism can be used to 
generate quantitative predictions regarding phenotype via the 
construction of mathematical models (Covert et al., 2001). For 
example, individual genes have been deleted from in silico mod-
els, and correlations between the model and experimental data 
for the consequences of each deletion have been found to be 60% 
accurate for Helicobacter pylori and 86% accurate for E. coli (Price 
et al., 2003). Nevertheless, the challenges for the construction of 
these in silico models include obtaining high-throughput data to 
reconstruct more complete models, which can be sorted out by 
using omics data and combinatorial experimentation, and con-
structing mathematical approaches to model and render specific 
solutions for the highly complex systems of biological networks. 
Because genome-scale metabolic networks comprise hundreds to 
thousands of reactions, a large number of parameters are required 
to mathematically describe networks, which, therefore, requires 
the development of informatic intensive modeling approaches to 
describe its complexity and to make useful predictions regarding 
phenotypic behavior for strain design (Price et al., 2003).

The most used approaches are those arising from stoichio-
metric modeling, which uses mass balances over the metabolic 
network and assumes a pseudo-steady-state condition to 
determine intracellular metabolic fluxes, along with additional 
experimental data to solve the underdetermined linear equation 

system (Åkesson et al., 2004). Stoichiometric modeling creates a 
matrix (S) for the metabolites and metabolic reactions, in which 
each element indicates a stoichiometric coefficient, along with a 
vector that contains all of the unknown reaction rates (v); under 
the steady state assumption, flux distribution will be represented 
by S.v  =  0 (Jouhten, 2012; Kim et  al., 2012). As expected, this 
equation system will have many solutions, or more precisely, it 
will render a convex solution space, and because genome-scale 
metabolic models include all possible metabolic reactions 
whether or not they are expressed, meaningful solutions must be 
narrowed down to render a viable solution (Kim et al., 2012). The 
main problem is that due to the high number of equations and 
parameters, these systems are always underdetermined; thus, the 
use of thermodynamic, metabolic, kinetic, and all other experi-
mental data available is required to impose constraints, to reveal a 
plausible solution, and therefore to conduct quantitative analysis 
and make predictions regarding cell behavior (Fong, 2014).

To accomplish this desirable outcome, mathematical 
modeling researchers have developed many approaches to 
render the complexity, including the use of interaction-based, 
constraint-based, and mechanism-based methodologies for 
calculations. Interaction-based approaches isolate autonomous 
units performing distinct functions in cellular systems, account-
ing for modularity, which simplifies networks and systems 
to perform a topological analysis to reveal the principles of 
cellular organization. Constraint-based approaches account 
for the physicochemical invariance of networks in addition to 
network topology. This approach along with stoichiometric 
modeling, is capable of confining the numerous steady-state flux 
distributions the metabolic reconstruction network can have 
(convex space of solutions) into a smaller group, which complies 
with the constraints indicated by the knowledge regarding the 
system (a set of feasible states). Even so, this approach accounts 
only for the steady state, and therefore produces static models; 
thus, the final phenotypic behavior in changing intracellular or 
extracellular environments is difficult to address (Stelling, 2004). 
Mechanism-based approaches use kinetic parameters along with 
stoichiometric parameters to render the dynamic behavior of 
cells; thus, such approaches can formulate precise flux distribu-
tions and explore the regulation over time. The main problem 
with this approach is that the knowledge on mechanisms and 
associated parameters (kinetic reaction parameters) has, thus, far 
been limited, as so much effort and so many resources must be 
used to accomplish this type of models (Stelling, 2004; Jouhten, 
2012; Long et al., 2015).

Constraint-based approaches are the most used ones to date 
because of their capability to render flux distribution mod-
eling even with a relatively small amount of information. These 
approaches state the constraints under which the reconstructed 
network operates based on stoichiometry and thermodynam-
ics, including directionality and biochemical loops (Price et al., 
2003). Such constraints can be imposed by linear optimization; 
for example, standard flux-base analysis (FBA) uses growth 
optimization, selecting only the flux solutions, that in turn, pro-
duce the maximum growth rate for network topology (Åkesson 
et  al., 2004). Newer flux solution reduction methods have 
been developed to study the solution space, accounting for the 
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optimization of not only growth but also many other linear and 
non-linear objective functions, such as the maximum biomass, 
maximum ATP, minimum overall intracellular flux, maximum 
ATP yield per flux unit, maximum biomass yield per flux unit, 
maximum substrate consumption, minimum number of reaction 
steps, minimum redox potential, and minimum flux production 
between others (Price et  al., 2003; Schuetz et  al., 2007). These 
optimization principles, along with other constraints arising 
from specific conditions being either biotic (e.g., the inactiva-
tion, subexpression, or overexpression of specific target genes) or 
abiotic (e.g., aerobic culture, anaerobic culture, nitrogen limita-
tion, carbon limitation, available substrates), will help not only 
to render the most feasible flux distribution solution but also to 
study the consequences of changing the genetic cellular output 
or fermentation parameters for a specific objective. This informa-
tion is of great use for ME because it renders the ability through 
different modeling frameworks to study and predict the effects 
of knocking out genes, tuning the expression of target genes 
involved in specific reactions, network robustness, the endpoint 
of adaptive evolution, the identification and characterization of 
regulation, and heterologous reactions and de novo reactions on 
strain design. There are many reviews that discuss and compare 
multiple modeling frameworks, such as OptGene, OptStrain, 
CosMos, OptFocrce, FaceCon, and FOCAL, for the constraint-
based analysis of genome-wide metabolic networks (Price et al., 
2003; Schuetz et  al., 2007; Krull and Wittmann, 2010; Cloots 
and Marchal, 2011; Jouhten, 2012; Fong, 2014; King et al., 2015; 
Long et al., 2015). In this review, we will focus only on one or two 
framework examples given the scope of this work.

The first strain design method involving knockouts is 
OptKnock, a bi-level optimization framework used to identify 
optimal reaction deletion strategies, coupling cellular growth, 
and target metabolite production. OptKnock identifies deletions 
with the highest chemical production within the solution space 
obtained by the maximum growth rate constraint (Long et  al., 
2015). Pharkya et  al. (2003) used this framework to explore 
the overproduction of amino acids; specifically for AA, they 
addressed the channeling of flux from PEP to AA by removing 
the ppc gene, which could lead to the redirection of carbon flux 
to the formation of CHA via the accompanying deletions of 
pyruvate oxidase, pyruvate dehydrogenase, and pyruvate lyase 
reactions. The deletion of ppc by itself fails to redirect PEP to AA; 
the ability to detect its contribution though the co-inactivation of 
other reactions is a very useful tool of ME because the classical 
experimental deletion of this gene would have produced negative 
results for pathway optimization. In other words, in silico mod-
eling enables researchers to avoid designs toward a local maxima 
or minima when trying to identify the modifications required to 
achieve a global maxima for their specific purposes.

FBA with grouping reaction constraints (FBAwGR) was 
developed to improve the accuracy of metabolic simulation by 
incorporating the grouping of reaction constraints of functionally 
and physically related reactions in the model. This framework 
allows the consideration of genomic context and flux-converging 
analyses. Genomic context accounts for conserved neighbor-
hoods, gene fusion, and co-occurrences of genes to organize 
fluxes that are likely to be on or off together. Flux-converging 

analyses then restrict the carbon flux solution space to the 
number of metabolites participating in reactions and converging 
patterns from a specific carbon source. This framework has been 
used to predict changes in flux patterns caused by several genetic 
modifications, such as pykF, zwf, ppc, and sucA deletions in E. coli, 
showing good agreements with experimentally obtained fluxes 
(Kim et al., 2012).

Regarding the scope of this review for SA production in E. 
coli, we have found few studies in the literature that account for 
metabolic modeling. Nevertheless, the notable work by Chen 
et al. (2011), described FBA constraint analysis by stoichiometry 
and mass balance, assuming no growth and optimizing SA as the 
objective function to design modifications for the production of 
intermediate metabolites of the aromatic pathway. The model 
identified several key reaction steps for overexpression, similarly 
to those previously reported for AA optimization (overexpres-
sion of the aroF, tktA, ppsA, and glf genes, as well as deletions 
of the ldhA and ackA genes) by avoiding carbon waste through 
lactate and acetate fluxes. Finally, with all of the modifications 
made, their model identified the zwf gene as the critical node for 
redirection of the carbon flux into the AA pathway; its deletion 
led to an optimized accumulation of QA, GA, and SA, accounting 
for a 47% molar conversion of glucose (Chen et al., 2014).

Regarding other SA related work, Rizk and Liao (2009), 
managed to use EM to model, study, and predict DAHP 
production in E. coli toward aromatic production. Ensemble 
modeling (EM) is a mechanism-based modeling approach that 
decomposes metabolic reactions into elementary reaction steps, 
incorporating all available phenotypic observations for the 
wild type and mutant strains, integrating this information into 
the mathematical approach to identify the kinetic variables of 
each elementary reaction step (Rizk and Liao, 2009; Khodayari 
et al., 2014). Rizk and Liao (2009), using different flux bounds 
on the pathway split ratio between glycolysis and the PPP. Then, 
by using data from literature for overexpression of the tktA, 
talA, and pps genes, they were able to screen the solution space 
models compared with the phenotypic behavior, selecting the 
ones that properly described the experimental data (from a 
1500 solution space to 7, 171, and 195 solution spaces, accord-
ing to glycolysis:PPP ratios of 25:75, 75:25, and 95:5, respec-
tively). This subset of flux solutions revealed that TktA is the 
first controlling rate step and that PPS, only with simultaneous 
overexpression of TktA can augment DAHP production; these 
findings are in accordance with the phenotypic observations in 
the literature. Based on these results, they conclude that the flux 
distributions found could be reverse engineered to enhance 
aromatic production in E. coli (Rizk and Liao, 2009).

Notably, despite the existence of many genome-scale meta-
bolic models and various mathematical approaches, many of the 
fluxes remain undetermined, as many solutions remain plausible. 
Thus, more information is needed to ensure the modeling quality 
by the validation and incorporation of in vivo experimental data. 
These experimental data can be acquired from transcriptomic, 
proteomic, or fluxomic data. Strategies incorporating these 
extensive experimental data have been developed to enhance the 
quality and the accuracy of metabolic models (Kim et al., 2012). 
Fluxomic data in its core provide us with the most important 
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information as fluxes are the modeling outcome, but experimen-
tal procedures can only be used for relatively smaller networks 
and in specific conditions. Nevertheless, these data are of utmost 
importance and are commonly used to validate model solutions 
to flux distributions. ME models have been used to integrate 
protein expression data to reconstruct and add constraints to 
genome-level metabolic models, relating kinetic equations into 
catalytic constrains to approximate stoichiometric relationships 
between enzyme abundance and catalyzed fluxes (O’Brien and 
Palsson, 2015). This integration of proteomic data adds thermo-
dynamic and allocation constraints that help in the identification 
of a consistent flux state, allowing an explanation of aspects of 
cell behavior and relationships that have remained elusive, such 
as the interaction of ribosomes with metabolism, carbon limited 
to carbon excess metabolic shifts, substrate uptake regulation, 
membrane protein relationships, and other protein spatial 
constraints that can utterly dominate and/or change metabolic 
responses (O’Brien and Palsson, 2015). Transcriptomic data 
have been used to exploit the regulatory information in the 
expression data to provide additional constraints for the meta-
bolic fluxes in the model by analyzing if or when gene expression 
correlates with a given metabolic flux (Åkesson et al., 2004; Kern 
et  al., 2006). Computational protocols have been developed 
for this type of data integration, such as mixed integer linear 
programing (MILP), which seeks to maximize the agreement 
between experimental data and computational fluxes by limit-
ing the presentation of entities with the capability to carry flux; 
meanwhile, the flux of absent entities would be 0 (Fong, 2014). 
Åkesson et al. (2004) used gene expression microarray data from 
chemostat and batch cultures of S. cerevisiae to create Boolean 
variables for all of the reactions encompassed on a genome-scale 
metabolic model to ascertain the absent/present fluxes using 
analysis software. These new constraints allowed the computa-
tion of metabolic flux distributions to enhance the metabolic 
behavior in batch cultures, along with the quantitative prediction 
of exchange fluxes as well as the qualitative estimation of changes 
in intracellular fluxes compared with the model without tran-
scription constraints, as verified by experimental measurements 
of flux (Åkesson et al., 2004).

Many methods have been developed to introduce transcrip-
tomic regulation into modeling predictions, such as probabilistic 
regulation of metabolism (PROM), which calculates the prob-
ability that a metabolic target gene will be expressed relative 
to the activity of its regulating transcription factor, metabolic 
adjustment by differential expression (MADE), which creates 
a sequence of binary expression states so that when the gene 
expression changes from one condition to another, the flux reac-
tion will change in accordance with its value, and gene inactivity 
moderated by metabolism and expression (GIMME), which is 
a context metabolic model that predicts the subsets of reactions 
used under a particular condition using gene expression data and 
which identifies a flux distribution to optimize a given biological 
objective, such as growth and/or ATP production, along with 
FBA (Kim et al., 2012). Finally, a method called E-Flux can map 
continuous gene expression into flux bound constraints according 
to gene–protein-reaction (GPR) associations, limiting the upper 
and lower bounds on fluxes so that genes expressed at higher 

levels will result in higher flux values (Kim et al., 2012). This and 
other methods have been reviewed and compared by Machado 
and Herrgård (2014), who concluded that the prediction of flux 
levels from gene expression remains far from solved because 
the predictions obtained by simple FBA with growth maximiza-
tion and parsimony criteria were as good or even better that 
those obtained using the incorporation of transcriptomic data. 
Nevertheless, they acknowledge that some methods evaluated 
give reasonable predictions under certain conditions that there 
is no universal method that performs well under all scenarios 
and that the transcriptome should provide some guidelines for 
the correct phenotype determination within the space of solu-
tions resulting from the large number of degrees of freedom in 
metabolic networks, recommending that users should perform a 
careful evaluation of the meaningfulness of the results for their 
particular applications (Machado and Herrgård, 2014).

There are many successful mathematical modeling approaches 
to produce good and accurate predictions of phenotypic behavior 
in the literature; all of these methods help us to understand and 
simplify metabolic regulation and systems to comprehend and 
find new or non-intuitive targets for ME. Even so, there is still 
much work to be conducted to understand and construct better 
models of metabolic networks. There are many challenges because 
cell behavior is a complex system that, therefore, has complex 
outcomes and regulation. These challenges range from network 
reconstruction, mathematical treatments, and true flux distribu-
tion determination to the integration of all systems data (omics) 
to achieve regulation and phenotypic predictions. Nevertheless, 
the effort put into understanding this matter has produced and 
will continue to produce new insights for strain design and 
ME. Explaining all the considerations, challenges and achieve-
ments in this field is not within the scope of this review as many 
reviews have been published on these matters (Liu et al., 2004; 
Patil et al., 2004; Stelling, 2004; Schuetz et al., 2007; Kim et al., 
2012; Machado and Herrgård, 2014; Saha et al., 2014; Long et al., 
2015; O’Brien and Palsson, 2015). Rather, this review is aimed to 
provide the reader with interesting findings and perspective on 
how the mathematical modeling of biological systems can be and 
is useful for ME, especially regarding SA and AA production, for 
which these methods can be of relevance to exploit the maximum 
production capability of E. coli that remains unachieved.

Summary and Perspectives

SA is a key intermediate of the common aromatic pathway with 
diverse applications in the synthesis of valuable pharmaceutical 
compounds, but major interest relies on SA as the precursor for 
the chemical synthesis of OSF, the neuraminidase inhibitor of 
diverse influenza viruses, including pandemic strains. Diverse 
efforts have been made to produce high titers and yields of SA 
in metabolically engineered strains of E. coli with successful 
genetic modifications, including the following: (1) interruption 
of the SA pathway by the inactivation of shikimate kinase coding 
genes (aroK and aroL), which results in the high accumulation 
of SA; (2) increasing the intracellular availability of the CCM 
intermediate PEP by inactivation of the PTS system and replac-
ing this glucose translocation system by other housekeeping or 
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heterologous glucose transporters and by inactivation of the pykF 
gene; and (3) the overexpression of diverse key genes of the CCM 
and SA pathways, such as zwf, tktA, aroB, aroD, and aroE, under 
the control of constitutively expressed or inducible promoters 
in plasmid-cloned operons or chromosome-integrated copies. 
These engineered strains have been cultured in batch or fed-batch 
culture conditions using a complex fermentation media includ-
ing glucose and YE, resulting in the highest titer and yield of SA 
reported (Chandran et al., 2003; Rodriguez et al., 2013).

The above-described genetic changes impose global nutri-
tional, regulatory, and metabolic constraints on the resultant 
engineered strains, which must be explored to determine their 
relevance on SA production. GTA of the SA-producing strain 
W3110.shik1 provided evidence supporting the roles of ydiB-, 
aroD-, and ydiN-encoded proteins in byproduct formation dur-
ing SA production under glucose limiting conditions (Johansson 
and Lidén, 2006). Recent ME strategies applied for l-tyrosine 
(Juminaga et  al., 2012) and SA production (Rodriguez et  al., 
2013) demonstrated the relevance of ydiB inactivation and aroD 
overexpression to avoid byproduct formation and to improve 
carbon flux toward the desired aromatic products.

Interruption of the SA pathway by inactivation of the aroK 
and aroL genes imposes an auxotrophic requirement for aromatic 
AAs and probably other metabolites derived from CHA on the 
cell; these effects were successfully reversed by the addition of YE 
to the fermentation media.

As the chemical complexity of YE or peptone significantly 
interferes in the study of carbon flux through the CCM and 
SA pathway metabolic networks, no studies to date have been 
reported on the application of metabolic models to identify 
possible targets for the application of further ME strategies 
focused on the improvement of SA production in fermenta-
tion culture using complex production media (Chandran et al., 
2003; Escalante et al., 2010; Chen et al., 2012; Rodriguez et al., 
2013; Cui et al., 2014). The application of omics, such as GTA, 
in SA-producing conditions, including YE, as reported for the 
strain P12.SA22, provides valuable information on the role 

of diverse transporter systems and other pathways involved 
in carbon supply from YE to SA synthesis (Cortés-Tolalpa 
et al., 2014). These results highlight the relevance of informa-
tion retrieved from the application of omics, such as GTA, 
or proteomic approaches in successful aromatic compound-
producing strains to obtain data for mathematical modeling 
of metabolism.

Further application of synthetic biology strategies based on 
modular combinational design including key genes from the 
CCM and SA pathways in operons and optimized codon usage, 
and the construction of continuous genetic modules regulated 
by the same promoter but coupled to an efficient translational 
level by the selection of efficient ribosome binding sites (RBS) 
from tailored-made RBS libraries are promising strategies for 
the subsequent optimization of SA-producing strains. These 
synthetic strategies have been applied for the efficient production 
of l-tyrosine in E. coli (Juminaga et al., 2012) and for the suc-
cessful production of SA in Corynebacterium glutamicm (Zhang 
et al., 2015), respectively. Great advances in SA production in E. 
coli have been made over the past decades. However, more and 
new developments must be made, taking into account the vast, 
recently acquired data from omics technology. These data, along 
with their integration with ME technology and experience, can 
lead to more global insight into cell physiology, allowing new 
engineering techniques from a systems ME perspective to be 
identified and developed.
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