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BRIEF REVIEW

Megakaryocyte and Platelet Transcriptomics for 
Discoveries in Human Health and Disease
Pavel Davizon-Castillo, Jesse W. Rowley, Matthew T. Rondina

ABSTRACT: Anucleate platelets, long viewed as merely cell fragments with a limited repertoire of rapid-acting hemostatic 
functions, are now recognized to have a complex and dynamic transcriptome mirroring that of many nucleated cells. The field of 
megakaryocyte and platelet transcriptomics has been rapidly growing, particularly with the advent of newer technologies such 
as next-generation RNA-sequencing. Studies interrogating the megakaryocyte and platelet transcriptome have led to a number 
of key insights into human health and disease. In this brief focused review, we will discuss some of the recent discoveries made 
through transcriptome analysis of megakaryocytes and platelets. We will also highlight the utility of integrating ribosome footprint 
analysis to augment discoveries. Both bulk and single-cell sequencing approaches will be reviewed, along with comparative 
studies between human and murine platelets under basal healthy settings and during acute systemic inflammatory diseases.

VISUAL OVERVIEW: An online visual overview is available for this article.

Key Words:  gene expression profiling ◼ hemostasis ◼ megakaryocytes ◼ ribosomes ◼ transcriptome

Platelets are abundant, circulating blood cells canoni-
cally known for their roles in hemostasis and throm-
bosis. Emerging studies highlight that platelets 

have key functions spanning immune, inflammatory, and 
thrombotic continuums.1–3 Although anucleate, platelets 
have a rich and complex transcriptome of mRNA, miRNA, 
long noncoding RNA, pre-mRNA, and circular RNA.4–7 It 
has been shown that platelets are capable of process-
ing pre-mRNAs in signal dependent fashion to gener-
ate mRNA.8,9 mRNAs in platelets can be translated into 
proteins that influence platelet functional responses. In 
platelets, miRNAs have been shown to not only regulate 
direct platelet functions but also participate in cell-cell 
interactions and host responses.10

It is estimated that the majority of transcripts in plate-
lets are acquired from their parental cell, the megakaryo-
cyte, at the time of platelet formation (thrombopoiesis) 
while a smaller proportion may be acquired through 
cell-cell transfer while platelets are circulating11 (Fig-
ure  1). Platelets also harbor alternative structural fea-
tures of RNA that diversify the platelet transcriptome 

and proteome and are known to alter platelet function, 
including alternative start and stop sites, exon skipping, 
and intron retention. Moreover, emerging and estab-
lished data highlight that the platelet transcriptome is 
not fixed. Rather, in response to inflammatory signals, 
invading pathogens, cancer, or other stressors, the plate-
let transcriptome dynamically changes. Platelets are also 
capable of de novo protein synthesis, both basally and 
upon activation.6,8,9,12–14 As platelets lack a nucleus, this 
diverse and dynamic transcriptome enables platelets to 
synthesize new proteins and modulate their functions to 
participate in host thrombo-inflammatory responses.

Seminal work, spanning >70 years, demonstrating that 
platelets contain mRNA and possess the machinery to 
translate mRNAs9 has opened the door to diverse RNA-
based investigations that have significantly advanced the 
field of megakaryocyte and platelet biology.

With the development of techniques such as next-
generation RNA-sequencing (RNA-seq), transcriptome 
analyses of platelets and megakaryocytes are increas-
ingly used for discoveries on novel aspects of platelet 
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biology, as diagnostic and prognostic markers, and for 
therapeutic development efforts. For example, platelet 
RNA-seq (gene expression profiling) led to the identifi-
cation of the causative gene for gray platelet syndrome.15 
Moreover, in recent years, the concept of tumor-educated 
platelets has emerged as an innovative way to detect and 
track the progression of certain solid tumors. In these 
patients, platelet RNA-seq can reveal specific transcrip-
tional signatures of lung, brain, and breast tumors.16,17

In this focused review, we will highlight selected 
recent studies leveraging platelet and megakaryocyte 
transcriptomics for genetic discoveries, for intriguing 
insights into disease pathology, and for diagnostics and 
prognostics efforts.

PLATELET TRANSCRIPTOMICS FOR 
COMPARISONS BETWEEN MICE AND 
HUMANS
Next-generation RNA sequencing allows for compara-
tive analyses of human and murine platelet transcrip-
tomes. In general, transcripts in human platelets overlap 
with those in C57bl/6 murine platelets and for the most 
part, the most abundant transcripts in human platelets 
are also abundant in mouse platelets and vice versa.18 
However, some transcripts have only been detected 
in human platelets (eg, PAFR and PAR1) while others 
have only been detected in murine platelets (eg, PAR3 
and F5) under baseline conditions. The divergence in 
platelet function caused by this notable difference in 
gene expression for each of these genes has been well 
established. Thus, RNA-seq in mouse platelets can be 
used to understand functional differences between 
human and mouse platelets. It may also be valuable for 
identifying functional differences in mouse models of 
disease and inferring their relevance to their human dis-
ease counterpart.

Recently, comparative analyses between the human 
and murine platelet transcriptome were extended to dis-
ease settings. Middleton et al12 employed parallel strate-
gies of RNA-seq and ribosomal footprinting in isolated 
platelets from septic patients and mice subjected to the 
cecal ligation and puncture model of sepsis. Ribosomal 

footprint profiling allows for preservation and subsequent 
sequencing of RNAs with ribosomes attached, which can 
be indicative of specific mRNAs undergoing active trans-
lation.19 When RNA-seq and ribosomal footprint profiling 
are done in parallel on the same isolated platelet samples, 
data generated allow one to simultaneously evaluate both 
transcriptional and translational changes under the same 
conditions. The application of this strategy to human and 
murine platelets during sepsis (and, for comparison, healthy 
or basal conditions) enabled the discovery that not only are 
the platelet transcriptional and translational landscapes 
significantly altered in sepsis, but also that for hundreds 
of genes, sepsis-induced changes are similar between 
humans and mice. Correlations between clinical and 
experimental sepsis held for both changes in total RNA 
as well as for changes in ribosome-protected mRNAs. 
This suggests that for many genes, transcription and 
translation are similarly altered in platelets during sepsis.

For example, of the many differentially regulated genes 
at the transcriptional (RNA-seq) and translational (ribo-
somal footprint) levels in mice and humans with sepsis, 
ITGA2B (encoding for αIIb protein) was substantially 
elevated. Further validation showed that platelets from 
mice and humans with sepsis exhibit higher amounts 
of αIIb that directly correlate with mortality during clini-
cal and experimental sepsis. These sequencing data 
are publicly available (https://www.ncbi.nlm.nih.gov/
bioproject/?term=PRJNA521077) and may serve to help 
identify when murine models are relevant for studies of 
platelet gene expression in sepsis, and when they are not.

LONGITUDINAL ASSESSMENT OF 
PLATELET TRANSCRIPTOMES
Although disease can markedly alter the platelet tran-
scriptome, recent longitudinal studies demonstrate that 
in the absence of disease, platelet gene expression is 
remarkably stable within individuals over time.20 Platelets 
were isolated repeatedly up to 4 years from 2 indepen-
dent cohorts of healthy individuals, and stability of gene 
expression and alternative splicing RNA-seq assessed. 
Only a limited number of transcripts varied substantially 
within individuals over time suggesting a minor contri-
bution of acute environmental cues to gene expression 

Nonstandard Abbreviations and Acronyms

ABCC4	 ATP-binding cassette subfamily C
DE	 differentially expressed
MEPs	 megakaryocyte-erythroid progenitors
RNA-seq	 RNA-sequencing
RPs	 reticulated platelets
scRNA-seq	 single-cell RNA-seq
SELP	 P-selectin

Highlights

•	 Megakaryocyte and platelet transcriptomics enable 
discoveries in human health and disease.

•	 While exquisitely durable in health, the platelet tran-
scriptomic is dynamically altered in disease states.

•	 Single-cell RNA sequencing of megakaryo-
cytes enables insights into megakaryopoiesis and 
thrombopoiesis.
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variation in healthy individuals. One of these environmen-
tal triggers that affects gene expression in self-reported 
healthy individuals appears to be inflammation. The most 
variable transcripts within individuals in both cohorts were 
enriched for genes in the inflammation gene ontology.

As expected, gene expression varied more between 
individuals than within individuals. Between individual varia-
tion accounted for most of the variation for the majority 
(>50%) of transcripts. As previously identified,21,22 sex and 
race accounted for some differences between individu-
als, but only for a small number of genes. Genetic mark-
ers associated with gene expression called expression 
quantitative trait loci played a more prominent role in gene 
expression differences between individuals. Genes that 
varied the most between individuals, yet were relatively 

stable within individuals (ie, were highly repeatable) were 
enriched for genes with known expression quantitative trait 
loci signal, and several novel expression quantitative trait 
loci genes were found among the most repeatable genes.

Beyond gene expression, several exon skipping 
events were identified in platelets. Like gene expres-
sion, the level of splicing was relatively stable over time. 
Among the most repeatable exon skipping events was 
exon 14 of SELP (P-selectin). This exon, which codes for 
the transmembrane portion of SELP and affects the ratio 
of surface to soluble SELP protein, was only retained in 
38% of transcripts in platelets from some individuals and 
92% in platelets from other individuals. A single nucleo-
tide polymorphism, rs6128, within exon 14 accounted for 
the difference. Intriguingly, this platelet splice site quanti-
tative trait loci is associated with race with the a/a allele 
found predominantly in blacks and African Americans, 
whereas white almost exclusively harbor the g/g allele. 
Cell culture experiments confirmed that this variant is 
causative for SELP exon 14 splicing. So far, rs6128 is 
the only site quantitative trait loci that has been identi-
fied for platelets. However, other exon skipping events 
beside SELP were also highly repeatable and are likely 
regulated by site quantitative trait loci. Figure 2 highlights 
some of the discoveries spanning from this recent work.

SINGLE-CELL SEQUENCING OF 
MEGAKARYOCYTES
Bulk analysis of cultured human or murine megakaryo-
cytes remains a valuable analytical tool to study endog-
enous and experimental aspects of megakaryocytes. 
This approach has been used to identify gene pathways 
involved in megakaryocyte maturation and proplatelet 
formation.23–25 Other complementary approaches, such 
as cell-sorting by flow cytometry, are suitable to isolate 
cultured or native megakaryocytes (eg, directly isolated 

Figure 1. Alterations in the megakaryocyte transcriptome and proteome may be passed on to newly developing platelets.
The overarching theme depicted in this schematic is that physiological stimuli, diseases, and differences in racial background may alter the 
portfolio of RNAs and proteins in megakaryocytes. Megakaryocytes may then invest newly developing platelets with an altered set of RNAs (eg, 
transcriptome) and proteins (eg, proteome) that influences cellular functions and host responses. The accompanying Table 1 in the article lists 
some examples of settings where the platelet transcriptome and proteome are altered. Of note, many studies referenced in the text interrogated 
changes in the platelet proteome for a limited subset of genes, rather than performing global analyses of the proteome.

Table.  Examples of Settings Where Published Studies Dem-
onstrate That the Platelet Transcriptome and Proteome of 
Humans Is Altered

Physiological Setting, Back-
ground, or Condition

Platelet  
Transcriptome

Platelet  
Proteome

Altered? Altered?

Sepsis12,36 Yes Yes

Myocardial infarction58,59 Yes Yes

Aging27,41 Yes Yes

Viral infection53,57,60 Yes Yes

Race61 Yes ??

Cancer62 Yes ??

Intralipid infusion38 Yes ??

Sickle cell disease63 Yes ??

Systemic lupus erythematosus64 Yes Yes

In many of the above referenced reports, proteome changes (eg, alterations 
in the expression of one or more proteins in platelets) were detected on a 
candidate gene basis. Middleton et al12 used ribosomal footprint sequencing to 
assess global changes in platelet translational events (as well as validation of 
a candidate), and Trugilho et al60 used comparative, quantitative proteomics in 
dengue patients.
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from bone marrow or liver). This method requires consid-
erable megakaryocyte enrichment of the samples before 
the cell sorting. In addition, it is necessary to employ 
larger sorting nozzles (ideally 200 μm) and low-pressure 
conditions which increase the sorting time required for 
acquisition of an adequate number of viable cells.26,27

With the introduction of single-cell RNA-seq (scRNA-
seq), which uses barcode labeling of each cell present 
within the population of interest, the potential for de novo 
discovery within heterogenous cellular populations has 
increased. For detailed methodological descriptions of the 
different scRNA-seq platforms available, aspects of sam-
ple preparation and workflow, and bioinformatics analy-
ses, the reader is referred to the following resources.28–32 
One consideration when choosing scRNA-seq platforms 
relates to the sequencing coverage. Some systems may 

provide full-length transcript sequencing, while others 
may only sequence the 3′-end transcripts. Full length 
sequencing allows higher-level studies such as alterna-
tive splicing analysis, but typically is more expensive and 
requires more complex bioinformatic analyses.

Several groups have recently used scRNA-seq to gain 
a deeper understanding of the gene pathways influencing 
how hematopoietic precursors develop into megakaryo-
cyte-erythroid progenitors (MEPs), erythrocytes, and 
megakaryocytes. For example, Psaila et al33 performed 
scRNA-seq on flow cytometry-sorted human MEPs and 
discovered that immunophenotypically defined MEPs 
encompass a transcriptionally heterogeneous popula-
tion of cells with distinctive potentials for differentia-
tion into megakaryocytes and erythrocytes. Intriguingly, 
some cells retained the potential for both erythroid and 

Figure 2. Insights into the platelet transcriptome from longitudinal and cross-sectional analysis of gene expression and 
splicing.
In a report by Rondina et al,20 platelets were sampled repeatedly from 38 individuals for up to 4 y. Variation in gene expression and transcript 
splicing (exon skipping) between individuals and within individuals over time was assessed by RNA-sequencing (RNA-seq). Transcripts that 
varied the most within individuals were enriched for those related to inflammation. Transcripts that varied the most between individuals, but 
were relatively stable within individuals over time (ie, were repeatable), were predictive of identifiable cis-expression quantitative trait loci (eQTL) 
signal. Repeatable splicing events were also identified, including SELP (P-selectin) exon 14 skipping. Platelet SELP exon 14 skipping was 
associated with a single nucleotide genetic polymorphism in exon 14. In vitro experiments in cell lines using mini-gene constructs that varied by 
this single-nucleotide demonstrated increased exon skipping for the C/C compared with T/T variant. This resulted in reduced transmembrane 
domain inclusion, decreased surface, and increased soluble P-selectin.
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megakaryocytic output. Similarly, Lu et al34 employed 
scRNA-seq to compare the transcriptome of MEPs, 
common myeloid progenitors, erythroid, and megakaryo-
cyte progenitors. This analysis led them to identify key 
genes involved in fate determination of MEPs and dem-
onstrated that differential modulation of cell cycle speed 
dictates whether MEPs differentiate into erythroid pro-
genitors or megakaryocyte progenitors. These and other 
studies have advanced the field by establishing novel 
and valuable methodological approaches to study the 
development of MEPs, erythroid progenitors, and mega-
karyocyte progenitors. Data sets generated also provide 
a roadmap of the transcriptomic landscape of these 
complex and heterogeneous cellular populations. Cur-
rent platforms and protocols for scRNA-seq are not yet 
able to capture and sequence platelets given the lower 
amount of RNA per platelet compared with a nucleated 
cell (estimated to be ≈2.2 fg/platelet17,35). Once devel-
oped and validated, however, scRNA-seq of platelets is 
anticipated to offer substantial new insights.

We recently employed scRNA-seq to analyze and com-
pare the transcriptome of native, freshly isolated, bone 
marrow megakaryocytes from young and aged mice as a 
way to begin to understand the mechanisms underlying 
aging-associated platelet hyperreactivity.27 We enriched 
for megakaryocytes using a BSA density gradient fol-
lowed by CD61 positive selection with magnetic beads. 
This process raised the percentage of megakaryocytes 
from ≈0.1% to ≈2% of bone marrow cells. Megakaryo-
cytes were transcriptionally defined by identifying cells 
with the highest expression of megakaryocytes specific 
genes (eg, Vwf, Pf4, Gata-1, Selp, Gp6, and Gp1ba). Our 
bioinformatics pipeline led us to identify 7 distinctive 
clusters of transcriptionally identified megakaryocytes 
with progressively increasing expression of megakaryo-
cytes maturation markers (ie, increased expression of the 
β3 integrin as depicted in Figure 3). Enriched pathways 
in megakaryocytes from aged mice included mitochon-
drial dysfunction, oxidative phosphorylation, and inflam-
mation. Numerous transcriptional differences identified 
in megakaryocytes were functionally evident in circulat-
ing platelets from aged mice. We used these transcrip-
tional insights to elucidate how increased TNF-α (tumor 
necrosis factor α) in aging promoted platelet hyperre-
activity and thrombosis. Ongoing efforts by our groups 
and others are using these approaches to delineate the 
transcriptome of human megakaryocytes during mega-
karyopoiesis and thrombopoiesis.

PLATELET TRANSCRIPTOMICS IN HEALTH 
AND DISEASE
A number of recent studies have leveraged RNA-seq to 
globally examine the platelet transcriptome in healthy 
donors across the aging spectrum, during disease, and in 

comparative analyses between aged and newly released 
platelets in the circulation (Figure  1 and Table). More 
recent selected studies are highlighted in greater detail 
below, and we also refer the reader to other studies we, 
unfortunately, do not have the room to discuss here.36–40

Human aging is generally associated with an increased 
risk of thrombo-inflammatory diseases. Yet, mechanisms 
underpinning this heightened risk remain incompletely 
understood. Earlier, microarray-based profiling of the 
platelet transcriptome in 154 healthy donors aged 18 to 
46 years old identified a number of age-related, differ-
entially expressed (DE) mRNAs (n=129) and miRNAs 
(n=15). Intriguingly, GO enrichment analyses of mRNAs 
predicted to be targeted by the 15 miRNAs that were 
DE by age suggested categories relevant to platelet acti-
vation and function.21 Of note, the authors of this study 
created an interactive, public web-based tool allowing for 
dataset queries (www.plateletomics.com).

More recently, we used RNA-seq to perform com-
parative analyses of the platelet transcriptome between 
older (age ≥65 years old) and younger (age <45 years 
old) apparently healthy donors. Consistent with prior 
work, we identified numerous (n=514) transcripts DE in 
older adults. Most of these DE transcripts (n=455/514; 
89%) were upregulated in older adults, as compared with 
younger adults.41 While we focused in detail in this study 
on dissection of one DE mRNA (eg, Granzyme A), the 
platelet RNA-seq data set is publicly available (https://
www.ncbi.nlm.nih.gov/bioproject/PRJNA397446).

In contrast to older adults, aging at the opposite 
end of the spectrum (eg, neonates) is associated with 
platelet hyporeactivity. Clinically, this may translate into 
a higher risk of bleeding in neonates (particularly in set-
tings of prematurity or illness). Recently, Caparros-Perez 
et al used microarray to perform the first comparative 
analyses of platelet transcriptomes from full-term neo-
nates and healthy adult human donors. Importantly, 
these investigators independently replicated analyses in 
2 separate laboratories, thus providing increased rigor 
to differential-expression analyses. They identified 201 
transcripts DE in newborn platelets. Similar to studies in 
older adults, the majority (162/201; 81%) were upregu-
lated. Interestingly, among the significantly upregulated 
transcripts in newborn platelets, the most prevalent were 
those related to protein synthesis, trafficking, and deg-
radation. Additionally, DE genes in newborn platelets 
were also implicated in platelet adhesion, activation, and 
aggregation responses—among others. Validation stud-
ies performed by these investigators confirmed that 
both ADRA2A (adrenoreceptor alpha 2A) and GNAZ 
(G-protein subunit alpha Z) were downregulated in new-
born’s platelets and may account for prior observations 
that neonatal platelets exhibit decreased responses to 
epinephrine.42,43

Aging can also occur in platelets as they circulate 
in the blood. Reticulated platelets (RPs) represent a 
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subset of circulating platelets that are thought to be 
newly released. RPs are generally larger and contain 
more RNA compared with mature platelets, and in some 
settings are hyperreactive.44–47 Clinically, RPs are asso-
ciated with cardiovascular events48,49 and may also pre-
dict adverse outcomes in sepsis,50 where thrombosis 
risk is elevated.51 By flow cytometry, investigators sepa-
rated RPs (defined as platelets with the highest thiazole 
orange staining) from mature platelets.52 Cell populations 
were then sequenced and compared. As has been pre-
viously reported, isolated RPs were hyperreactive com-
pared with mature platelets. Consistent with this cellular 
phenotype, there were a large number of DE transcripts 
in RPs (n=1744) and biological processes related to 
platelet activation and hemostasis were enriched in RPs. 

Small-RNA sequencing identified only a small number of 
DE miRNAs in RPs (n=9). However, all 9 miRNAs were 
downregulated in RPs.

Genes upregulated in RPs and involved in platelet 
activation and hemostasis included the thrombin receptor 
PAR4, the thromboxane A2 receptor, and number integ-
rin and adhesion molecules, including ITGA2B (CD41, 
or αIIb protein). This transcriptional-based study, there-
fore, provides new insights into prior observations that 
RPs are hyperreactive and supports identified associa-
tions between RPs and thrombotic events. As with other 
publications highlighted in this review, these investiga-
tors have made their sequencing data publicly available 
(https://www.ncbi.nlm.nih.gov/geo/GSE126448).

Figure 3. Transcriptomic analyses of megakaryocytes (MKs).
Primary or cultured MKs can be subjected to different experimental conditions in vitro or in vivo before isolation for RNA sequencing. RNA-
seq can be performed in bulk fashion (top right), allowing comparative analysis of MK populations under specific experimental conditions. 
Shown is a representative heat map of comparative, bulk, bone marrow MK transcriptomic analyses from older and younger mice. Recently, we 
optimized a protocol to perform single-cell RNA (scRNA-seq) sequencing of freshly isolated MKs from mice. Similar to bulk RNA-seq, scRNA-
seq can be employed to compare large populations of MKs as a whole, or between clearly defined subpopulations of MKs (regions 1–7). 
However, scRNA-seq also affords the possibility to identify, track, and predict gene pathways involved in megakaryocyte a development and 
maturation. Shown is a representative trajectory analysis of 7 unique MK clusters at different maturation stages as evidenced by the expression 
levels of Itgb3 ( � integrin)β 3 .
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Platelet transcriptional profiling can also provide 
unique insights into (patho)physiological processes 
occurring during human disease. We highlight 2 recent 
examples where RNA-seq led to new biological discov-
eries during inflammatory diseases. In the first example, 
investigators studied the platelet transcriptome in per-
sons living with HIV (all of which were on anti-retroviral 
therapies and had HIV RNA viral loads <200 copies/mL) 
and healthy donors.53 Clinical studies have demonstrated 
that persons living with HIV have an increased risk of 
cardiovascular disease, even when virally suppressed.54 
Yet the mechanisms driving this increased cardiovascular 
disease risk remain incompletely understood.

Similar to other reports,55,56 platelets from persons 
living with HIV were hyperreactive—in this case, evi-
denced by increased adhesion and signaling to endothe-
lial cells in vitro. Platelets from persons living with HIV 
also demonstrated a number (n=73) of significantly, DE 
transcripts. Notably, the expression of genes involved 
in leukocyte activation were increased in platelet from 
persons living with HIV. The most upregulated gene 
encoded for ABCC4 (ATP-binding cassette subfam-
ily C), which regulates platelet activation. The expres-
sion of ABCC4 mRNA in platelets was significantly 
and positively associated with platelet surface SELP 
levels (r=0.72, P=0.046) and integrin αIIbβ3 activation 
(r=0.77, P=0.025).

The investigators of this study then elegantly pursued 
the cellular location, function, and impact of increased 
ABCC4 expression in platelets from persons living with 
HIV. They localized ABCC4 in platelets to the mem-
brane of dense granules, which facilitates ADP export. 
Accordingly, ABCC overexpression in HIV was associ-
ated with reduced phosphorylation of VASP (vasodilator-
stimulated phosphoprotein), a preferential cAMP (cyclic 
AMP)-dependent protein kinase phosphorylation site. 
Platelet ABCC4 impaired cAMP homeostasis, thereby 
promoting platelet activation in persons living with HIV. 
Further, the investigators were then able to rescue 
platelet-driven, enhanced endothelial cell and monocyte 
activation in HIV by inhibiting ABCC4. Collectively, these 
data demonstrate new biology for platelet ABCC4 in HIV 
in mediating direct platelet responses, as well as hetero-
typic platelet interactions with other cells.

As a second example, our group recently used RNA-
seq to elucidate new biology of megakaryocytes and 
platelets during acute viral infections. Hypothesizing that 
anti-viral immune genes would be upregulated in plate-
lets and megakaryocytes in response to invading viral 
pathogens, we performed RNA-seq on patients acutely 
infected with either dengue or influenza virus. In both 
cohorts, the interferon-sensitive gene IFITM3 (inter-
feron-inducible transmembrane protein 3) was markedly 
(≈40- to 60-fold) upregulated. IFITM3 protein, normally 
undetectable in platelets from healthy donors, was also 
turned on. Functionally, IFITM3 in megakaryocytes served 

to limit viral infection, not only in megakaryocytes but also 
in stem cells through immune bystander effects.57

CONCLUSIONS
In conclusion, platelet RNA-seq and ribosomal footprint-
ing analyses offer a global view to transcriptional and 
translation landscapes of platelets and megakaryocytes. 
The combination of these 2 analytical tools enhances 
the discovery potential as evidence by our recent work. 
In addition to comprehensive data sets, these toolsets 
enable focused discovery efforts at the single gene 
level, as well as for gene networks and interactions. As 
technologies continue to advance, there is the tangible 
potential that current roadblocks, such as single-cell 
sequencing of platelets, will be overcome. This is indeed 
an exciting time in the field of platelet transcriptomics, 
and we look forward to future insights into new roles for 
platelets and megakaryocytes during health and disease.
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