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Abstract

In the search for an understanding of how genetic variation contributes to the heritability of common human
disease, the potential role of epigenetic factors, such as methylation, is being explored with increasing frequency.
Although standard analyses test for associations between methylation levels at individual cytosine-phosphate-
guanine (CpG) sites and phenotypes of interest, some investigators have begun testing for methylation and how
methylation may modulate the effects of genetic polymorphisms on phenotypes. In our analysis, we used both a
genome-wide and candidate gene approach to investigate potential single-nucleotide polymorphism (SNP)–CpG
interactions on changes in triglyceride levels. Although we were able to identify numerous loci of interest when
using an exploratory significance threshold, we did not identify any significant interactions using a strict genome-
wide significance threshold. We were also able to identify numerous loci using the candidate gene approach, in
which we focused on 18 genes with prior evidence of association of triglyceride levels. In particular, we identified
GALNT2 loci as containing potential CpG sites that moderate the impact of genetic polymorphisms on triglyceride
levels. Further work is needed to provide clear guidance on analytic strategies for testing SNP–CpG interactions,
although leveraging prior biological understanding may be needed to improve statistical power in data sets with
smaller sample sizes.

Background
Methylation plays a major role in gene regulation through
epigenetic modifications at specific cytosine-phosphate-
guanine (CpG) residues within the regulatory regions of
genes and, consequently, may influence the transcriptional
activity [1]. In brief, methylation occurs when a methyl
group is transferred to the DNA via a family of DNA
methyltransferases. The majority of DNA methylation
occurs oncytosines, which immediately precedea guan-
ine nucleotide (ie, CpG site). These CpG sites occur

frequently throughout the genome and have been
linked to both single-nucleotide polymorphisms (SNPs)
and epigenetic changes [2].In particular, DNA methyla-
tion may lead to different influences on gene activities
depending on the surrounding genetic sequence [3].
Because SNPs near the CpG site may alter methylation
levels, the statistical interaction between SNPs and
CpG sites may explain varying gene expression across
individuals. Prior research shows that DNA methylation
in the interleukin-4 receptor is associated with asthma,
but this association is further explained by the presence
or absence of a nearby SNP [4]. A study focusing on
obesity found the interaction between CpG sites in an
enhancer region interacts with CpG creating SNP sites

* Correspondence: Nathan.Tintle@dordt.edu
2Department of Mathematics and Statistics, Dordt College, 498 4th Ave. NE,
Sioux Center, IA 51250, USA
Full list of author information is available at the end of the article

BMC Proceedings

© The Author(s). 2018 Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and
reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to
the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver
(http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

Veenstra et al. BMC Proceedings 2018, 12(Suppl 9):58
https://doi.org/10.1186/s12919-018-0144-7

http://crossmark.crossref.org/dialog/?doi=10.1186/s12919-018-0144-7&domain=pdf
mailto:Nathan.Tintle@dordt.edu
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/


in an obesity-risk haplotype, which helps explain obesity/
Type 2 Diabetes [5].
As part of GAW20, we were provided access to a data

set of methylation, SNPs, and triglyceride levels over 2 time
periods, along with numerous related covariates. In par-
ticular, the study measured triglyceride levels before and
after pharmaceutical intervention. Given the well-known
relationship between triglycerides and many different car-
diometabolic diseases, including cardiovascular disease [6],
we chose to look for evidence of methylation at CpG sites
that potentially modulate the impact of nearby SNPs on
changes in triglyceride levels.

Methods
Sample population and variables
The sample consisted of 670 individuals from a pedigree
sample provided as part of GAW20 for whom all
analyzed variables were available. We considered 6 co-
variates (age, observation center, smoking status, mass
spectrometry DX client [MSDX] International Diabetes
Federation [IDF] score, fasting time at baseline, and
high-density lipoprotein [HDL] at baseline) the majority
of which were significantly associated with baseline tri-
glyceride (TG) in this sample. The primary response
variable of interest was TG level at baseline (visit 1 or 2).
For variables with up to 2 measurements at baseline
(HDL [baseline], TG [baseline]), we used the average
value if both measurements were available, or the only
available measurement if only one was available.

Models
The modeling process was done in 2 stages. The first
stage model resulted in a single residual TG value for
each person, while the second stage resulted in approxi-
mately 700,000 models (one for each SNP that passed
standard genome-wide association study [GWAS] qual-
ity control [QC] criteria: Hardy-Weinberg equilibrium
p value> 1 × 10− 6, minor allele frequency > 1%, SNP
missing data rate < 5%).
In the first stage, we used the lmekin function from

the coxme package in R [7] to predict the change in
log-transformed TG levels [y = ln (baseline)]. In cases
where 2 separate TG measurements were available for
the baseline, we natural-log (ln)-transformed the data
before averaging. Baseline ln-transformed TG levels was
predicted by the 6 covariates listed earlier and accounted
for the familial relationships in the model through the
use of the kinship matrix. We then saved the resulting
“residual” value (ri ¼ ŷi−yi ) for each of the i = 1,…, 670
individuals in our analysis.
The second stage predicted the residuals (ri

′s) from stage
1 based on the number of minor alleles (SNPj = 0, 1, 2) and
methylation scores (CPGj ∈ [0, 1]) with a separate model

for each SNPj, CPGj pair using the lm function in R [7]. In
particular, the second stage model for SNPj, CPGj pair was:

r j ¼ βS j
SNP j þ βC j

CPG j þ βS jC j
SNP jCPG j ð1Þ

where βS jC j
is the estimate of interaction effect between

SNPj and CPGj. SNPj, CPGj pairs were made by assigning
each SNP passing QC to its nearest CpG site, resulting
in approximately 700,000 pairs, with some CpG sites
assigned to multiple SNPs.

Statistical analysis
Statistical significance of the interaction term in Eq. 1
was assessed using an F test, essentially testing whether
the statistical interaction provided significantly more evi-
dence of association with changes in TG levels versus a
model with only main-effects terms. Versions of Eq. 1
without the interaction term were also run. We started
by using a generally accepted, but stricter and conservative,
genome-wide significance level of 5 × 10− 8. We followed up
this analysis by using a more liberal and exploratory sig-
nificance level of 1 × 10− 4 in our genome-wide
interaction analysis.
We followed this genome-wide analysis with a candidate

gene study focusing on 18 gene regions (containing 423
unique SNP-CpG sites) that have been shown to be asso-
ciated with TGs in previous genome-wide association
studies via searches at http://www.ebi.ac.uk/gwas.
Throughout the candidate gene analysis, we used a signifi-
cance level of 0.05. As part of the candidate gene analysis
we also collapsed all the CpG sites within each gene re-
gion (50 kb on either side of the gene) by using 5 different
methods (mean, minimum, maximum, median, and
sum-squares of the CpG values as the CPG value in the
model) to evaluate the potential impact of different ways
of summarizing methylation evidence for each SNP. For
the SNPs that demonstrated a significant interaction for
more than one of the collapsing methods used, we then
looked at the interactions between all CpG sites within
the region and those SNPs.

Results
Genome-wide approach
No interaction term p values were significant when
using the conservative 5 × 10−8threshold. However, 58
SNP-CpG pairs showed significant interactions using the
more liberal 1 × 10−4significance level. Table 1 summa-
rizes 25 loci that include regions of SNPs that are colo-
calized and within genes (total of 44 interactions). The
median p value of the interaction term across all sites
was 0.504 and a lambda value of 1.02, showing no
inflation of test statistics.
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Candidate gene approach
In our data, there are 18 genes (containing 423 SNPs for
which data was available) previously shown to be associ-
ated with TG levels. Table 2 summarizes the results of
fitting Eq. 1 with an interaction term, as well as a version
of Eq. 1 without the interaction term.
Thirteen of the 18 candidate genes show at least modest

(p < 0.05) evidence of statistical interaction between
nearby methylation values and SNPs within the gene. The
most significant SNP is in FADS3 (rs1675102) and has a
minor allele frequency of 0.28. The interaction is such that
additional copies of the minor allele lead to a decreased
impact of methylation on changes in TG levels.
Table 3 shows the results of collapsing all the CpG

sites within each gene region through the minimum
method, which uses the minimum CpG value of all CpG
sites within 50 kb of the gene. Compared to the other 4
methods, the minimum method resulted in more signifi-
cant interactions (44) than did the other 4 collapsing
methods, which on average only have 23 significant in-
teractions (detailed results not shown).
We identified 176 unique SNPs in significant interac-

tions for more than 1 of the 5 different CpG collapsing
methods as found in Table 4. In total, there are 176 unique
significant SNP × CpG interactions. GALNT2 had the
largest number of significant results with 69 interactions,
where 1 of the 69 interactions is the most significant with

a p value of 0.000142. The SNP in this interaction
(rs6677241) has a minor allele frequency of 0.026. The
interaction results in an increased impact of methyla-
tion on TG levels for every additional allele.

Discussion
Although no significant SNP–CPG interactions were
identified when using strict, genome-wide significance
thresholds (5 × 10− 8), use of a more exploratory approach
identified many genes previously shown to be associated
with cardiometabolic traits (1 × 10− 4). A candidate gene
approach, using a significance level of 0.05, identified loci in
13 genes with modest evidence for SNP-CpG interactions
on baseline TG levels. Furthermore, by using the collapsing
methods, we were able to identify potentially interesting
SNPs for additional exploration. Using only these SNPs,
our examination of all CpG sites within each gene region
resulted in 176 significant unique SNP-CpG pairs. In every
case, the SNP-CpGp value was smaller than both the SNP
and CpGp values from the noninteraction model. This
suggests that using SNP-CpG pairs may identify SNPs that
would not be identified by traditional GWAS techniques.
The gene GALNT2, had the most significant interactions
with 69. SNPs in GALNT2 were previously identified as as-
sociated with TG levels, high- and low-density lipoprotein
cholesterol [8]. One study shows that promoter methylation

Table 2 Summary of 18 genes with previous evidence of association with triglyceride levels

Gene Chr # of significant
interactionsa (total)

Smallest interaction
p value

SNP pvalueb SNP location (bp) Interaction (rs#:cg#)c

APOA1 11 1 (16) 0.0316 0.296 116,707,207 rs563838:cg24984312

APOA5 11 1 (12) 0.0316 0.296 116,707,207 rs563838:cg24984312

APOB 2 0 (13) 0.0511 0.124 21,318,003 rs312042:cg23349726

APOC3 11 1 (17) 0.0316 0.296 116,707,207 rs563838:cg24984312

BUD13 11 0 (13) 0.0866 0.904 116,570,686 rs1784042:cg19442415

CETP 16 1 (19) 0.0184 0.502 56,971,665 rs17241126:cg05062620

CLIP2 7 0 (2) 0.656 0.662 73,771,865 rs2718277:cg07814763

DOCK7 1 3 (75) 0.0261 0.341 63,034,240 rs12122434:cg00161770

FADS1 11 1 (16) 0.00430 0.740 61,581,397 rs444803:cg11606466

FADS2 11 1 (26) 0.00430 0.740 61,581,397 rs444803:cg11606466

FADS3 11 1 (20) 0.00351 0.830 61,710,585 rs1675102:cg16084190

GALNT2 1 2 (123) 0.0409 0.605 230,224,139 rs11588595:cg11424376

GCKR 2 1 (7) 0.0435 0.0846 27,730,170 rs17706100:cg22903471

LPL 8 1 (24) 0.0463 0.497 19,794,163 rs17091651:cg04035597

MLXIPL 7 0 (11) 0.106 0.373 73,083,725 rs884843:cg12958963

OTOR 20 1 (46) 0.0290 0.469 16,748,375 rs1883698:cg07500957

PLTP 20 2 (35) 0.0251 0.983 44,576,565 rs3795126:cg17262492

TRIB1 8 0 (8) 0.135 0.638 126,445,881 rs13255114:cg22644321
aWith a significance level of 0.05
bFrom a model with only main effects terms for CpG and SNP (ie, Eq. 1 without the interaction term)
cDuplicates are a result of the overlapping nature of several of the genes
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of GALNT2 is associated with a higher risk of coronary
heart disease [9].
There are some limitations to our analysis. First, to

manage computational resources, we began by predict-
ing baseline TG levels by kinship and covariates, yielding
residuals for each individual, which we used for assessing
impact of methylation and genetic variation. Other
alternatives to this methodology may exist. We used an
exploratory significance threshold for the genome-wide

analysis, relative to the vast majority of GWAS-type
analyses published today. Although this can lead to more
false-positive results, we did find a number of “sub-
threshold” loci of potential interest suggesting the need
for studies with larger sample sizes and more sensitive
statistical methods to draw out these loci of interest.
The minimum method of summarizing methylation in a
region nearby to a gene showed promise, although fur-
ther work is needed to more fully evaluate the many

Table 3 Summary of CpG results after collapsing using the minimum method

Gene Chr # of significant
interactionsa(Total)

Significant SNPs
with > 1 methodsb

Smallest interaction
p value (rs#)

SNPp valuec SNP location (bp) # of CpGs within
region collapsed

APOA1 11 0 (45) 1 0.292 (rs633389) 0.381 116,667,337 57

APOA5 11 4 (43) 0 0.02564 (rs10488699) 0.00487 116,632,500 80

APOB 2 3 (43) 3 0.00286 (rs693) 0.0851 21,232,195 31

APOC3 11 0 (46) 0 0.111 (rs632153) 0.119 116,710,239 68

BUD13 11 5 (46) 2 0.0252 (rs12279373) 0.0155 116,600,400 63

CETP 16 4 (43) 0 0.0199 (rs247609) 0.984 56,973,461 47

CLIP2 7 1 (16) 1 0.0143 (rs4298392) 0.791 73,862,441 74

DOCK7 1 9 (38) 0 0.0215 (73862441) 0.306 63,049,819 39

FADS1 11 4 (18) 1 0.000440 (rs174534) 0.217 61,549,458 107

FADS2 11 3 (19) 1 0.00314 (rs174534) 0.214 61,549,458 109

FADS3 11 0 (21) 1 0.102 (rs7927548) 0.461 61,690,901 45

GALNT2 1 7 (138) 3 0.00154 (rs10779837) 0.194 230,327,568 96

GCKR 2 1 (9) 0 0.0480 (rs4665383) 0.0490 27,791,555 32

LPL 8 0 (53) 0 0.157 (rs10102876) 0.869 19,779,785 17

MLXIPL 7 0 (10) 1 0.0826 (rs7782054) 0.135 73,028,759 98

OTOR 20 0 (46) 3 0.0510 (rs16998203) 0.792 16,739,519 20

PLTP 20 3 (24) 0 0.0327 (rs11086984) 0.955 44,511,627 91

TRIB1 8 0 (32) 0 0.0802 (rs17663005) 0.798 126,464,388 38
aWith a significance level of 0.05
bThe SNP was found to be significant with more than 1CpG collapsing method. Refer to methods section
cFrom a model with only main effects terms for CpG and SNP (ie, Model 1 without the interaction term)

Table 4 Summary of 176a interaction pairs

Gene Chr # of significant
interactionsb(total)

Smallest interaction
p value

SNP pvaluec CpG pvaluec SNP location (bp) Interaction (rs#:cg#)

APOA1 11 11 (57) 0.00678 0.591 0.310 116,759,824 rs12294191:cg07700644

APOB 2 9 (31) 0.00316 0.414 0.518 21,205,457 rs10172650:cg26118553

BUD13 11 31 (126) 0.00103 0.787 0.837 116,652,301 rs4417316:cg14371153

CLIP2 7 7 (74) 0.00318 0.214 0.983 73,671,288 rs3735504:cg08495433

FADS1 11 4 (52) 0.0193 0.0921 0.0831 61,549,458 rs174534:cg07689907

FADS2 11 10 (53) 0.00228 0.217 0.432 61,549,458 rs174534:cg11880646

FADS3 11 9 (45) 0.0183 0.861 0.690 61,698,488 rs7928792:cg03046346

GALNT2 1 69 (288) 0.000142 0.780 0.998 230,337,887 rs6677241:cg03961853

MLXIPL 7 16 (98) 0.00220 0.613 0.298 73,041,886 rs6460045:cg03842980

OTOR 20 10 (60) 0.00934 0.196 0.581 16,702,501 rs761228:cg07364906
aAs a result of overlap of gene regions for FADS1 and FADS2, 3 significant interactions are counted twice
bWith a significance level of 0.05
cFrom models with only the main effect term for CpG or SNP. Refer to methods
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options. Regardless, leveraging prior biological evidence
(eg, via the candidate gene approach) may be of poten-
tial effect when testing for SNP–CPG interactions.

Conclusions
Even with “subthreshold” significance, our results go a
long way toward showing the need for statistical models
that leverage prior biological information. Our study
shows that a mediated effect of SNPs on methylation is
a possible explanation for changes in TG levels. With
this knowledge, more studies with greater sample sizes
can be performed as well as wet lab experimentation to
confirm the relationship. As we learn more about the
effect an individual’s genotype has on their health, there
is greater opportunity for personalized medicine to be
an effective treatment strategy.
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