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Abstract: Introduction of metals as biomaterials has been known for a long time. In the early
development, sufficient strength and suitable mechanical properties were the main considerations for
metal implants. With the development of new generations of biomaterials, the concepts of bioactive
and biodegradable materials were proposed. Biological function design is very import for metal
implants in biomedical applications. Three crucial design criteria are summarized for developing
metal implants: (1) mechanical properties that mimic the host tissues; (2) sufficient bioactivities to
form bio-bonding between implants and surrounding tissues; and (3) a degradation rate that matches
tissue regeneration and biodegradability. This article reviews the development of metal implants and
their applications in biomedical engineering. Development trends and future perspectives of metallic
biomaterials are also discussed.

Keywords: metal implants; biomechanical design; porous structure; biodegradable metals; biological
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1. Introduction

After the invention of stainless steel in the 19th century, metal implants have been well-developed
and widely used in biomedical applications [1–4]. During the 1960s and 1970s, a first generation of
metal materials was developed as implants. A common feature of these implants was their biological
“inertness”. Whereas, by the mid-1980s, bioactive materials had been proposed as second-generation
biomaterials, in which biomaterials were designed to be either resorbable or bioactive [5,6]. Nowadays,
more and more biofunctions are proposed for developing new generation of biomaterials which
allow implants to interact with host tissues [7]. Regeneration properties become key feature for
third-generation biomaterials, in which biomaterials are being designed to activate genes and cells
to stimulate regeneration of living tissues [8]. The third-generation biomaterials combine multiple
biological functions, with the aim of developing materials that, once implanted, will help the body
heal or regenerate [9].

For metallic biomaterials, sufficient strength and inertness are two key features that should be
considered in their early development [10]. Subsequently, the field of metallic biomaterials began to
shift from inertness to bioactivity. This idea breaks old design principles for metallic biomaterials.
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More specific biofunctional designs in metallic biomaterials are proposed according to the application
requirements [11,12]. Meanwhile, more design guidelines of metallic biomaterials need to be carefully
considered. The first important issue is biomechanical design, including adequate mechanical
properties such as strength, stiffness, and fatigue properties that are needed for appropriate design.
Secondly, structure design and biological activation of metal implants are also crucial. Particularly,
for bone tissue repair, surface bioactivation helps to integrate implants with host bones. Porous
structure design is conducive to tissue growth and bone reconstruction. Thirdly, biodegradable design
of metal implants is a new trend for regenerative tissue engineering. Biodegradable properties are
important for novel metallic bone scaffolds or biodegradable stents. In many applications, implants
are only needed temporarily and are expected to be biodegradable after supporting the healing
process [13–17].

The biological functional design of metal implants is very important for clinical applications.
Novel metal implants with different biological functions provide effective approaches for human tissue
repair and regeneration. Innovative metal implant design and application are the most interesting
issues in biomedical engineering. This paper reviewed three classic biological designs and applications
of metal implants. It contains three main parts, the first part introduces the biomechanical design of
metal implants, then porous structure design and biological activation of metal implants are introduced.
Finally, as a new trend for regenerative engineering, the biodegradable design of metal implants is
discussed. The state of the art of biodegradable metals, and their application for orthopedic and
cardiovascular implants are reviewed. The future direction for metallic implants goes towards the
combination of suitable mechanical property and bio-functionality. The study of innovative metallic
implants is one of the most interesting research topics at the forefront of biomaterials.

2. Different Applications of Metal Implants in Clinic

Metal implants have been used for long time in the clinic. Metal implants are mainly used
for hard tissue repair due to their excellent mechanical properties [18–20]. For example, titanium
alloys are widely used in maxillofacial hard tissue repair. The complex stress state of maxillofacial
bone tissues requires metal implants with matching mechanical properties to support mandibular
functions [21,22]. Spine cages need metal implants with good osseointegration and high compressive
strength to meet the needs of human movement. Hence, these implants were usually designed into
porous structures to improve osseointegration and adjust mechanical strength [23,24]. For orthopedic
implants, the biocompatibility and mechanical strength are critical concern issues. For stents which
are hemolytic and bioabsorbable properties need to be carefully considered. Figure 1 shows several
typical applications for metal implants.
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2.1. Biomechanical Design of Metal Implants

The first important property of metal implants is the biomechanical design, including suitable
mechanical properties such as strength, stiffness, wear, corrosion resistances and fatigue properties
that need to be carefully designed [25–29]. A great number of researchers are still working on this
field of biomechanical design to resolve various issues being faced today [30–35]. Biocompatibility
and mechanical properties of metal implants are the most crucial properties for both temporary and
permanent implants [36]. For metal implant mechanical design, biocorrosion plays an important role,
especially when metal implants are used in load-bearing sites, such as screws for internal fixation
of bone fractures [37–39]. In order to sustain pressurized loads, they must be stiff and able to resist
deformation. Metal implants must also be light to facilitate motion [40–42].

3D finite element modeling is a useful method which allows the analysis of the spatial stress of
implants, and it has been widely used for the quantitative evaluation of stress spatial distribution on
the implant. Tang et al. [43] proved the feasibility of topology optimization in the repair of mandibular
defect and obtained a more mechanically suitable configuration of a titanium reconstruction plate,
and provided suggestions for choosing and constructing the repairing configuration of mandibular
defects in clinical treatment. The topology optimization on the configuration of a titanium
reconstruction prosthesis is shown Figure 2.
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Guo et al. [44] investigated stress and bone density distribution changes in the mandible due to
the interference fit in titanium dental implants for mandible reconstruction, and studied the influence
of interference magnitudes on mandibular bone remodeling.

3D print metal technology has been developed in the field of medical bone implantation,
Wan et al. [45] found stress concentration coefficients are significantly different for three distribution
forms due to the difference of special location. Stress distribution of a single hole model is shown in
Figure 3.

Stent implantation changed the intravascular hemodynamic environment, numerical methods
were widely applied to the modeling of drug eluting stents and of their interaction with coronary
arteries [46]. Chen et al. [47] compared different types of virtual drug-eluting stents (DESs) models
with different links, geometries and curvatures, and analyzed the changes of hemodynamics and drug
concentration caused by the implantation of three types of DESs with numerical simulation methods,
including (1) the effects of DESs with different links on the drug concentration distribution; (2) the
effects of DESs with different link numbers and geometries on the drug concentration distribution
(as shown in Figure 4); (3) the effects of DESs with different curvature on the hemodynamics and drug
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concentration (as shown in Figure 5). Research on DESs provide valuable instructions and theoretical
numerical conclusions that guide the design of DES (as shown in Figure 6) [47].Int. J. Mol. Sci. 2018, 19, 24 4 of 20 
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(WSS), (I): Three S-type links, (II): Three U-type links, (III): Six S-type links, (IV): Six U-type links.
(b) Drug concentration, (I): Three S-type links, (II): Three U-type links, (III): Six S-type links (IV): Six
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Changes of hemodynamics caused drug deposition and distribution on arterial walls,
Chen et al. [48] analyzed four different coated models, and found drug coating on the contacting
surface can provide effective drug release in the vascular wall without the interference from blood flow
(as shown in Figure 7). It is possible to improve the uniformity of drug concentration in the vascular
wall through optimal design of drug loading on the contacting surface.
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2.2. Porous Structure Design and Biological Activation of Metal Implants

2.2.1. Porous Structure Design and Manufacturing

For bone tissue substitutes, porous structure design and its manufacturing are very important for
metal implants [49–51]. Porous architectures have effects on cell distribution and migration, as well
as in vivo blood vessel formation, tissue ingrowth and sustaining new bone formation [52]. Recently,
some advanced manufacturing technology have been proposed in biodegradable metal (BM) fields.
For instance, by using 3D printing technology, the metals can be directly processed into scaffolds
or implants [53–56]. In order to fabricate bone scaffolds, three-dimensional (3D) porous structures
have been pursued to allow for bone ingrowth, to mimic the natural porous structure of bone. It has
been possible to create a controllable porous, interconnected architecture via 3D printing technology.
By using 3D printing, complex, customizable parts from metal powders can be directly manufactured
into scaffolds with precise porosity [49,57–60]. Studies have indicated that the printed scaffolds
demonstrated tensile mechanical property values very similar to those of natural bone, indicating its
promise for bone replacement. Based on these preliminary studies, researchers believe that 3D printing
will be a promising technology for manufacturing BM products [61–63]. Figure 8 shows some porous
orthopedic implants fabricated by 3D printing technology.
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2.2.2. Biological Activation of Metal Implants

Biological activation of metal implants is another important issue for biomedical product
applications [64–67] because every metal implant combined/integrated with host tissues through a
bioactive interface or layer. It was found that certain biomaterials can bond to living bone through an
apatite layer that forms on surfaces after being implanted [68]. As bioactive implants, the formation
of bone-like apatite interface ability is an important factor for osteoinduction. It was well reported
that a metal implant able to form the apatite on its surface in the living body is able to bond to living
bone through the apatite layer, but an implant unable to form the surface apatite does not bond to
host bones [69–72]. Therefore, many metal implant surface modifications were done to meet expected
surface activation so that implants can bond to host bone tissues.

It has been proven that metal implants bond to living bone through an apatite layer that forms
on their surfaces in the living body [73]. Since the 1980s, it has been reported that metals could be
osteoinductive biomaterials through specific chemical and thermal surface treatments. Many studies
reported that certain metal oxide gels, such as TiO2, ZrO2, Nb2O5, and Ta2O5 form the apatite on their
surfaces in simulated body fluid (SBF) within a week. Metallic materials are generally covered with a
thin oxide layer. These metals have bone-like apatite formation abilities on their surface, which means
they have bioactivity [74]. Various surface modifications were applied to metal implants for inducing
bone-bonding bioactivity, such as acid treatment, alkali or alkali-heat treatment, acid-alkali treatment,
hydrogen peroxide treatment, anodic oxidation, electrochemical reaction and hydrothermal treatments.
These methods are mainly based on chemical or electrochemical reactions occurring at the interface
between the metal and surrounding solution. The mechanism of apatite formation can be explained as
the electrostatic interaction between M–OH functional groups on the film and Ca2+, PO4

3− ions in the
simulated body fluid between the metal and apatite [75–77].

Titanium and its alloys are the most widely used metal implants in orthopedic applications
because of their good compatibility with living tissue [78]. Titanium was reported to show super
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apatite-forming ability, which allows them to directly bond to living bone in vivo [76,79]. However,
in most cases, the bioactive properties only occur when appropriate surface treatments are conducted to
modify and activate the metal surface. Surface treatments may change the surface microstructure and
chemical composition of titanium. Porous titanium with different surface treatments showed excellent
ability to induce bone-like apatite formation, and thus possessed in vitro bioactivity. For example,
six types of surface treatments including NaOH treatment (NTPT), acid-alkali treatment (AAPT),
hydrogen peroxide treatment (HOPT), hydrogen peroxide solution containing tantalum chloride
treatment (HTPT) and chemical and thermal treatment (CTPT) performed on porous titanium showed
different bone-like apatite-forming ability and in vivo osteoinductivity. By dorsal implanting for
three and five months, ectopic bone formation was found histologically in most porous titanium
scaffolds after implantation in the thighbone of adult dogs for two months (as shown in Figure 9).
The osteoinduction phenomenon was found in porous Ti metals subjected to HOPT, HTPT and CTPT
treatments. However, no obvious osteoinduction phenomenon was observed in NTPT and AAPT
specimens. These results demonstrated that specific surface treatments could endow porous titanium
with apatite-forming ability, and induce new bone formation [80].
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treatment (CTPT) specimens. Toluidine blue dye; FT: fiber texture; B: new bones; magnification: 200×.

2.3. Biodegradable Design for Metal Implants

Traditional metallic biomaterials require metals with sufficient strength and improved corrosion
resistance in the body. However, with recent development in biomaterials, the new concept of
biodegradable metals (BMs), rather than inert biomaterials, has been dramatically developed [81–83].
In these applications, metals need only to temporary support the healing process, and thereafter to be
degraded in regenerative engineering [84,85].

Degradation Mechanism of Metal Implants

As a key property for biodegradable metals, biodegradation rate should be carefully considered.
The corrosion mechanisms and their influencing factors of biodegradable metals have been widely
studied [83,86]. Classic degradation of BMs is mainly explained as electrochemical corrosion in vitro.
Corrosion reactions of metal implants involve the following anodic dissolution of the metal in
physiological environment, the corresponding degradation reactions are given in Equations (1)–(4):

Oxidation reaction: M→Mn+ + ne− (1)
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Reduction reaction: 2H2O + 2e− → H2(g) + 2OH− (2)

Reduction reaction: 2H2O + O2 + 4e− → 4OH− (3)

Product formation reaction: Mn+ + nOH− →M(OH)n (4)

The electrochemical corrosion reaction happen when the metal implants react with body fluid. In the
oxidation reaction, the metals give away electrons and form positive ions. In reduction reactions,
the body fluid medium obtains electrons as cathelectrode. From a chemical point of view, the biological
environment is highly soluble for BMs, especially due to the presence of high concentrations of chloride
ions in blood plasma. The biological environments have great effects on BM corrosion reactions.
The corrosion mechanism and apatite formation process of BMs under human biological environments
are shown as Figure 10. Ions present in the biological environment may strongly accelerate to the
corrosion process.
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Figure 10. The explanation of degradation and apatite formation process on the surface
of biodegradable metals (BMs). (a) is the metal implants just contact with body fluid, the
oxidation-reduction reaction happened, the metals give away electrons formed anode, and the body
fluid medium obtains electrons as cathelectrode; (b) is the corrosion happened and the metal corrosion
product layer generated; (c) is the apatite layer formed and (d) is the final surface of the BMs.

3. Different Types of Biodegradable Metal Implants

Nowadays, different types of biodegradable metal implants have been well-developed and
applied in clinical applications [13,87–91]. However, three main types of materials are mostly studied:
(i) Mg-based BMs. (ii) Fe-based BMs. and (iii) Zn-based BMs. Among these BMs, Mg-based BMs
are the most popular and have reported in many publications [92,93]. Fe-based BMs were reported
recently in alloy design, and some animal testing was conducted for potential vascular stents. Zn-based
BMs are less studied by researchers but seem to be promising candidates in the family of BMs. Table 1
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shows some recent research progress of the three BM systems. Most research is focused on controlling
the degradation rate, the in vitro cytotoxicity and animal testing.

Table 1. Research progress in Mg-based, Fe-based and Zn-based biodegradable metal implants.

Types of BMs Materials Published
Time Progress & Findings Potential

Applications

Mg-based BMs

ZEK100 [94] 2017
Biodegradable behavior of
ZEK100 with various loading
conditions were studied.

No
declaration

ZEK100 [95] 2016

Multilayered coatings carrying
sodium alginate (ALG) were
placed on ZEK100 to reduce the
degradation rate.

Bone tissue
repair

Mg-Zn-Ca-Sr bulk
metallic glasses

(BMGs) [96]
2016

In vitro responses of
bone-forming MC3T3-E1
pre-osteoblasts to Mg-Zn-Ca-Sr
BMGs were studied.

No
declaration

Mg-3 wt % Zn alloy
(MZ3) [97] 2016

Hot rolled Mg-3 wt % Zn alloy
(MZ3) has been investigated for
its potential in orthopaedic
implant.

Orthopaedic
implantations

Mg-8Er-1Zn [98] 2015

A novel Mg-8Er-1Zn alloy with
the ultimate tensile strength (318
MPa), tensile yield strength (207
MPa) and elongation (21%) were
reported.

No
declaration

Mg-Zn-Ca-Sr alloy [99] 2015

Add minor Sr would improve
glass-forming ability,
mechanical properties, enhance
and adjustable corrosion
performance.

Orthopedic
implantations

Mg60Zn35Ca5 [100] 2015

Used first-principles molecular
dynamics simulations to
elucidate the structure of
Mg60Zn35Ca5.

No
declaration

Nano-hydroxyapatite
(nHA) reinforced

AZ31 [101]
2014

Embedded nano-hydroxyapatite
(nHA) particles enhance the
biomineralization and control
the degradation.

Skeletal
implants

AZ31 [102] 2014
Surface coating for Mg alloy
AZ31 to control its corrosion
rate.

Stents

AZ31 [102] 2014

Report a new surface coating for
Mg alloy AZ31 based on a
low-toxicity ionic liquid,
tributyl(methyl)phosphoniumdiphenylphosphate,
to control its corrosion rate.

Stents

RS66 [103] 2013

In vitro and in vivo experiments
were conducted to analyze the
biodegradation behavior and
the biocompatibility.

Prosthesis
implantation

Mg-Zn [104] 2011 Biocompatibility test and
biodagradation in vivo.

Orthopaedic
implantations
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Table 1. Cont.

Types of BMs Materials Published
Time Progress & Findings Potential

Applications

Fe-based BMs

(Fe0.75B0.15Si0.1)100-
xNbx (x = 0, 1 and 3

wt%) [105]
2016

Alloys exhibit excellent
apatite-forming ability in
simulated body fluids.

Stents and
orthopedic
implants

Fe-based glassy
alloys [106] 2016 It studied the multiple corrosion

potentials in alkaline solution.
No

declaration

Fe-based metallic
materials [107] 2015

Cytotoxicity of corrosion
products of Fe-based stents
relevant of pH and insoluble
products were studied.

Stents

Fe80-x-yCrxMoyP13C7
bulk metallic
glasses [108]

2015

Alloys exhibit no cytotoxicity to
NIH3T3 cells, and exhibit high
corrosion resistance and
excellent biocompatibility.

No
declaration

(Fe-10Mn-1Pd, Fe-21
Mn-0.7C-1Pd) [109] 2014

The study investigated the
degradation performance of
three Fe-based materials in a
growing rat skeleton over 1 year.

No
declaration

Fe-Mn-C-Pd alloys [110] 2013
The research studied the
alloying elements’ influence on
metabolic processes.

No
declaration

Fe-Mn-Pd alloys [111] 2010
Fe-based alloys offering both an
enhanced degradation rate and
suitable strength and ductility.

Medical
applications

Fe(73.5)Si(13.5)B9Nb3Cu1
alloy [112] 2010

Studied the corrosion behaviors
of amorphous and
nanocrystalline Fe-based alloys
in NaCl solution

No
declaration

Zn-based BMs

Zn-Mg and two
Zn-Al binary
alloys [113]

2016

Alloys were fabricated by
casting process and hot
extrusion. Tube extrusion was
applied to produce stents.
Corrosion tests were performed.

Stents

Zn-Mg alloy [114] 2015

Zn-Mg alloys with different Mg
contents were prepared by
melting-casting method. The
Zn-3 wt % Mg alloy contributes
to a general corrosion.

No
declaration

Zn alloys [115] 2013
Zinc exhibits ideal physiological
corrosion behavior for
bioabsorbable stents.

Stents

CaZn based bulk
glassy alloy [116] 2011

CaZn based glassy alloys shows
low Young’s modulus, high
fracture strength, good
corrosion resistance and
cytocompatibility.

Orthopaedic
implantations

Zn-Mg alloys
containing 3 wt %

Mg [117]
2011

The corrosion rates of the
Zn-Mg alloys were determined
to be significantly lower than
those of Mg and AZ91HP alloys.

No
declaration
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3.1. Applications of Magnesium-Based BMs

Mg-based BMs have been successfully used because of their good biodegradable properties and
biocompatibilities. Magnesium is an important element of the human body; an adult normally needs a
daily intake of 300–400 mg magnesium. In blood plasma, Mg can be tolerated up to 85–121 mg/L [118].
Magnesium is also an essential element in bone tissue and it is beneficial to bone strength and growth.
Promising Mg alloying systems including Mg–Zn, Mg–Ca, Mg–Sr, Mg–Si, Mg–RE, Mg–Mn and Mg–Ag
have been well developed and investigated [84,119]. The manufacturing, microstructures, mechanical
and biodegradable properties have been widely explored [120–123]. Magnesium alloys have excellent
mechanical properties which have a large range of ultimate tensile strength (86.8–300 MPa) and
elongation to failure (3–30%), respectively. Usually, Mg-based BMs degrade very quickly in the human
body. The rapid degradation rate may cause the scaffolds to collapse shortly after implantation.
Therefore, adding other alloying elements, microstructure adjustment and surface modification
methods have been applied to control the biodegradation rate of Mg-based implants [81]. Addition of
alloying elements, for example, adding Zn, Y, Ca, RE and Mn as alloying elements in WE43, ZW21
and WZ21, which may improve their corrosion resistance and generate exceptional plasticity of 17%
and 20% [124]. These modified alloys exhibited fairly homogeneous slower degradation behavior in
body fluids.

Some other methods such as mechanical deformation were used to improve the corrosion
properties of Mg-based BMs. It has been reported that plastic deformation methods such as rolling,
extrusion, drawing, forging and high pressure torsion can dramatically improve Mg alloys, mechanical
properties and corrosion behaviors [13,125,126]. Surface modification and composition methods are
also effective to control the biodegradation rate of Mg alloys. For example, AZ91D with hydroxyapatite
(HA) coatings can slow down its corrosion process in SBF. AZ91 samples with coated polycaprolactone
(PCL) layer can reduce their degradation rate.

3.2. Applications of Fe-Based BMs

Fe-based BMs are also good candidates for biodegradable stent applications because of their
high strength (~1450 MPa) and high ductility (~80% elongation). High strength is favored for making
Fe-based stents with smaller shape which is good for operation. High ductility is very important
for expansion during the implantation of stents. However, Fe-based BMs show lower degradation
rates [127]. Some attempts have been performed to accelerate the degradation rate of Fe-based BMs.
For example, Mn, Pd, W, Sn, B, C, S and Si elements were introduced into alloys to accelerate their
degradation rate. After adding Si into alloys, the corrosion rate of Fe30Mn6Si was higher than that of
Fe30Mn alloy. Other alloying elements, such as Mn, Co, W, B, C, and S were found to have effects on
improving the yield and ultimate strength properties, whereas the alloying element Sn led to a severe
reduction in mechanical properties. Some studies on controlling of the manufacturing process to refine
Fe-based BMs microstructures have been reported. Generally, the microstructure adjustment showed
similar effects on modification of the corrosion rate.

Up to now, there is no clinical case report about Fe-based stents. Only several animal tests have
been reported. Peuster et al. implanted Fe-BM stents into the descending aorta of New Zealand white
rabbits and minipigs to examine their mechanical properties and biocompatibility [128]. The results
demonstrated that the stent corrosion process is very slow and faster degradation rate is needed.
Further studies focus on the modification of the composition and design of the stent to expedite the
degradation process.

3.3. Applications of Zn-Based BMs

Zinc is another essential element for the human body. Normal adults contain 1.5–2.5g zinc,
of which 60% exists in the muscle and 30% exists in the bone tissues. Zinc is also an important
component of many enzymes; these enzymes help the synthesis of proteins and DNA, and promote
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cell regeneration and tissue metabolism [129,130]. According to the electrochemical principle, Zn has a
moderate degradation rate which is faster than Fe but slower than Mg. Considering Mg-based BM
degradation is too fast and Fe-based BMs degradation is too slow, Zn-based BMs are believed to be
promising biodegradable metal candidates [131]. However, an obvious drawback of Zn-BMs is that
pure Zn has very low strength and plasticity. In order to improve the mechanical properties of pure
Zn, some elements were added into Zn-based BMs. It was found that Zn-BM Zn38Ca32Mg12Yb18
showed much higher strength (>600 MPa) than conventional Mg based BMs (~200 MPa). This alloy
also showed slower degradation rate than pure Mg and hardly any hydrogen is generated during
implantation. Some studies have reported in vivo results on Zn-based BMs [131]. For example, pure
zinc wires were placed into the arteries of rats and their degradation rate is about 0.2 mm per year,
a perfect value for bioabsorbable stents in the first three months. However, after that, the corrosion
accelerated, so the implant did not remain in the artery too long. Therefore, precise control of the
degradation rate of Zn-based BMs will be a promising direction.

Along with the above three types of alloy systems, based on the principle that it is acceptable to
add metal elements according to human body elements composition, Ca, K, Na, Si, Se, Cu, Mo, Sn,
Co and Mn may be served as alloying elements. However, only a few new alloys containing these
elements have been reported.

4. Stents Applications

Stenting, clinically known as percutaneous coronary intervention (PCI), has become a proven
procedure for the treatment of coronary artery occlusions. During surgery, stents are delivered and
placed into a narrowed coronary artery by using a catheter system that is inserted into the artery
through a small incision in the arm or groin. Since its first use in biomedical applications in 1987 [132],
stents have progressively been advanced from the conventional bare metal to the drug eluting and the
most recent biodegradable stents [127,133].

Nowadays, biodegradable stents have been successfully applied in clinical trials [131,134].
Peeters et al. [135] reported that absorbable metal stent (AMS) (BIOTRONIK, Berlin, Germany) were
implanted into 20 patients in 2005. The implanted stents were mostly degraded after six weeks. In 2005,
Zartner et al. reported the first application of Mg-based stents [136]. In that case, a Lekton Magic
AMS stent was successfully implanted into the pulmonary artery of a preterm baby. The degradation
process had been completed after five months of implantation. In 2007, the BIOTRO–NIKGMBH
and Co., Germany sponsored a series clinical trials to assess the efficacy and safety of AMSs in eight
centers [137]. A total of 71 stents, 10–15 mm in length and 3–3.5 mm in diameter, were successfully
implanted into 63 patients. That clinical trials showed good results with no myocardial infarction,
subacute or late thrombosis or death of subjects during the study [138]. In 2013, Haude et al. [139]
reported the first-in-man trial (BIO-SOLVE-1), which was conducted with 46 patients at five European
centers. The 12-month results showed no cardiac death or stents thrombosis. As the above studies
reported, the biodegradable stents had been optimized to provide much better degradation resistance
than their predecessors with full degradation in 9–12 months. On 5 July 2016, the USA FDA announced
the approval of Abbott’s Absorb GT1 bioabsorbable cardiac stenting system, which is the first fully
bioabsorbable vascular stent in the world. However, only after one year, on 14 September, Abbott
Laboratories announced that they will stop selling Absorb BVS in all countries [140]. Subsequently,
Boston Scientific declared abandoning its biodegradable scaffold project [141]. Although the above
fully degradable stents are polymeric based products, it alerts us that the design and evaluation of the
degradability of metal stents are worthy of further study to avoid the associated potential risks when
developing a new generation of BM stents.

5. Orthopedic Applications

Bones disease or bone fractures are very common in the clinic. Thus, fractured bone fixtures
stimulate BMs to become a huge potential market in orthopedic applications [142]. Many Mg-based
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alloys such as ZEK 100, LAE442 and MgCa0.8 have been fabricated into screws for animal models
and clinical trials [13,85,143,144]. A twelve months in vivo animal model confirmed that the Mg-based
alloys showed positive osteogenetic effects after implantation. No gas generation was detected next to
the implants of both. After 12 months of implantation of MgCa0.8 and LAE442 alloys, the implants
showed osseointegration. Another in vivo study of a biodegradable MgYREZr-alloy screw in a rabbit
model for 12 months revealed moderate bone formation with direct implant contact without a fibrous
capsule. Histopathological results indicated this BM has good biocompatibility and osteoconductivity
without acute, subacute, or chronic toxicity. Berglund et al. proposed a novel Mg−xCa−ySr system
(x = 0.5–7.0 wt %; y = 0.5–3.5 wt %) for biodegradable orthopedic implant applications. In vitro
cytotoxicity testing indicated that the Mg−1.0Ca−0.5Sr alloy is the most promising alloy for orthopedic
implant applications since it showed lower degradation rate with no significant toxicity to MC3T3-E1
osteoblasts and a compressive strength of 274 ± 4 MPa [138]. Some other Mg-based system alloys also
showed promising applications. MgCa0.8 screws showed comparable biomechanical properties as
S316L screws in the first 2–3 weeks of implantation. The MgYREZr alloy showed equivalent strength
to a standard titanium screw [139]. Figure 11 shows two main application products of BMs, i.e., stents
and orthopedic implants [145].
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6. Concluding Remarks and Perspectives

The biological functional design of metallic biomaterials is very important for clinical applications.
The future direction for metallic implants goes toward the combination of suitable mechanical
properties and multiple bio-functionalities. The study of innovative metallic implants is one of
the most interesting research topics at the forefront of biomaterials. In comparison to the traditional
bioinert metallic implants, BMs are representative bioactive biomaterials, and it should develop toward
“third-generation biomaterials”. How to make sure the BMs play more active role in heal tissues, not
simply as a tissue engineering scaffold, is the topic of continuous research. The interface between the
bioactive implants and the host keeps a dynamic balance. The biodegradable rate of the implants,
as well as the biodegradation products from implants, need a comprehensive consideration when
designing novel metallic implants. The future trends and development direction of BMs are towards
multifunctional capabilities. For example, novel metallic implants may provide temporary scaffolds
with both structure size and mechanical strength requirements, with loading of drugs to prevent
inflammatory reactions during implantation, and its biodegradation products/elements help local
tissues reconstruction.
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Benefiting from the development of some new manufacturing technologies, the metals can
be directly fabricated into implants with multiple biological functions. For example, by using 3D
printing technology, the implants can be printed into any porous structures with adjustable mechanical
properties. It has been possible to create a controllable porous, interconnected architecture via 3D
printing technology. By using select laser melting methods, a metal 3D printing technique, we can
generate complex, customizable titanium implants from metal powders. Biomimetic porous structures
have been designed to allow cell and fluid transportation and bony ingrowth. It is found that the 3DP
method is capable of replicating highly accurate porous structure implants with errors in the range of
20 µm. Studies also demonstrated that the 3D printed implants show tensile mechanical properties
similar to those of natural bone, and it presented an estimated corrosion rate because of 3DP has the
ability to combine different materials in any space. Based on these developments, we believe that
3D printing is a promising technology for biomedical applications, and brings new opportunity for
fabrication of novel metallic biomaterials with multiple biofuncitons.

The development of novel metal implants with different biological functions provides effective
approaches for tissue repair and regeneration. There are three important design criteria for the new
generation of metallic biomaterials: (1) mechanical properties with biomimetic design to those of
host tissues; (2) porous structural design and surface bioactivation treatment; and (3) biodegradable
metal design to match tissue regeneration. Third-generation metallic biomaterials are being designed
to stimulate specific functions to meet diverse implant requirements, to perform as a drug delivery
system, or to have cell and tissue specific properties. The separate design criteria of bioactive materials
and resorbable materials need to converge. It is time to consider a shift toward multiple biological
function design in metallic implants for the purpose of regeneration of natural tissues.
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