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Genes in linear proximity often share regulatory inputs, expression and evolutionary patterns, even in
complex eukaryote genomes with extensive intergenic sequences. Gene regulation, on the other hand,
is effected through the co-ordinated activation (or suppression) of genes participating in common biolog-
ical pathways, which are often transcribed from distant loci. Existing approaches for the study of gene
expression focus on the functional aspect, taking positional constraints into account only marginally.
In this work we propose a novel concept for the study of gene expression, through the combination of

topological and functional information into bipartite networks. Starting from genome-wide expression
profiles, we define extended chromosomal regions with consistent patterns of differential gene expres-
sion and then associate these domains with enriched functional pathways. By analyzing the resulting net-
works in terms of size, connectivity and modularity we can draw conclusions on the way genome
organization may underlie the gene regulation program.
Implementation of this approach in a detailed RNASeq profiling of sustained Tnf stimulation of mouse

synovial fibroblasts, allowed us to identify unexpected regulatory changes taking place in the cells after
24 h of stimulation. Bipartite network analysis suggests that the cytokine response set by Tnf, progresses
through two distinct transitions. An early generalization of the inflammatory response, that is followed
by a late shutdown of immune-related functions and the redistribution of expression to developmental
and cell adhesion pathways and distinct chromosomal regions.
We show that the incorporation of topological information may provide additional insights in the com-

plex propagation of Tnf activation.
� 2020 Published by Elsevier B.V. on behalf of Research Network of Computational and Structural Bio-
technology. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/

licenses/by-nc-nd/4.0/).
1. Introduction

From the analysis of the first genome-wide expression experi-
ments, it became clear that gene expression levels were related
to their relative localization in the linear dimension [1]. More
recent studies have shown that transcriptional activation may
spread in ‘‘waves” that affect nearby genes [2] and that a signifi-
cant proportion of gene expression events may be attributed to
the genomic position [3]. Such tendencies are reflected on evolu-
tionary constraints, with genes in close proximity showing similar
patterns of evolution [4–6]. These constraints inevitably lead to
genes, involved in common functional pathways to be lying closer
to each other in the linear genome [7,8], but also extending this
‘‘structural proximity” to the genomic three-dimensional structure
[9]. On the other hand, there exist regions with characteristic epi-
genetic modification patterns [10,11], different combinations of
which have been shown to delineate epigenetic ‘‘chromatin states”,
that reflect different levels of regulatory and transcriptional activ-
ity [12–14]. The importance of genome compartmentalization and
its underlying regulatory and transcriptional activity is evident in
recent approaches on cis-regulatory domains [15] and in attempts
to model gene expression levels on the basis of genomic position
[3]. The biomedical importance of this organization is particularly
important in various types of cancer, where extensive genomic
translocations are the main cause for the aberrant regulation of
genes and eventually for pathogenesis [16].

At the same time, the study of neighbour effects in the regula-
tion of gene expression and of possible underlying mechanisms
has been limited. Early works in the simple eukaryotic genome of
S. cerevisiae have shown the existence of regions of gene expression
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correlation [17] and referred to their dynamics [18]. At the level of
functional gene regulation, we have sufficient knowledge of how
transcription programs are performed through the activation of
specific pathways and gene regulatory networks [19]. We also have
a variety of tools for assessing the importance of cellular processes
and biological pathways through functional analyses of gene
expression [20,21]. Nevertheless, there is a growing need for meth-
ods that will incorporate spatial information and, until recently,
the use of chromosomal linear distance as a predictive marker of
gene expression has been limited to a few, large-scale projects [22].

In the past we have studied the positional footprint on gene
deregulation in models of genome compartmentalization in yeast,
where we have shown both transcriptional regulation [23] and
nucleosomal structure [24] to be delineating distinct genomic
domains. In this work we propose an approach that can act com-
plementary to existing functional enrichment analyses [20,25,26]
with an additional layer of information coming from the level of
genome organization. By analyzing the spatial distribution of dif-
ferential gene expression, we define regions with consistent gene
deregulation profiles, that form extensive chromosomal domains
(of the order of Mbp), where limited fluctuation of gene expression
changes is suggestive of underlying organizing principles. Associa-
tion of these regions with functional terms and pathways, through
typical gene enrichment analyses, leads to the creation of
topological-functional bipartite networks that may then be studied
at multiple levels. While bipartite networks are not new to biology,
their use has been limited to the mapping of associations between
genes and respective ontologies (pathways, diseases etc). Here we
implement a novel approach, in which genes (and their expression)
are uses as proxies to deduce enrichments at the level of functional
ontologies and genomic positions and then use these two as nodes
in the creation of the network. We showcase this concept in the
context of a well-studied gene regulatory program, the activation
of cells by the prolonged exposure to Tnf.

Tnf is the archetype of major activating cytokines, which
orchestrate the process of the inflammatory response. The succes-
sion of steps upon Tnf induction has been shown to involve
dynamic RNA turnover [27,28] but to be also accompanied by
changes in the chromatin landscape [29] and the organization of
transcription factories [30]. Sustained expression of Tnf can have
devastating effects as is evident in transgenic animal models of
inflammatory diseases [31,32] but the prolonged activation of cells
by Tnf has proved very difficult to study due to significant cross-
talk that generates conflicting effects. While a number of activated
signaling pathways coalesce, thus obscuring the direct response,
the spatial aspect of gene expression may provide more robust sig-
natures that can assist us in the decomposition of the multiple,
ongoing signals. We thus employed a spatial-functional approach
to show that fibroblasts, under prolonged Tnf exposure, undergo
two major transitions that are reflected not only in the activated
pathways but also in the clustering of deregulated genes in partic-
ular genomic domains. The two transition points mark both quan-
titative but, more importantly, qualitative differences and suggest
a role for Tnf in the shaping of differentiation potential.

2. Methods

2.1. Gene expression profiling

Mouse synovial fibroblasts were isolated from C57BL/6 litter-
mate mice. All animals were housed under specific pathogen–free
conditions. Three biological replicates were isolated per experi-
mental condition, and for each condition, a mixed-sex pool of 3
mice was used. Purity of all isolations was assessed by
fluorescence-activated cell sorting, with the following acceptance
criteria: 0.85% positive for CD90.2 and 2.5% positive for CD45.
RNA was extracted from mouse synovial fibroblasts with the use
of an Absolutely RNA Miniprep kit (Agilent Technologies). All
library preparations, next-generation sequencing, and quality con-
trol steps were performed at the McGill University and Genome
Quebec Innovation Centre (Montreal, Quebec, Canada). TruSeq
RNA libraries were prepared and samples were run on an Illumina
HiSeq2000 platform using a 100-bp paired-end setup.
2.2. Differential expression analysis

RNA-seq was performed with three replicates for 5 different
timepoints at 1, 3, 6, 24 h and 7 days after Tnf exposure, alongside
a 0 h control. Mapping was performed with TopHat2 [33] and dif-
ferential expression was calculated against the 0 h control profile
with Cufflinks/CuffDiff [34]. Differentially expressed genes were
defined on the basis of standard thresholds for analysis with |log2(-
FC)| � 1, p-value � 0.05, after adjusting for multiple comparisons
(Supplementary Table 1).

Functional analysis was performed with the use of gProfileR
[26] through its R implementation. Enrichments were studied at
the levels of Gene Ontology (GO), KEGG pathways, Transcription
Factors (TF) and Human Phenotypes (HP).

Clustering was performed with agglomerative hierarchical clus-
tering using Ward’s minimum variance criterion. The number of
clusters was defined based on a simple elbow rule on the within
sums of squares values of a k-means clustering approach. Profile
similarity calculation was performed through the calculation of
euclidean differences in mean cluster differential expression as
described in [35].
2.3. Creation of domains of focal deregulation

We implemented a method based on unbiased recursive parti-
tioning as described in [36]. Differential gene expression data (as
log2FC) were used as values and their genomic coordinates as a dis-
crete ‘‘time-like” variable. A custom R function was written with
the used of the R function ‘‘breakpoints” from the Package ‘‘struc-
change” [37,38]. The function performs genome partitioning on the
basis of an F-test (Chow Test), which tests the equality of the coef-
ficients of two linear models and is, in this case, applied on consec-
utive linear models built on gene expression data read in a sliding
window of 50 genes (see Supplementary Code and Data). Once the
breakpoints are defined, the function creates a complete partition-
ing of the genome in discrete regions, each of which is described by
a) the number of contained genes and b) their mean differential
expression score. An arbitrary criterion of an absolute mean differ-
ential expression score �0.1 was used to call significant DFDs.
These were used in the creation of bipartite networks.

Overlaps between DFDs and differentially expressed genes,
gene clusters or other sets of genomic coordinates were reported
as Jaccard Indexes and assessed statistically through a permutation
test, performed as described in [39].

2.4. Topological-functional bipartite networks

These were created in the following way:

1. Starting from a given expression profile, a list of differentially
expressed genes is extracted and a set of significant DFDs is
called (see above).

2. For each DFD, the differentially expressed genes are being
extracted and then passed to gProfileR for gene set enrichment
analysis.
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3. Functional categories fulfilling significance criteria (Number of
Genes in Category �30, adjusted p-value �0.05) are associated
with the given DFD.

4. The bipartite network is created as an edge list with one vertex
being the DFD and the other being its enriched functions.

Networks were analyzed for modularity and visualized with the
use of R’s igraph Package [40].
3. Results

3.1. Complex patterns of differentially expressed genes in the
prolonged stimulation of fibroblasts by Tnf

Clustering of the 1595 differentially expressed genes in at least
one of the analyzed timepoints revealed some very interesting
aspects regarding the prolonged exposure of fibroblasts to Tnf.
An initial small set (�330) of deregulated genes (at 1 h) is replaced
by a much larger (�640) at 3 h of stimulation, with less than one
third (97) of the genes being shared between the two timepoints.
A similar pattern of expression is observed between 3 and 6 h of
stimulation before another abrupt transition at 24 h, with only
55 genes being commonly deregulated between 6 h (378 DE genes)
and 24 h (190 genes). A much longer period extending to 7 days for
the last timepoint shows only mild further changes in the expres-
sion profile. Thus it seems that the state acquired by the cells at
24 h remains relatively stable. Overall, the expression data suggest
two clear transition points between 1 h? 3 h (early) and 6 h?
24 h (late), which may be seen more clearly through the clustering
of genes in 8 distinct clusters (Fig. 1A, top). It should be noted that
most of the DE genes are timepoint-specific as shown in an analy-
sis of set overlaps (Supplementary Fig. 1), where more than 450
genes are unique for 7 d and more than 350 unique for 3 h.

The aforementioned clustering helps us distinguish between
genes that are initially over-expressed but gradually restored to
normal (unstimulated) levels (Dark red cluster), or even reversed
to under-expression (Light green cluster). More importantly, we
find most of the clusters to be reflecting clear timepoint-specific
expression tendencies. Thus there are clearly under-expressed
clusters for early (1 h, Dark blue cluster), intermediate (3 h and
6 h, Yellow cluster) or late (24 h, 7 d, Orange and Dark Green Clus-
ters) timepoints. Similarly the Dark red, Purple and Light Blue clus-
ters are also reflecting time-specific for early-intermediate (1 h,
3 h), intermediate (3 h and 6 h) and late (24 h and primarily 7 d)
over-expression respectively (Fig. 1A, bottom and Supplementary
Fig. 2).
3.2. Functional enrichment analysis suggest two points of transition in
the cytokine response

Clustering of gene expression profiles allows us to better dissect
the dynamics of the implicated functions (Supplementary Table 2).
We thus analyzed the functional enrichments of the genes in each
of the 8 clusters. A clear progression of gene activation may be seen
in the functional enrichments of the over-expressed gene clusters
(Fig. 1B). Going from early (1 h) to intermediate (3 h, 6 h) to late
(24 h, 7 d) timepoints, the functions are shifting from an initial,
acute inflammatory response, to more generalized functions of
the immune system, to finally become associated with functions
related to developmental pathways, apoptosis and the extracellu-
lar matrix. It thus appears that fibroblasts, after initially sensing
the cytokine cue of Tnf, undergo a slow process of switching on
major developmental and apoptotic pathways. Given our limited
time resolution we can position this transition sometime between
6 h and 24 h after the initial stimulation.
An interesting cluster (Light Green, Fig. 1A) perhaps better
reflects this gradual transformation. It contains 64 genes with very
high early over-expression which, in time, subsides and is eventu-
ally turned into strong under-expression at the late stages. Func-
tional analysis of this particular cluster reveals a prominence of
the Tnf, MAPK and IL-17 signaling pathways, all known down-
stream targets of Tnf, exerted mostly through the activation of
key transcriptional regulators (Supplementary Fig. 2). This is a
clear example of an initial, very focused activation, which in time,
expands to incorporate more generalized pathways, but eventually
switches off to become strongly repressed. Such a reversal of
immediate Tnf targets has been only suggested up to now but is
very clearly shown here. We will return to this important observa-
tion when we discuss the dynamics of the functional repertoire in
later sections.

The shift to developmental functions is also apparent in the
down-regulated gene clusters (Fig. 1C). Under-expression is
strongly associated with transcriptional regulation in the early
stage (1 h after stimulation). Clusters related to under-expression
after 3 h are mostly associated with developmental functions,
while those that are specific to the later stages are additionally
related to cell–cell interactions such as adhesion and migration.
This may suggest that an initial regulatory program gets underway
since relatively early. It crystalizes, later on, into major transfom-
ing functions that significantly alter the properties of the cells.
Again, this long-term effect of Tnf sustained stimulation is shown
here for the first time in such a detailed fashion and is described
more explicitly in the following.

3.3. Domains of focal deregulation (DFD) reflect spatial preferences of
gene expression

Functional enrichment analyses are important but they cannot
provide insight into the mechanisms, with which the cells deploy
their genome in effecting dynamic changes in the regulatory pro-
gram. We thus set out to investigate the positional aspect of the
gene expression process using a topological enrichment approach.
Our goal was to identify chromosomal regions with consistent dif-
ferential expression in our search for links between the genome
architecture and the effected gene expression program.

Through a computational approach inspired by signal process-
ing and applied to gene expression data (see Methods) we were
able to create segmentation maps of the genome based on the
underlying differential gene expression values. An average of
�300 such regions were defined in each of the five conditions in
our dataset, each of which was assigned with a mean differential
expression score, directly calculated from the values of the genes
it contained. Regions with increased negative or positive score cor-
responded to areas where gene deregulation was topologically
consistent. We will from hereon refer to these regions as Domains
of Focal Deregulation (DFD). The DFD chromosomal positions, size
in bases as well as their mean expression scores are visualized in
Fig. 2A, which reveals significant differences between the five
timepoints. Few DFDs in the early timepoint (1 h) undergo two
waves of expansion at the already discussed transition points of
3 h and 24 h. At the same time, this quantitative expansion in gen-
ome coverage is not coming from the same chromosomal regions,
as a number of DFDs emerge and others are depleted between con-
secutive timepoints. This may be seen in Fig. 2B, where we plot the
percentage of genome coverage at each timepoint, alongside the
corresponding coverage percentages of the sets of overlapping
DFDs between them.

It is obvious from Fig. 2A and 2B that there are two points of
expansion, with the percentage of genome covered almost dou-
bling at 3 h and then again at 24 h. At the same time, the transi-
tions we have underlined from the functional analyses are also



Fig. 1. Gene expression clustering and functional analysis. A. (Top) Clustering of gene expression for 1595 genes that were differentially expressed (|log2FC| � 1, p
value � 0.05) in at least one timepoint. Red corresponds to over- and blue to under-expression. The 8 clusters are shown in different colours in the left side of the heatmap.
(Bottom) Summarization of the extended heatmap with mean differential expression value for each cluster. Clusters are shown in the same colour coding as above. Cluster
names on the right correspond to a general description based on their expression patterns. B, C. Functional analysis of over- (B) and under- (C) expressed clusters. Names of
clusters refer to (Fig. 1A, bottom), with the exception of Late Repression where both ‘‘Late Down” clusters from (A) are pooled together. Enriched terms were deduced from a
gProfileR analysis. The top 20 enriched terms on the basis of p-values are reported for each cluster. (Functional analysis of the same type for the ‘‘EarlyUpLateDown” cluster
provided as separate Supplementary Fig. 2). (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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reflected in the similarity between DFD distribution, as may be
seen in the dendrogram of Fig. 2B. Almost 75% of the DFDs are
shared between 24 h and 7 days and more than half are common
between 3 h and 6 h, but less than one third of the early DFDs
are overlapping with those of subsequent timepoints.

The expansion of DFDs, associated with the two transition
points, is also evident in their size distribution as DFDs at 3 h
and 24 h are significantly longer (Fig. 2C). This cannot be directly
attributed to the extent of differential gene expression as the cor-
responding DEG numbers are quite different (643 and 190 for 3 h
and 24 h respectively). Rather, it may be that it is a reflection of
a general reorganization of the genome at topological level that
occurs through a more broad distribution of genes with particular
functional roles. It thus seems that in the transition from 6 h to
24 h the cells undergo a spatial ‘‘dispersion” in terms of gene
deregulation, a fact that is linked to an extensive re-
programming, with different genes being regulated in much wider
genomic areas (see also Fig. 1A, Supplementary Fig. 2). In the fol-
lowing we provide evidence in support of this.

In all, we see that changes in gene regulation associated with
the transition from 1 h to 3 h and from 6 h to 24 h are also reflected
in the topological distribution of genes in linear chromosomal
space. At both transition points we observe an expansion in the
number and size of DFDs, which is a clear indication that extensive
gene expression changes are not confined to the activation of func-
tional pathways but are also associated with changes in the general
chromosomal environment. In fact, a plausible hypothesis is that
altered chromosomal accessibility may driving such generalized
changes. In the following section we turn our attention to the study
of this spatial enrichment of gene deregulation, coupled with its
functional fingerprint.

3.4. DFDs reflect variable clustering of differentially expressed genes
and are primarily associated with gene repression

Comparison of the extent and size of DFDs in the
domainograms of Fig. 2A and the numbers of deregulated genes
(see Supplementary Table 1) suggests that they are not directly
related. The emergence of DFDs is due to a local clustering of differ-
entially expressed genes rather than to their overall abundance. In
order to test this we calculated the global and local enrichments of
DFDs in differentially expressed genes in each timepoint as
described in Methods (Fig. 3A). Even though, general enrichment
of DEGs in DFDs is expected by definition, the observed enrichment
patterns show great variability that reflects the progression of gene
expression. We find a decreasing degree in the overall enrichment
with time, suggesting that the general trend is one towards more s
dispersed gene deregulation patterns.



Fig. 2. Domains of Focal Deregulation. A. Mouse genome Domainograms showing significant Domains of Focal Deregulation (DFD) with a mean absolute score � 0.1. Red is
positive (over-expression), blue is negative (under-expression) color-coded for intensity. The expansion of the size and number of DFDs is evident, as is the predominance of
negative domains, suggestive of an increased clustering of under-expressed genes. B. Genome coverage by DFD as a function of time. Values in the diagonal correspond to
genome coverage for each timepoint separately, while the rest of the values correspond to the percentage of the genome covered by DFDs that are overlapping between
timepoints. Notice how coverage is clustered in three groups (early: 1 h, intermediate: 3 h, 6 h and late: 24 h, 7 d). C. Size distributions of DFDs for different timepoints.
Significant expansions in the size of the DFDs (p. value � 0.05) are observed for the two transition points (1 h? 3 h and 6 h? 24 h). (For interpretation of the references to
color in this figure legend, the reader is referred to the web version of this article.)

Fig. 3. Gene Expression in Domains of Focal Deregulation. A. Overlap enrichments of differentially expressed genes (DEGs) in DFDs for all, over- and under-expressed DEGs.
Height of bars corresponds to enrichments calculated as observed/expected ratios of overlap. Significance levels shown on top of bars are: ***: <0.001, **:<0.01, *:<0.05. B.
Distributions of DEG enrichment values on a per DFD basis. Significant changes (p � 0.05) are observed between 1 h? 3 h, 6 h? 24 h and 24 h? 7 d. The change in the first
transition is towards smaller enrichments (diffusion of DEGs) while the one in the second transition is towards greater enrichments (clustering of DEGs).
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Early (1 h) DFDs were more enriched in differentially expressed
genes but this effect is gradually diminished. More interestingly
the largest part of DEG clustering occurs in the case of gene repres-
sion as may be seen when we plot enrichments separately for over-
and under-expressed genes (Fig. 3A). Under-expressed genes are
more than 3-fold enriched in the early timepoint, with their pref-
erence for DFDs dropping to almost half at the first transition point
(3 h). In the opposite manner, clustering of over-expressed genes
increases in DFDs after the first transition and then also stably
returns to the levels of random expectancy. The tendency of
under-expressed genes to cluster in DFDs may be also seen directly
in the domainograms of Fig. 2A (where under-expression is shown
in blue and over-expression in red), as well as in the distribution of
differential expression scores (Supplementary Fig. 4), where the
majority of DFDs show significantly low (negative) scores. These
observations are indicative of connections with the three-
dimensional genome structure as topologically-associated
domains (TADs) are commonly associated with strongly repressive
chromatin. It appears thus that spatial clustering of gene expres-
sion may partly reflect underlying genomic properties at the struc-
tural level and that, moreover, such properties come into play
during the progression of cellular response to Tnf stimulation.



S. Mavropoulos Papoudas et al. / Computational and Structural Biotechnology Journal 18 (2020) 220–229 225
The overall enrichments shown above can be masked by effects
that are related to the size distributions of DFDs, which as we saw
earlier are also significantly variable between timepoints. In order
to have a clearer view of DEG clustering, we calculated DEG enrich-
ments at local level, that is for each DFD separately. Here we find a
significant clustering at both the initial (1 h) and the 24 h time-
points (Fig. 3B). It thus appears that, while the initial timepoint
may represent an early bookmarking of particular regions, a gen-
eral redistribution of differential gene expression occurs at 24 h.
Notice that in Fig. 3B both transitions (1 h? 3 h) and (6 h?
24 h) show highly significant changes in terms of enrichments.
The first of the two is accompanied by a drop (1 h? 3 h) while
the second by an increase, which are suggestive of different topo-
logical shifts between them. Hence, the transition from 1 h to 3 h
appears to be more one of DFD expansion, with the subsequent
‘‘dilution” of DEG enrichment, while the one from 6 h? 24 h is
more likely reflecting a general re-distribution of DFDs with the
overall degree of DEG clustering in them increasing. This fits well
with what we already knew for the early response, meaning a gen-
eralization of the initial immediate response that activates down-
stream inflammatory and immune-related pathways. On the
other hand, it indicates something that was not expected for the
second transition point, suggesting that around 24 h, there is a rad-
ical shift in gene deregulation at all levels (genes, pathways and
genomic regions).

When we analyzed the enrichments of DFDs for genes belong-
ing to the eight time-dependent gene expression clusters, we also
found few but representative enrichments, in agreement with the
overall tendency for under-expressed genes to cluster in DFDs
(Supplementary Fig. 5). Early under-expressed genes were particu-
larly enriched in DFDs (see also Fig. 3A), while over-expressed
genes in both intermediate (3 h, 6 h) and late (24 h, 7 d) timepoints
showed a general avoidance for DFD clustering. These findings are
suggestive of different topological clustering tendencies for differ-
ent functional categories, the study of which is the primary goal of
this work. We next turned to the combined analysis of spatial/-
topological and functional enrichments in gene expression profiles
through the introduction of bipartite topological-functional
networks.

3.5. Topological-functional bipartite networks monitor gene regulation
progression

Having already established a methodology to assess enrich-
ments at both functional and positional level, we went on to com-
bine the two aspects. We defined bipartite positional-functional
gene enrichment networks as described in Methods. After con-
structing bipartite networks for each of the five timepoints, we
performed an edge-betweeness modularity analysis [41] in order
to identify network modules, which in this context, would repre-
sent genomic regions strongly connected with a particular set of
functions. Inspection of the resulting networks (Fig. 4) leads to a
number of interesting observations.

Firstly, the number of DFDs and associated functions are, to
some extent, reflected on the size of the networks. The early
(1 h) consists of only four modules while the late (24 h and 7 d)
contain 7 and 10 modules respectively. The modularity of the net-
works is also increasing with time, rising from 0.45 to 0.80 for 24 h,
which is suggestive of stronger links between chromosomal
regions and associated functions as time progresses.

More detailed examination of the networks reveals a number of
key elements related to the way cells are affected by the prolonged
stimulation by Tnf. Initial stimulation (1 h) affects a pair of core
modules associated with cytokine and chemokine signaling. These
are located in chromosomes 4 and 5 respectively but they are not
both affected in the same way. The cytokine module (chr4) consists
primarily of over-expressed genes, while the chemokine and
chemotaxis is enriched in under-expressed genes.

This core pair of modules is also part of the first of the interme-
diate networks (3 h), in which it is expanded through the addition
of an interferon/Tnf-related module (chr11). One major change in
the 1 h? 3 h transition is the activation of the chemokine/chemo-
taxis module, which leads to the formation of a core of three acti-
vated modules (cytokine, chemokine and interferon) bridging parts
of chromosomes 4, 5 and 11 respectively. A set of additional, smal-
ler modules, associated with the immune response, development
and apoptosis also arise at this stage. Progression to 6 h brings
about two major changes. First, an expansion of the chemokine
module with an additional module associated to chr9 and second,
the switch of the cytokine module, which still forms part of the
network core, to under-expression. This is an indication of the first
signs of a shutdown of inflammatory functions, which will be gen-
eralised in later stages. A set of under-expressed modules related
to cell adhesion, apoptosis and development complete the
network.

The second major transition from 6 h to 24 h is accompanied by
the complete disappearance of the cytokine-chemokine-interferon
core. The highly modular 24 h network is the most fragmented one,
comprising a set of isolated modules among which a number of
functions such as cell adhesion, development and differentiation
are associated with under-expression. These last three modules
become over-expressed in the network of day 7, in which, we addi-
tionally observe the re-emergence of the cytokine-chemokine ini-
tial core, now strongly associated with under-expression. This
module is strongly associated with the small cluster of genes (Light
Green, Fig. 1A), which undergo the most intense deregulation from
a strong initial over-expression to an equally strong late under-
expression. Follow up experiments on the dynamics of the chro-
matin environment of these gene loci would be a first priority.

3.6. Functional dynamics of bipartite networks are consistent with two
transition points at 3 h and 24 h

Having observed extensive changes in the bipartite networks
we went on to assess the changes in a quantitative manner by
examining the number and type of functional modules that are
emerging, removed, expanded or contracted in the networks. A
simple analysis of the number of times a function appears in each
network is shown in Fig. 5A and is again representative of two
major transition points in the system under study. Fig. 5A shows
an initial, large increase in the number of functions as we move
from 1 h to 3 h. The 3 h-acquired functions are related to chemo-
taxis and interferon signaling as suggested by the network mod-
ules. There are overall large similarities in the functional patterns
of 3 h and 6 h, but these are followed by a radical depletion of
the largest part of the functions in 24 h. Thus, this second transi-
tion point is marked by extensive re-organization of functions.

Most of the inflammation and immune response-related func-
tions are not present at 24 h. Instead they have been substituted
by pathways associated with development, cell adhesion and cell
motility, which are suggestive of major transformations occurring
in fibroblasts under prolonged Tnf stimulation. A subsequent
expansion of similar developmentally-related functions occurs in
the latest timepoint (7 days). Most of the intermediate stage (3 h,
6 h) functions are absent but functional terms such as cell adhe-
sion, cell differentiation and cell migration are prominent.

3.7. Dual dynamics of positional and functional enrichments suggest
intermediate expansion followed by late re-organization

The changes in the functional footprint through time, discussed
above, are also accompanied with changes in the domains of focal



Fig. 4. Bipartite Networks for early, intermediate and late stages of stimulation Bipartite networks for early, intermediate and late stages. Only names of DFD coordinates are
shown, while functions are summarised in distinct modules. Module functions written in green are associated with over-expression, while those in red with under-
expression. The expansion with time is evident as is the increase in modularity, which corresponds to increasing compartmentalization of functions. (For interpretation of the
references to color in this figure legend, the reader is referred to the web version of this article.)
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deregulation. As domain boundaries are more difficult to identify
directly, we implemented a computational approach based on
chromosomal coordinate overlap to assess the qualitative nature
of the change. In this way, domains that are present in a given
timepoint but not overlapping any corresponding domain in a sub-
sequent timepoint are considered to be ‘‘depleted”, while the
opposite are assigned as ‘‘emergent”. More complex cases of
domains which overlap, were identified as either ‘‘contracted” or



Fig. 5. Bipartite network dynamics. A. DFDs numbers per function in bipartite networks. Each cell in the heatmap shows the number of DFDs associated with each function.
Functions with 0 DFD (blue) are absent from the corresponding bipartite network. An expansion at 3 h and a subsequent decrease and redistribution at 24 h is evident. B.
Percentage of DFDs belonging to each dynamic category for comparisons between consecutive timepoints. Emergence is prominent for the early transition, while deletion is
quite significant for the late one. C. Number of gained/lost functions per DFD in the bipartite network comparisons between consecutive timepoints. 1 h? 3 h transition is
marked by an acquisition of functions while 6 h? 24 h by a general loss. D. Functions clustered to DFDs behave differently between timepoints. Enriched functions were
divided into those associated with a DFD in bipartite networks and those that were not. Mean enrichment of functions that are associated with DFDs is smaller than the one of
functions that are not attached to a DFD for the early stage. The situation is inversed for the 24 h timepoint. (For interpretation of the references to color in this figure legend,
the reader is referred to the web version of this article.)
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‘‘expanded” depending on whether their boundaries were
stretched or withdrawn between consecutive timepoints.

The results of this analysis are shown in Fig. 5B, where the per-
centage of each of the four categories of domain changes was cal-
culated over the total extent of DFD coverage. The two transition
points (1 h? 3 h) and (6 h? 24 h) show the greatest degree of
domain changes but in different ways. The early transition point
(1 h? 3 h) is marked by the emergence of a large number of
new domains (>50% of the total), while the rest correspond to
expansions. One the other hand, the 6 h? 24 h transition is the
only such that contains contracted domains with a similar propor-
tion of expansion, deletion and emergence signifying a general
domain re-organization.

3.8. Prolonged Tnf stimulation goes through an initial expansion and a
late-stage contraction of activated functions

Fig. 5A suggests two major shifts in the number of enriched
functions between timepoints. Since these changes are tightly
linked to DFD dynamics we wanted to test this further by looking
into each DFD separately. We calculated the number of functions
attributed to each DFD and compared them between consecutive
timepoints, distinguishing between ‘‘gained” and ‘‘lost” functions.
We then plotted the corresponding numbers for each DFD and
grouping for the four transitions (1 h? 3 h, 3 h? 6 h, 6 h? 24 h
and 24 h? 7d) in Fig. 5C. The plot shows two distinct trends in
the shape of the bubbles (with horizontal and vertical orientations
corresponding to predominant gain and loss of functions respec-
tively). One can see that 1 h? 3 h and 24 h? 7 d transitions are
associated with function gain and 3 h? 6 h and 6 h? 24 h with
function loss, while it is also clear that the effects are
stronger for the 1 h? 3 h expansion and the 6 h? 24 h
contraction. Indeed, it is these two transitions that are also
statistically significant in terms of number of acquired/lost
functions per DFD (Supplementary Fig. 6).

An overview of the analyses of our bipartite network approach
strongly suggests that the two major transition points in the pro-
longed stimulation of fibroblasts by Tnf are also qualitatively dif-
ferent, with an early (1 h? 3 h) expansion that is probably
reflecting the generalization of the immune signaling response, fol-
lowed by a major shutdown of immune-related pathways in 24 h.
3.9. Focal functions attract a greater number of differentially expressed
genes

Our data suggest complex dynamics of enriched functions,
being lost and gained from equally volatile DFDs. This dynamics
is, however, confined to the subset of functions that are associated
with DFDs. A large number of functional categories are also
enriched in differentially expressed genes without being linked
to focal deregulation. These are being enriched in genes that are
distributed more broadly in genome space and may thus be subject
to different expression biases. We tested these differences through
a comparison of enrichment p-values for functional terms associ-
ated with DFDs (focal functions) against non-focal functions, that
are enriched but not linked to particular chromosomal regions
(Fig. 5D). Interestingly, we find significant differences between
early (1 h) and late (24 h) stages. At the early stage, focal functions
are significantly more enriched than non-focal ones, while the
opposite holds for the 24 h timepoint. This result, also implied by
the bipartite network modularity analysis, is suggestive of an
increased fragmentation of differential gene expression into dis-
tinct regions and functions.
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Together, the results from the bipartite network analyses pro-
vide a solid framework for the understanding of cellular response
to a sustained cytokine cue. In the particular case of Tnf activation,
an initial generalization of an immediate acute response is readily
dampened and eventually reversed. This change is moreover,
accompanied with a broad redistribution of gene deregulation in
the genome.
4. Discussion

Our work constitutes one of the first attempts to incorporate
positional information in the analyses of gene expression. The
starting hypothesis is that differential gene expression may be
clustered in confined regions of the linear genome due to regula-
tory, epigenetic and structural constraints. Indeed, elements of
the three-dimensional genome structure such as TADs [42] have
been shown to delineate genomic space with particular transcrip-
tional tendencies, while we [23] and others [43] have demon-
strated focally increased transcription in TAD boundaries. More
recent works have focused on the regulatory potential of self-
contained linear genomic regions, thus called cis-regulatory
domains (CRDs) [15]. Through a relatively simple approach, we
herein demonstrate that regions of consistent differential expres-
sion are common and may, moreover, provide insight in the way
a gene expression program develops in time.

Implementation of this approach on the prolonged activation of
epithelial cells by Tnf leads to the observation of significant enrich-
ments for under-expressed compared to over-expressed genes.
Even though we cannot exclude that it may be a particular charac-
teristic of the system under study, it is worth noticing that repres-
sive domains are readily formed in eukaryotic genomes mediated
by Polycomp-Group (PcG) proteins [44] or through the association
of genomic regions with the nuclear lamina [45]. Thus, it will not
be surprising to find that there is a stronger overall clustering ten-
dency for repressive genes in order to maintain transcriptional
silencing.

Another interesting aspect that comes out of our time-
dependent study is related to the progressive expansion of the gen-
ome space that is covered by DFDs. Since this is not correlated with
the number of differentially expressed genes (the coverage by
DFDs peaks at 24 h, where we have the smallest number of DEGs)
we may assume that it reflects a propensity for increased genome
compartmentalization. Indeed, we find that, with time, and inde-
pendently of the number of differentially expressed genes, expres-
sion tends to become segmented into a greater number of regions
and this is, moreover, accompanied by an increase of the bipartite
network modularity. Again, while this may be a singular property
of the cytokine response, it deserves to be studied in more detail
and in different systems.

Besides providing insight on the functional modularity of gene
expression profiles, the bipartite networks that we describe in this
work may also assist in the formulation of hypotheses on genome
organization. Interacting modules observed in the bipartite net-
works of the intermediate stages (3 h and 6 h) show strong func-
tional interactions between regions from different chromosomes
(chr4, chr5, chr9 and chr11 in particular). It would be really inter-
esting to investigate whether such interactions are also reflected
upon the three-dimensional organization of the genome. Even
though inter-chromosomal interactions are inherently difficult to
detect, new methodological approaches such as SPRITE [46] and
GAM [47] would probably allow us to test similar hypotheses.

Another promising aspect of our work is related to the analysis
of genes belonging to focal vs non-focal functional categories.
Functional categories that tend to have their genes clustered in
close proximity are more likely to be enriched depending on the
stage of the process under study and this may be an indication of
a more focal or more widespread expression program. One inter-
esting question would be to examine genes, whose expression
may be attributed to their relative position rather than their partic-
ipation in a certain pathway. We would call these ‘‘by-stander gen-
es” as, in essence, one could suggest that their mis-expression is
driven by nearest neighbor effects. Modeling the likelihood for
positional vs functional drive of such by-standers is a very interest-
ing prospect especially in the context of stimulation by cytokines
as they (and Tnf in particular) have been associated with the devel-
opment of auto-immunity. The expansion of gene expression in
broad areas of the genome that we describe herein, may acciden-
tally trigger the activation of genes and pathways that are not
directly related to the initial response, which could, under given
circumstances, eventually lead to the development of pathological
conditions.
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